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Abstract. The work presented in this paper is motivated by the chal-
lenges in the design of scheduling algorithms for the Czech National
Grid MetaCentrum. One of the most notable problems is our inability
to efficiently analyze the quality of schedules. While it is still possible to
observe and measure certain aspects of generated schedules using vari-
ous metrics, it is very challenging to choose a set of metrics that would
be representative when measuring the schedule quality. Without quality
quantification (either relative, or absolute), we have no way to deter-
mine the impact of new algorithms and configurations on the schedule
quality, prior to their deployment in a production service. The only two
options we are left with is to either use expert assessment or to simply
deploy new solutions into production and observe their impact on user
satisfaction. To approach this problem, we have designed a novel user-
aware model and a metric that can overcome the presented issues by
evaluating the quality on a user level. The model assigns an expected
end time (EET ) to each job based on a fair partitioning of the system
resources, modeling users expectations. Using this calculated EET we
can then compare generated schedules in detail, while also being able
to adequately visualize schedule artifacts, allowing an expert to further
analyze them. Moreover, we present how coupling this model with a job
scheduling simulator gives us the ability to do an in-depth evaluation of
scheduling algorithms before they are deployed into a production envi-
ronment.

Keywords: Grid, Performance evaluation, Metrics, Queue-based schedul-
ing, Fairness, User-aware scheduling

1 Introduction

The Czech National Grid MetaCentrum is a highly heterogeneous environment
currently composed of 26 clusters with heavily varying configurations (GPU
clusters, RAM heavy clusters, machines with large SSD disks, clusters with in-
finiband, high speed NFS access, etc.). MetaCentrum currently contains over
10000 CPU cores, servicing 800 concurrently running jobs on average.

The heterogeneous character of the system is mirrored in its users base.
User requirements range from instantaneous access requests, through large job
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submissions (thousands of jobs in a single batch), long workflows (large batches
of jobs that need to be run in sequence) to extremely unbalanced requests (single
CPU core, 1TB of memory). To deal with these various challenges present in this
environment we are employing a multitude of software/middleware solutions.
These range from our virtualized infrastructure [21] to a locally maintained fork
of the Torque [2] batch system coupled with a custom scheduler [25].

Specifically for testing the impact of various changes in the scheduler em-
ployed in the MetaCentrum we are using an advanced job scheduling simulator
Alea [14]. Unfortunately, it is rather hard to correctly evaluate schedules gener-
ated by the simulator. This mainly stems from the dichotomy of the simulated
workloads. Workloads that can be evaluated using human experts are too sim-
ple to be applicable for the production environment and real workloads are to
complex to be evaluated in any manner beyond easily understood performance
metrics. Similar problem occurs when evaluating job traces recorded in Meta-
Centrum, as these are usually extremely complex.

We have found that commonly used performance metrics and optimization
criteria like average response time, wait time or slowdown [8] do not really reflect
what we actually need to optimize. Although these metrics are widely used in the
literature, their use is rather questionable. For example, the use of mean values
to measure (highly) skewed distributions is a problem in itself [17]. Even though
we are capable of complex analysis based on user-agnostic metrics [16, 17], this
analysis still does not provide satisfactory results. User-agnostic metrics do not
consider whether different users are treated in a fair fashion by the system, which
is a very important part of MetaCentrum scheduling algorithm.

In this work we propose a new user-aware metric that allows us to measure
the suitability of applied scheduling algorithms. In a natural fashion, it models
user expectations concerning system performance using individually computed
expected end times (EET ). We demonstrate the gain of this solution over evalu-
ation using classical and widely used metrics [8], using both synthetic examples
as well as experimental evaluation where real workload and the simulator are
used. It demonstrates that our solution provides truly detailed insight into the
behavior of the scheduling algorithm, highlighting how suitable, i.e., efficient and
fair, are various algorithms with respect to specific users demands.

2 Schedule Evaluation

It must be said that there is no general agreement about measuring schedule
quality. This is understandable as the proper measure is inherently heavily envi-
ronment dependent. The most common approach when determining the quality
of a schedule is to use a combination of various metrics. There are several well
established groups of metrics. Firstly, we have user-agnostic metrics. These can
be either related to a system itself (machine usage, power consumption, etc.) or
related to jobs in a system (slowdown, response time, wait time, etc.). Secondly,
we have user-aware metrics, mostly represented by some form of fairness-related
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metric. We will now closely discuss several categories of metrics that are used to
evaluate the suitability of scheduling algorithms.

2.1 User-agnostic Metrics

Typical and widely used metrics are those that do not consider users of the
system. Among them, the most popular are the average response time, average
wait time or the average slowdown. Average response time measures the mean
time from job submission to its termination. The average wait time is the mean
time that jobs spend waiting before their execution starts. The slowdown is
the ratio of an actual response time of a job to a response time if executed
without any waiting. While the response time only focuses on a time when a
job terminates, the slowdown measures the responsiveness of the system with
respect to a job length, i.e., jobs are completed within the time proportional to
jobs demands [8]. Wait time supplies the slowdown and the response time. Short
wait times prevent the users from feeling that the scheduler “ignores” their jobs.

Although widely used, these job-related metrics are based on several assump-
tions that no longer hold in heterogeneous, grid-like environments, as we explain
in the following text.

Problems with Job Priority One of the main assumptions of standard job-
related metrics is that a shorter job should receive higher priority in the system
(see, e.g., the slowdown or the response time). Shorter jobs are easier to schedule
and users with more complex (longer) requests are therefore required to expect
longer wait times.

This assumption is problematic on several levels. Firstly, as long as we are
measuring the total job penalty or the average value (e.g., total/average slow-
down/response time) this “shortest job first” priority advantage will remain ab-
solute. This can very easily lead to huge starvation of (few) long jobs1. The grid
is indeed a dynamic system and the number of jobs submitted by a single user
is, to a certain degree, proportional to the number of jobs successfully processed.
Given the total job length dispersion (from several minutes to a month) [5, 19],
users with extremely long jobs would hardly ever get their requests satisfied.

Secondly, the correlation between the absolute job length and the job urgency
is little to none. Again, due to the large dispersion of job lengths, the notion of
a “short job” has very different meaning to different users. The increased benev-
olence toward wait times for long jobs is simply due to the increased absolute
users runtime estimation error (10% imprecision on a month long job equates to
3 days).

Problems with Resource Requirements Similar issues occur when dealing
with different job resource requirements. If one can split a large CPU demanding

1 Production systems (including MetaCentrum) usually employ a certain type of anti-
starvation technique. Since this approach goes directly against the order suggested
by the job-related metric, it naturally leads to skewed results.
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job into a set of smaller jobs, these will obtain higher priority. This problem was
previously addressed by normalizing the selected metric using the number of
CPU cores a job is requesting [7] [13], as a weight.

Unfortunately, nearly no metric is designed to reflect combined consumption
of multiple resources [15] such as CPUs, RAM, GPUs, HDD, etc. When multiple
resources are concerned, further measures need to be employed, like dominant
resource [10] or processor equivalent [12] to properly reflect other than CPU-
related job requirements.

Why Users Matter Last but not least, we now demonstrate the major problem
which causes that user-agnostic metrics are impractical in real systems.

Let us consider an example of a schedule optimized according to average
wait time (see Fig. 1a). In this schedule we have two users (bright-orange and
dark-blue) and the optimization criterion favors the jobs of the blue user due to
their shorter length2. The total penalty for this schedule according to average
wait time would be 0+0+1+1+2+2

6 = 1. Unfortunately, the orange user will clearly
not consider this schedule optimal. He or she is requesting the same amount of
resources as the blue user, but has to wait until all jobs of the blue user are
processed.

Resc1 Job1 Job2

Resc2 Job3 Job4

Job5

Job6

(a) Wait time optimized schedule

Resc1 Job1 Job2 Job3 Job4

Resc2 Job5 Job6

(b) Fair resource allocation

Resc1 Job1 Job2 Job3 Job4

Resc2 Job5 Job6 Job7 Job8

Resc3

Resc4 Job1

Job10 Job11 Job12 Job13

(c) Fair resource allocation

Fig. 1. Examples of optimal schedules

Let us consider a different schedule, this time using fair resource allocation
among the blue and the orange user (see Fig. 1b). In this case both users receive
one resource exclusively for their jobs and both users receive the complete results
of their jobs at the same time. The total penalty for this schedule according
to average wait time would be 0+1+2+3+0+2

6 = 4
3 , which is more than in the

previous example. Indeed, we would get similar results for both response time
and slowdown.

2 Resc1 and Resc2 represent resources, e.g., CPU cores.
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An analogous problem occurs when we simulate similar situation where, in-
stead of job runtimes, overall resource requirements are considered (see Fig. 1c).
Again the presented fair resource allocation among the blue and the orange user
is not considered optimal according to user-agnostic metrics.

2.2 User-Aware Metrics

User-aware metrics aim at maximizing “benefits” regarding the users of the
system. Very often, the metric applied for such goal is related to fairness. In
production environments, some type of fairness guaranteeing process/metric is
usually provided. These measures are highly dependent on the system itself and
range from simple measures that try to maintain the order in which the requests
entered the system [22] to much more complicated measures concerned with the
combined consumption of various resources [10].

Job-to-job Fairness Fairness is often understood and represented as a job-
related metric, meaning that every job should be served in a fair fashion with
respect to other jobs [22, 18, 23]. For example, a fair start time (FST ) metric [22,
18] measures the influence of later arriving jobs on the execution start time of
currently waiting jobs. FST is calculated for each job, by creating a schedule
assuming no later jobs arrive. The resulting “unfairness” is the difference between
FST and the actual start time. Similar metric is so called fair slowdown [23]. The
fair slowdown is computed using FST and can be used to quantify the fairness
of a scheduler by looking at the percentage of jobs that have a higher slowdown
than is their fair slowdown [23]. Sadly, these job-to-job metrics do not guarantee
fair behavior with respect to different users of the system.

User-to-user Fairness Instead of the job-to-job fairness, the resource man-
agement systems frequently prefer to guarantee fair performance to different
users. One of the commonly employed techniques is fairshare. Fairshare-based
fairness is supported in many production resource management systems such
as in PBS [20], TORQUE [2], Moab, Maui [1], Quincy [11] or in Hadoop Fair
and Capacity Schedulers [4, 3]. Fairshare tries to balance the mid-to-long term
resource usage among users of the system3. More precisely, if a user A and a
user B have identical priorities, they will receive the same amount of resources,
when averaged over a reasonably long time period [12]. This is of course only
true when both user A and user B actually request these resources.

Fairshare can also be expressed using the following equation:

∀u; lim
time→∞

Usage(u) = AvailableResources · time ·DesignatedFraction(u)

Simply put, if we take a large enough time period, the total used resources
by one user (Usage(u)) will equate to the amount of resources designated for

3 Depending on the implementation, fairshare can also prevent usage spikes.
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this user. Or formulated in a different manner, the amount of used resources will
converge toward the amount designated by a user priority.

While the methods applied in production fairshare algorithms are well doc-
umented [12], there is — surprisingly — no common agreement about how to ac-
tually measure, i.e., evaluate, analyze or even compare, the level of (un)fairness
for such user-to-user approaches. Authors that need to employ such methods
usually rely on measuring the variability (using, e.g., the standard deviation) of
user-agnostic metrics [26].

Therefore, in the following text we propose a novel user-aware model and
a metric that can overcome previous issues by evaluating the schedule quality
on a user level. In a natural fashion, the model represents user expectations
concerning system performance, using individually computed EET s and allows
us to compare quality of different schedules in a reasonably detailed manner.

3 Proposed User-Aware Model

As we discussed in the previous section, commonly used metrics may provide mis-
leading results. Moreover, production-based anti-starvation and fairshare mech-
anisms can further delay executions of certain jobs, thus confusing those metrics
even more. Therefore, we can no longer rely on these metrics when evaluating
the quality of generated schedules.

This situation leads us to the formulation of a new user-aware model that
can be used instead. The model is designed with several important features in
mind: the model needs to be simple enough, so that its output remains easy to
analyze; the model needs to provide information-rich output; the model needs to
be robust enough to ignore irrelevant differences, e.g., in particular job resource
specifications (see next Section 3.1).

3.1 The Model of User Expectations

Our model tries to capture the expectations of users concerning the target system
and then it evaluates the quality of a given schedule by determining how well
were these expectations satisfied.

User Expectations on Job Wait Times As we have observed during the past
years in MetaCentrum, there are some common expectations of the users toward
the (expected) behavior of the scheduling system. User expectations toward job
wait time mainly correlate with the complexity of the job requirements and the
number of jobs present in the batch. The more resources a job requires, the more
tolerant a user tends to be toward its wait time. Similar correlation exists when
considering a set of jobs as a group, the expected response time (of the whole
group) correlates with the total amount of required resources. On the other hand,
users exhibit very little tolerance in situations when their jobs are waiting, while
jobs of other users with similar requirements are starting regularly.
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In order to follow these expectations, we have decided to model each user
separately, independent of other users in the system. Our model is also built to
disregard insignificant differences, e.g., in the specification of resource require-
ments. For example, if 4 simultaneously submitted jobs require 1 CPU and 4 GB
RAM each, then we consider this to be equal to 1 job that requires 4 CPUs and
16 GB of RAM.

User Expectations on Available Capacity According to our experience,
user expectations toward the capacity the system can provide for a single user
tend to be rather reasonable. Users understand that they cannot allocate the
entire system for themselves. Therefore, we are matching the capacity expecta-
tion by giving each user a virtual share of the system, following the idea of the
well known fairshare principle [12].

As we have already mentioned, our model has been designed in order to
match user expectations. Similarly, the proposed metric is designed to determine
whether these expectations were fulfilled in the provided schedule. Let us now
closely describe the proposed expected end time (EET ) metric.

3.2 Proposed EET -based Metric

The proposed EET -based metric works in a simple but robust fashion. Simply
put, specific EET expressing user expectations is calculated for every arriving
job and then it is checked against the provided schedule4 analyzing which of the
calculated EET s are satisfied and which are violated.

Simply put, EET for a particular job is calculated by assigning the job to
a given resource of predefined capacity. This capacity represents the share of real
resources a user is expecting to receive from the system (at any time). We can
assign different capacity of this resource to different users, thus modeling more
or less demanding users (users with different priorities). User’s jobs are then in-
serted into the available capacity in a “tetris-like” fashion. It means that we need
to rearrange jobs that do not fit into the remaining capacity of this resource,
essentially treating them as moldable/malleable [9]. Just like moldable jobs, a
runtime of a job is proportionally increased if the amount of available resources
is smaller than requested by that job. On the other hand, unlike moldable jobs,
a job cannot allocate more resources than it requires, i.e., its runtime cannot be
decreased by using more resources. This approach has been adopted based on
our experiences concerning users expectations, as were discussed in Section 3.1.
However, such transformations are only done for the purposes of the EET cal-
culation and the job scheduling algorithms we are considering in this paper only
work with non-moldable jobs that have constant resource usage.

Algorithm for EET Calculation The computation of EET is described in
Algorithm 1 and works as follows. Based on the expectations we mentioned in

4 By default, we assume that this provided schedule is a historic schedule as found in
a workload trace. If needed, it can be extended for a use within “live” scheduler.
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Section 3.1, each user is assigned a resource with a predefined capacity, that he
or she expects to have access to (Line 2). Each job is then allowed to consume
this resource starting from its arrival time. Available share is being allocated in
blocks, where 1 block has duration (“length”) of 1 time unit and size (“height”)
equal to 1 resource unit. In this paper, 1 block equals to 1 second × 1 CPU.
Of course, a job may require more resources per time unit than is available. In
such situation, a job is rearranged to fit within available blocks in that share.
Simply put, such job is then “longer” and “narrower”. On the other hand, if the
available share is larger than the resources requested per time unit (RescReqj),
we do not rearrange such job. Simply put, jobs that are “long” and “narrow”
cannot become “shorter” and “higher”, since they are still limited by the amount
of resources requested (RescReqj) in each time unit.

Algorithm 1 Calculation of EET for a given user

1: for time = 0 to SheduleEnd do
2: capacitytime = ExpectedCapacity
3: end for
4: sort arrival(jobs)
5: for j = 0 to JobCount do
6: jobCapacity = rescReqj · runtimej
7: time = arrivalj
8: while jobCapacity > 0 do
9: consumedCapacity = min(capacitytime, rescReqj)

10: capacitytime = capacitytime − consumedCapacity
11: jobCapacity = jobCapacity − consumedCapacity
12: time = time + 1
13: end while
14: EETj = time
15: end for

The presented Algorithm 1 will calculate the EET for a single resource type
(e.g., CPU cores requested), but extending this algorithm for multiple resources
(e.g., Memory, GPU cards, ...) is relatively straightforward. After calculating an
EET for each resource separately, we then select the latest/maximum EET, thus
the final EET is dictated by the scarcest and/or most utilized resource.

Processing one job after another in order of arrival (Line 4), each job is rep-
resented by the product (jobCapacity) of its resource requirements (rescReqj)
over time (runtimej). In a loop, we determine the capacity that will be consumed
(consumedCapacity) in the user share at a given time by the job j (Line 9).
The capacity of user share could be already (partially) consumed by previously
added jobs, therefore the consumedCapacity at given time is either the remain-
ing share capacity at that time (capacitytime) or the rescReqj (when a job
requests less resources than is the current capacitytime). Next, we allocate this
consumedCapacity and update both the remaining capacitytime (Line 10) and
the remaining jobCapacity, i.e., the “job remainder” that remains unallocated
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(Line 11). Finally we increase the time (Line 12) and proceed to next iteration.
Once the whole job is allocated (jobCapacity ≤ 0), the inner while loop ends
and the job EETj is equal to the time.

As designed, the EET -based Metric is used in a “post mortem” fashion,
meaning that it is used offline using historic workload trace as an input. There-
fore, an exact runtimej is known for every job. If properly modified, it can also
be used online, e.g., inside a job scheduling heuristic. So far, we have not use
it in such a way, and we only use it for offline analysis of various scheduling
algorithms.

Example of EET Calculation For simplicity, let us consider a user having
two jobs with parameters specified in Table 1. We have decided to grant this user
share ExpectedCapacity = 3. The first job of this user only requires two units.
Since no units were consumed yet and ExpectedCapacity > rescReq the EET
will trivially correspond to job runtime. The second job will arrive at time = 1.
There is only one unit of share remaining from time = 0 to time = 4 and the
job requires two units of share. The job will therefore consume one unit of share
at time time = 1 and the second unit of share at time = 2, ending up with
EET = 3. This process is illustrated in Fig. 2.

Table 1. Calculated EET for a user with two jobs and ExpectedUserCapacity = 3.

arrival rescReq runtime EET

Job1 0 2 4 4
Job2 1 2 1 3

0 1 2 3 4
0

1

2

3

time

sh
a
re

(a) EET calculation for Job1

0 1 2 3 4
0

1

2

3

time

sh
a
re

(b) EET calculation for Job2

Fig. 2. Visualization of EET calculation

For two such users, presented in the example, we can construct an optimal
schedule with no broken EET s using a system with capacity = 6 (see Fig. 3).
This example also demonstrates the fundamental difference between performance
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metrics and our model. Using performance metrics, Job4 would receive penalty
according to most metrics, since it was delayed by one time unit. Our model
makes such distinction irrelevant by only considering the violated EET s.

Resc1

Resc2

Resc3

Resc4

Resc5

Resc6

Job1

Job2 Job4

Job3

time = 0 1 2 3 4

Fig. 3. Optimal schedule (all EET s satisfied) for two identical users that both have
those two jobs from Table 1.

3.3 Application of the Proposed Model

Critical part of the model is of course our ability to extract important informa-
tion out of it. This is directly related to the robustness and simplicity of the
model, which allows us to draw direct links between the generated schedule and
the output of the model.

Violated EET and Tardiness First layer of information output is related
directly to the violated EET s. We can measure how many EET s were violated,
as well as to what extent. For a crude comparison, we measure the number of
violated EET s (violatedEETu) for each user u, and transform it to percentage
of jobs that did not meet their EET s (VEETu) as shown in Formula 1.

VEETu =
violatedEETu

jobCountu
· 100% (1)

Using a statistical box-plot, we can then examine the distribution of this value
across all users and visually compare the results across multiple algorithms. An
example of such a comparison is presented in Fig. 6a.

If we want to examine how significantly were those EET s violated we use
a simple metric based on tardiness. First, we compute job tardiness using For-
mula 2, where Cj is the actual completion time of a job and EET j is the expected
end time of job j. Next, we compute the total weighted tardiness for a given user
(WTu) using Formula 3. Here, Ju is the set of jobs belonging to that user u and
wj is the number of CPUs used by a job j, representing the “weight” of that
job.
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Tj = max(0, Cj − EETj) (2)

WTu =
∑
j∈Ju

(wj · Tj) (3)

Again, we then plot the distribution of this value across all users and visually
compare the results across multiple algorithms. An example of such a comparison
is presented in Fig. 6b. The interpretation however does still require further
analysis due to the nature of value distributions themselves5.

EET Heatmaps For a more in-depth analysis we can analyze how EET s are
violated throughout the schedule. This is done by plotting the number of violated
EET s during the time using a heatmap [17]. In a heatmap, we use x-axis for time
(samples are taken each minute) and the y-axis for users of the system. A color
at given coordinates then corresponds to the number of violated EET s at that
point in time and given user as can be seen in Fig. 7.

Such a heatmap is represented as a 2D array of integers. It has m rows where
m is the number of users of the system. Each row has a length of t, where t
is the length of the schedule in time units. Initially, each cell is equal to 0 (no
violated EET s). Next, the structure is updated according to the actual schedule
and calculated EET s. To illustrate the process, let us consider a situation when
a given user job is executed so that its EET (calculated using Algorithm 1)
is violated by 2 minutes (Tj = 2). Since the resolution (sampling rate) of the
heatmap is 1 minute, and the EET has been violated by 2 minutes, two consecu-
tive horizontal cells in the data structure will be incremented by 1. For example,
[x][y] and [x + 1][y] will be both incremented by 1. Here, y is the index of given
user. Clearly, such a heatmap captures both the number of violated EET s at
given time, as well as the tardiness (Tj = 2 implies that two consecutive cells are
incremented). The question is how to determine the x, i.e., what should be used
as the “start time” of that violated EET. There are, of course, several possible
approaches for determining this time. In our case, we set the “start time” x of
the violated EET as: x = EETj − runtimej , i.e., x is the latest possible job
start time that enables us to meet the job EET. An illustration of the afore-
mentioned example is shown in Fig. 4. When the violated EET s are plotted in
this way, they are usually aligned with the areas of high system usage, which are
frequently the root cause of such a violation.

When such a heatmap is used in conjunction with the actual schedule it
allows us to better understand “what is happening” in the system and why. We
will provide such an example in the following section.

5 What is better, a more disperse distribution with a better median, or a less disperse
distribution?
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arrival start EET end

wait time runtime

plotted EET violation

Fig. 4. An example of a violated EET plotting.

4 Experiments

In the experimental part of this work, we demonstrate how the proposed model
can be used to deeply evaluate the suitability of several scheduling algorithms
with respect to a given computing system.

4.1 Experimental Setup

For the purpose of evaluation, the proposed model and the EET -based metric
has been implemented within the Alea job scheduling simulator [14]. To simulate
the system workload, we have used a real historical workload trace coming from
MetaCentrum which covered 5 months of job execution on the zewura cluster.
Zewura contains 7 shared memory computing nodes, each consisting of 80 CPUs
and 504 GB of RAM. The log contains 17,250 jobs belonging to 70 distinct users.
These jobs are either sequential (1 CPU required only) or (highly) parallel. Also,
job runtimes as well as memory requirements are highly heterogeneous with some
jobs running only few minutes while others running up to 30 days. Concerning
RAM, jobs are requesting anything between few MBs of RAM up to 504 GBs
of RAM. This workload log is freely available at: http://www.fi.muni.cz/

~xklusac/workload.
In order to demonstrate how the proposed model and metric can be used

to evaluate the behavior of scheduling algorithms, we have applied two widely
used scheduling algorithms — the trivial First In First Out (FIFO) and the
well known backfilling [19]. FIFO always schedules the first job in the queue,
checking the availability of the resources required by such job. If all the resources
required by the first job in the queue are available, it is immediately scheduled for
execution, otherwise FIFO waits until all required resources become available.
While the first job is waiting for execution none of the remaining jobs can be
scheduled, even if required resources are available. In practice, such approach
often implies a low utilization of the systems resources, that cannot be used
by some “less demanding” job(s) from the queue [22, 19]. To solve this problem
algorithms based on backfilling are frequently used [19].

Backfilling is an optimization of the FIFO algorithm that tries to maximize
resource utilization [19]. It works as FIFO but when the first job in the queue can-
not be scheduled immediately, backfilling calculates the earliest possible starting
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(a) Average wait time (hours)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

fifo fairshare fifo backfill fair. + backfill

(b) Average response time (hours)

 0

 2000

 4000

 6000

 8000

 10000
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(c) Average slowdown

Fig. 5. Experimental results when measured by classical user-agnostic metrics.

time for the first job using the processing time estimates of running jobs. Then,
it makes a reservation to run the job at this pre-computed time. Next, it scans
the queue of waiting jobs and schedules immediately every job not interfering
with the reservation [19]. This increases resource utilization, as idle resources
are utilized by suitable jobs, while decreasing the mean job wait time.

In our experiments, both FIFO and backfilling were applied either with or
without fairshare-based priorities enabled. If fairshare-based priorities are en-
abled, it means that the jobs waiting in the queue are periodically reordered
according to actual users’ fairshare priorities. Fairshare priorities are updated
continuously as jobs are being processed. In other words, those jobs belonging
to less active users obtain higher priority and vice versa as was discussed in
Section 2.2. Further details can be found in, e.g., [15, 12, 1].

As a result of such a simulation setup, we have obtained four different job
schedules, which are marked according to the applied scheduling algorithm as:
fifo, fairshare fifo, backfill and fair. + backfill.

4.2 Experimental Results

In the Fig. 5 we show a simple comparison of applied scheduling algorithms using
the popular user-agnostic metrics (wait time, response time and slowdown) that
have been described in Section 2.1.

As we can see, the results suggests that backfilling algorithm (both with
fairshare enabled or disabled) is much better than both FIFO versions. This
is not surprising and sounds with results from the literature [19] (see FIFO
and backfilling comparison in Section 4.1). What remains unclear is whether the
application of fairshare priorities results in better, i.e., more fair performance for
the users of the system. As we have explained in Section 3.1, good fairness and
a high performance are the two most important factors that make the system
users satisfied — at least this is the case in MetaCentrum.

Therefore, let us now demonstrate how the EET -based metric that emulates
user expectations can be used for much more detailed analysis. For a very crude
comparison of these algorithms, we can use the percentage of violated EET s
(VEETu). This information is calculated for each user by Formula 1 and plot-
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ted using a box-plot6 as shown in Fig. 6a. In our case, the y-axis denotes the
percentage of violated EET s and the boxes show how the users are distributed
according to the percentage of violated EET s. This gives us immediate infor-
mation about the quality of the algorithms with respect to both performance
(small percentage of violated EET s indicates good performance) and fairness
(bigger deviation equates less fairness). As can be seen, only algorithms with
enabled fairshare-based priorities (fairshare fifo, fair. + backfill) are able to pro-
vide at least some fairness to the users (75% of users have at most 35% violated
EET s). On the other hand, no algorithm was able to eliminate users with 100%
of violated EET s.

 0

 20

 40

 60

 80

 100

fifo fairshare fifo backfill fair. + backfill

(a) Percentage of users (boxes) having
at most y% of violated EET s (y-axis).
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(b) Total weighted tardiness in seconds (y-
axis, log. scale) according to users (boxes).

Fig. 6. Simple comparison of different scheduling algorithms

For a more quantitative comparison, we use the total weighted user tardiness
(WTu) as defined by Formula 3. Again, we calculate this metric on a per-user
basis and then plot these values as a box-plot as shown in Fig. 6b. Here, y-axis
represents the calculated total weighted user tardiness (seconds in log. scale).
This figure provides further details to the results observed in Fig. 6a, by showing
that fair. + backfill significantly decreases those job delays observed by users.

For an in-depth analysis we plot a time overview of violated EET s using
so called heatmap [17]. For each user (y-axis) and a point in time (x-axis) we
plot a color corresponding to the number of violated EET s at that coordinates.
Moreover, we also plot actual CPU and RAM usage bellow each heatmap, to
put the results in context with the resource utilization. Such graphs are available
in Fig. 7. It gives us the ability to evaluate the behavior of the algorithms with
respect to each user of the system and analyze the specific artifacts that may
appear in the schedule. For example, for those algorithms using fairshare there
are clear artifacts created by the fairshare algorithm, appearing as long lines of
violated EET s (second and fourth row in Fig. 7). This is an expected behavior for

6 Box-plot maintains information on the distribution of VEETu values by showing
their minimum, lower quartile, median, upper quartile and the maximum, plus pos-
sible extreme outliers marked as dots.
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Fig. 7. Heatmaps showing number of violated EET s comparing fifo and fairshare fifo
(first and second row) against backfill and fair. + backfill (third and fourth row).

workload-heavy users, as their priority is decreased proportionally to the amount
of resources they consume. Concerning system usage, we can see that FIFO
algorithms (first and second row in Fig. 7) performs worse than backfilling. Plain
FIFO not only suffers from a large number of violated EET s (which indicates
poorer usage) but we can also clearly see the gaps in the system usage (bottom
part of the top graph). The overall bad impact on EET s is a natural effect of
poor resource utilization. From this point of view, backfilling should perform
very well. However, as we can see in case of plain backfilling, it increases the
system utilization at the expense of some users. In this context, plain backfilling
performs worse than FIFO with fairshare, which sounds with the results from
Fig. 6. Only the backfilling algorithm with fairshare-based priorities (bottom
row) performs better, decreasing the number of violated EET s and increasing
the system utilization. This direct “high resolution” comparison provides clear
evidence how fairshare-based priorities and backfilling improve the performance
and fairness of the system with respect to its users. It is worth noticing that these
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issues and characteristics cannot be captured by classical user-agnostic metrics
as we have discussed in Section 2.1 and demonstrated in Fig. 5. For example,
according to user-agnostic metrics, plain backfilling is much better than FIFO
with fairshare, while our results show the exact opposite.

4.3 Summary

In this section we have demonstrated how the proposed model and the metric
can be used to better understand the behavior of various scheduling algorithms.
Using a real workload and a simulator, we have shown how different scheduling
approaches can be tested and their results compared in a “high resolution”
manner. Using our approach, we now better understand how various scheduling
setups influence the impact on system users. It is worth noticing that the widely
used user-agnostic performance metric are neither suitable for real-life multi-user
oriented systems nor are able to provide such a detailed insight.

The tool used here for workload processing and visualization [24] is available
at: http://happycerberus.github.io/Deadline-Schedule-Evaluator under
the MIT license. This tool is capable of processing standard accounting format-
based workload data, it also supports SWF-like workload traces from workload
archives, or it can even use a trace coming from a job scheduling simulator.
This way we can either analyze the current performance of our systems, or do
a fast, iteration-like development and analysis of new scheduling algorithms using
a simulator. Beside the general, system-wide views presented in Section 4.2,
the tool can also provide more detailed views. For example, we can filter out
specific users (e.g., system administrators) and queues (high/low priority), or
even generate a heatmap for single queue or user.

5 Conclusion and Future Work

In this paper we have presented a novel model for measuring the quality of sched-
ules, based on user expectations. The main purpose of this model is to provide
an alternative to popular job metrics that capture certain aspects of the sched-
ule but do not properly represent the suitability of the schedule as a whole. Our
experiments on real workload from the Czech National Grid MetaCentrum have
shown that this model does indeed provide expected level of detail and explains
clearly the pros and cons of selected scheduling algorithms. We have shown how
the model-based results can be represented both in a simple comparison (Fig. 6)
and in an in-depth heatmap representation of the generated schedule (Fig. 7).

In the future, we aim to refine current simple EET model. For example, the
EET calculation should reflect previous user activity. Clearly, if a user utilized
a lot of resources in the (near) past, the EET shall be higher (i.e., less strict)
as such a user is typically having smaller priority compared to less active users.
This is a normal situation in systems using fairshare approach, thus we should
not penalize it by our metric. Second, many users are executing workflows or
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so called “bag of tasks” [6] applications and they are interested in the perfor-
mance of an entire batch of jobs, rather than focusing on the performance of a
single job/task within their workload. For such a workflow or bags of tasks we
should therefore generate single EET rather than compute separate EET for
each job/task. This will require more complex data sets as our current workload
traces do not make any distinction among normal jobs and workflows and/or
bag of tasks-like applications.
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