
Priority Operators for Fairshare Scheduling

Gonzalo P. Rodrigo, Per-Olov Östberg, and Erik Elmroth

Distributed systems group,
Department of Computing Science, Ume̊a Univeristy,

SE-901 87, Ume̊a Sweden
{gonzalo,p-o,elmroth}@cs.umu.se

www.cloudresearch.se

Abstract. Decentralized prioritization is a technique to influence job
scheduling order in grid fairshare scheduling without centralized control.
The technique uses an algorithm that measures individual user distances
between quota allocations and historical resource usage (intended and
current system state) to establish a semantic for prioritization. In this
work we address design and evaluation of priority operators, mathemat-
ical functions to determine such distances. We identify desirable opera-
tor characteristics, establish a methodology for operator evaluation, and
evaluate a set of proposed operators for the algorithm.

1 Introduction

Fairshare scheduling is a scheduling technique derived from an operating system
task scheduler algorithm [1] that prioritizes tasks based on the historical resource
usage of the task owner rather than that of the task itself. This technique defines
a ”fair” model of resource sharing that allows users to receive system capacity
proportional to quota allocations irrespective of the number of tasks they have
running on the system (i.e. preventing starvation of users with fewer tasks).

In local resource management (cluster scheduler) systems such as SLURM [2]
and Maui [3], this prioritization technique is extended to job level and fairshare
prioritization is used to influence scheduling order for jobs based on historical
consumption of resource capacity. At this level, fairshare is typically treated as
one scheduling factor among many and administrators can assign weights to
configure the relative importance of fairsharing in systems.

For distributed computing environment such as compute grids [4], a model for
decentralized fairshare scheduling based on distribution of hierarchical allocation
policies is proposed in [5], and a prototype realization and evaluation of the
model is presented in [6]. Based on this work a generalized model for decentralized
prioritization in distributed computing is discussed in [7], and we here extend on
this work and address design and evaluation of priority operators: mathematical
functions to determine the distance between individual users’ quota allocations
and historical resource consumption.

2 Gonzalo P. Rodrigo, Per-Olov Östberg, Erik Elmroth

2 Decentralized Prioritization

2.1 Model

Fig. 1. A computational pipeline for decentralized prioritization. Illustration from [7].

As illustrated in Figure 1, the decentralized prioritization model defines a
computational pipeline for calculation and application of prioritization. From
a high level, this pipeline can be summarized in three steps: distribution of
prioritization information (historical usage records and quota allocations), cal-
culation of prioritization data, and domain-specific application of prioritization
(e.g., fairshare prioritization of jobs in cluster scheduling). To model organiza-

Fig. 2. A tree-based priority calculation algorithm. Tree structure models organization
hierarchies (two virtual organizations and a local resource queue). Illustration from [6].

tional hierarchies, the system expresses prioritization target functions (quota
allocations or intended system behavior) in tree formats, and prioritization cal-
culation is performed using an algorithm that uses tree structures to efficiently
calculate prioritization ordering for users. The tree calculation part of the algo-
rithm is illustrated in Figure 2, where the distance between the intended system
state (target tree) and the current system state (measured tree) is calculated
via node-wise application of a priority operator (in this case subtraction). The
algorithm produces a priority tree - a single data structure containing all priority
information needed for prioritization.

For application of prioritization (the last step in the pipeline), priority vec-
tors are extracted from the priority tree and used to infer a prioritization order
of the items to be prioritized. In fairshare prioritization of jobs in grid scheduling
for example, the target tree contains quota information for users, the (measured)
state tree contains a summation of historical usage information for users, and
the resulting priority tree contains a measurement of how much of their respec-
tive quota each user has consumed. As each user is represented with a unique
node in the trees, the values along the tree path to the node can be used to
construct a priority vector for the user. Full details of the prioritization pipeline
and computation algorithm are available in [6] and [7].

Priority Operators for Fairshare Scheduling 3

2.2 Challenges / Resolution Limitations

As priority operators lie at the heart of the prioritization algorithm, operator
design can have great impact on the semantics of prioritization systems, and
further understanding of the characteristics of the priority operator functions is
needed, motivating the first part of this work.

0.3$ 0.2$ 0.1$ '0.1$ 0.2$

0.3$ 0.2$ 0.0$ '0.2$ 0.1$

0.1$ '0.5$ 0.2$ 0.1$ 0.0$

v1

v2

v3 v1
v2

v3

Target
Tree

s

p=F(t,s)

Priority
tree

State
Tree

t p

Fig. 3. Construction of priority tree and priority vectors

On the other side, the decentralized fairshare prioritization systems are meant
to serve a number of resource management systems in environments created from
large complex multilevel organizations. The resources access is governed by poli-
cies which structure is mapped from those organization and, as a consequence,
these policies have the shape of large trees (both deep and wide). After using the
priority operators to create the priority tree (as seen in Figure 2), the tree is tra-
versed from top to bottom extracting the priority vectors (Figure 3) which have
independent components representing each ”level” of corresponding subgroups
in the tree. The vector with the highest value at the most relevant component
is the one chosen. For two or more vectors with the same component value,
subsequent components are used to determine priority order.

0.3$ 0.2$ 0.1$ '0.1$ 0.2$

0.3$ 0.2$ 0.0$ '0.2$ 0.1$

u1

u2

6499$ 5999$ 5499$ 4499$ 5999$

6499$ 5999$ 5999$ 3999$ 5499$

u1

u2

64995999549944995999$

64995999599939995499$

u1

u2

scalar(p, r) = floor

((
p + 1

2

)
∗ r

)
Fig. 4. Priority vector serialization, resolu-
tion r=10000.

0.11$ 0.2$

0.1$ 0.3$

u1

u2

55$ 60$

55$ 65$

u1

u2

5560$

5565$

u1

u2

0.11$ 0.2$

0.1$ 0.3$

u1

u2

555$ 600$

550$ 650$

u1

u2

555600$

550650$

u1

u2

R=100$ R=1000$

Fig. 5. Resolution limitation impact on the
ordering process.

However, the dimension of the overall system is translated to the size of the
vector. To simplify the compare operations they are mapped on lexicographic
strings. As we can see in Figure 4, for an example scalar resolution of 10000, each
component of the vector is linearly mapped to a scalar in the range of 0 to 9999,
where −1 is translated to 0 and 1 to 9999. Then, the values are concatenated

4 Gonzalo P. Rodrigo, Per-Olov Östberg, Erik Elmroth

to construct the final string. In this example, by comparing the scalar with a
simple numeric operation we can determine that u2 has a greater priority than
u1 (full process described in [6]). It is important to highlight that the full final
string is needed, because any transformation of the vectors that would not keep
the individual element presence in it would eliminate the capacity of dividing
the share in a true hierarchical way.

However, mapping the priority values to a scalar space with a limited domain
has consequences: A number of priority values will map to the same scalar, which
may affect the ordering process. In Figure 5 two users have two different priority
vectors, when the scalar resolution is 100, the first components of both vectors
map to the same scalar, although u1 has a greater priority. The result is that
the u2 gets a final bigger scalar string, and thus is selected over u1. When we
increase the resolution to 1000 we observe how the ordering becomes correct.

At the same time, it is also important to remember that it is desirable to
use the smallest possible resolution. The overall size of the system, will bring
thousands of users organized in deep trees, increasing the number of comparisons
and elements in each priority vector. Any small reduction in the resolution will
have a significant impact on the resources needed to compute the priority vectors.

The behavior of the operators in low resolution has to be understood and
modeled, motivating the second part of this work in which we will study its
impact on each operator performance and the trade-off between resolution and
other characteristics of the system.

3 Operator design

3.1 Operator definition

For fairshare prioritization, we define priority operators as:

1. An operator is a function with two input variables such that:

t ∈ [0, 1], s ∈ [0, 1]⇒ F (t, s) ∈ [−1, 1] (1)

F (t, s) = 0 ⇐⇒ t = s

F (t, s) > 0 ⇐⇒ t > s

F (t, s) < 0 ⇐⇒ t < s

(2)

where t represents a target value, s a (normalized) state value and t = s is
the ideal balance axis transecting the operator value space.

2. The function is strictly increasing on target and strictly decreasing on state:

∀tj , ti, sj , si, t, s ∈(0, 1],

F (tj , u) > F (ti, u) ⇐⇒ tj > ti

F (tj , si) > F (tj , sj) ⇐⇒ sj < si

F (tj , s) = F (ti, s) ⇐⇒ tj = ti

F (t, si) = F (t, sj) ⇐⇒ sj = si

(3)

3. Operator functions are idempotent and deterministic.

Priority Operators for Fairshare Scheduling 5

3.2 Operator characteristics

Desirable operator characteristics are dependent on application scenarios. In the
context of ordering prioritization (ranking) problems it is considered desirable
for operators to:

1. Have well-defined boundary behaviors:

∀s ∈ (0, 1], t = 0 =⇒ F (t, s) = −1

∀t ∈ (0, 1], s = 0 =⇒ F (t, s) = 1
(4)

so users with target 0 will always get the lowest possible priority (-1) and
users with some target but state 0 will get the highest possible priority (1).

2. Subgroup Isolation: Depend only on target and state values of subgroup
member nodes.

3. Redistribute unused resource capacity among users in the same subgroup
proportionally to their allocations.

4. Be computationally efficient and have minimal memory footprint.
5. Abide by the principle of equivalence: Two operators F, F ′are equivalent if

they would produce the same priority ordering for a set of users knowing
their target and state history. Equivalent operators will have the same char-
acteristics for user priority ordering problems. This property is not strictly
desirable for an operator but it can be used to assure that all ordering char-
acteristics proved for an operator are automatically proved for the equivalent
ones.

3.3 Operators object of study

In this section we will present the operators that are already used in the fairshare
prioritization plus one new contribution (Sigmoid) and one brought from the
open source cluster scheduler SLURM. The Absolute, Relative, Relative-2 and
Combined operators are defined in [6]

1. Absolute: Expressed by the subtraction of the target and the state.

dAbsolute = t− s (5)

2. Relative: Express what proportion of the user’s allocation is available.

dRelative =

t− s
t

s < t

0 s = t

−s− t
s

s > t

(6)

3. Relative exponential: Increases the effects of the Relative.

dRelative−n =

(
t− s
t

)n

s < t

0 s = t

−
(
s− t
s

)n

s > t

(7)

6 Gonzalo P. Rodrigo, Per-Olov Östberg, Erik Elmroth

4. Sigmoid: Designed as a vertical inverse of the relative operator.

dSigmoid =

sin

(
π

2

t− s
t

)
s < t

0 s = t

− sin

(
π

2

s− t
s

)
s > t

(8)

5. Sigmoid Exponential: Increases the effects of the Sigmoid.

dSigmoid−n =

n

√
sin

(
π

2

t− s
t

)
s < t

0 s = t

− n

√
sin

(
π

2

s− t
s

)
s > t

(9)

6. Combined: Controlled aggregation of the Absolute and Relative operators.

dCombined = k · dAbsolute + (1− k)dRelative−2 ∀k ∈ [0, 1] (10)

7. SLURM: The operator used by the SLURM scheduling system [8].

dSLURMOriginal = 2(−s
t) (11)

Modified to the operator output value range [−1, 1]

dSLURM = 2(1+−s
t) − 1 (12)

4 Operator evaluation

We investigate each operator for each desirable operator characteristic.

4.1 Operator Definition

First we start with the second point of the definition. For each operator we study
the sign of the first derivative when t 6= s. For all operators F:

∀s, t ∈ [0, 1] ∧ t 6= s :

d(F (t, s))

d(p)
> 0,

d(F (t, s))

d(s)
< 0

(13)

assuring the compliance of this part of the definition. Then, as all F (p, d) are
strictly increasing on t and strictly decreasing on s, by studying the upper and
lower bounds of the input space we can assure the compliance of the output
value space:

F (1, 0) ≤ 1, F (0, 0) = 0, F (0, 1) ≥ −1

s, t ∈ [0, 1] ∧ t = s⇔ F (t, s) = 0
(14)

Priority Operators for Fairshare Scheduling 7

4.2 Boundary behavior

In Table 1 we observe the priority values in the boundary cases for each operator:

Operator t = 0 s = 0

Absolute −s t
Relative −1 1
Relative-2. −1 1
Combined −0.5 − s

2
0.5 + t

2

Sigmoid −1 1
Sigmoid-2 −1 1
SLURM −1 1

Table 1. Boundary behavior for each operator

The Absolute and Combined operator fail to comply with this property. For
the Absolute, the maximum and minimum possible priority are limited in each
case by the target value. The Combined operator inherits this behavior from the
Absolute component in the operator.

4.3 Subgroup isolation

This property is assured by the definition of the operators: They take into ac-
count only the state and target of the corresponding nodes, which are related to
the values of the nodes in the same subgroup as the first represents what share
of the usage of this subgroup corresponds to this node and the latter what share
of the usage should correspond to it. No data out of the subgroup is used to
calculate this input values.

4.4 Proportional distribution of unused share

The situation in which a subset of users in a subgroup are not submitting jobs
can be understood as an scenario with a new set of target values (virtual tar-
get): Eliminating the non submitting users and recalculating the target of the
submitting users dividing the non-used share among them in proportion to their
original targets. If the system would only operate with the virtual target as the
input for the operator, it would converge to that new target. If an operator pro-
duces the same ordering with the virtual target (all users submitting jobs) and
the old target (but with some users not submitting jobs), then we can state that
the operator will bring the system to the virtual target (even if the input is the
old target), spreading the unused share proportionally to the user’s targets. If
we define T = {set of indexes of the users submitting jobs}. The condition to be
complied by the operator can be expressed as:

i, j ∈ T : t′i =
ti∑
i∈T ti

,
∑
i∈T

ti ≤ 1, t′i ≥ ti

∀t′i, t′j , si, sj ∈ [0, 1] :

1. F (t′j , sj) > F (t′i, si)⇒ F (tj , sj) > F (ti, si)
2. F (t′j , sj) = F (t′i, si)⇒ F (tj , sj) = F (ti, si)

(15)

8 Gonzalo P. Rodrigo, Per-Olov Östberg, Erik Elmroth

where ti the target of user i, si the normalized state of user i and t′i the virtual
target of the user i after adding the proportional part of the unused share.
Following this reasoning we proved in [9] that the Relative operator complies
with this property and that any operator which would produce the same ordering
would also comply with this property. As we will see in the following section,
the Relative-2, Sigmoid, Sigmoid-2 and SLURM operators are equivalent to the
Relative,so we can conclude that they will also distribute proportionally the
unused share among the active users of the same subgroup.

4.5 Computationally efficient

Looking into the formulation of the different operators it is obvious that those
ones including power, root or trigonometric operations will be more complex in
math related cpu cycles. On memory requirements all should perform in a similar
way. Still, the real performance of this operators will largely depend on the final
implementation, as a consequence we leave this matter for the evaluation of
implemented systems.

4.6 Equivalence

We formulated a theorem in [10] that allows to state that two operator are equiva-
lent under one condition: if two operators F, F ′ Have the sameG(F, tj , sj , ti) = si
so F (tj , sj) = F (ti, si), then, they are equivalent and thus, produce the same
ordering. We observe that G for the Relative operator is:

G(F, tj , sj , ti) = sj
ti
tj

(16)

As we analyze the operators we can state that the Relative exponential, Sig-
moid, Sigmoid exponential and SLURM operators share the same G and thus
they are equivalent, sharing the same ordering characteristics: Proportional dis-
tribution of unused share among peering users. The Absolute and Combined
have a different G between them and towards the Relative.

5 Limited output resolution

For the definition of the problem, we consider the number of possible scalar
values as the resolution r. Also, under a certain resolution, each priority value p
will have a resulting effective priority value S(p, r), understood as the minimum
priority value that will have the same corresponding scalar as p. By applying the
scalar formula from Figure 4 and composing it with its own inverse function, we
can calculate this effective priority value as:

S(p, r) =
scalar(p, r)

r
∗ 2− 1 (17)

Priority Operators for Fairshare Scheduling 9

5.1 Methodology

The output resolution problem on each operator will be studied in three steps.
In the first place we will present a coarse grained study of how all the possible
input pairs (t, s) are divided in sets which elements map on the same priority
value. We could argue that for an operator, the bigger the set corresponding to
a priory value p, the smaller resolving power (capacity to distinguish between
two users) around p and vice versa. We will call this the input density study.

The second approach will be a fine grained extension of the previous. We will
observe that priority operators are not defined for the full output range [−1, 1]
on all the possible input target values. When the input density is calculated for
a priority value, it aggregates all the corresponding state values for each input
target value (no matter if there is corresponding output or not), averaging the
data of the resulting analysis and hiding the local behavior of the operators.
For this second approach we will study each target value, analyzing the sizes of
the sets of state values that map on the same output priority value. For a given
operator, priority p and target t, the bigger the set of state values corresponding
to the that p under t,the smaller resolving power and vice versa. We will call
this the input local density study.

Finally, we will bring the input local density study to a semi-real scenario.
We will define a grid scenario with a time window, resource dimension and a
fictitious average job size. Then, we will determine what is the minimum output
resolution required for that job to be significant for a certain user to make
sure that its corresponding priority value changes. This study will be based on
the previous step, as the input local density of a priority, target values can be
understood as the minimum amount of normalized state that has to be added
to the history of a user to assure that its corresponding priority value changes.
We will call this the jobs size analysis.

In all cases the study will be focused on certain output ranges that are
significant to the system: Around balance, where the state value of user is close
to its target; under target, when the state is far under the target; and over target,
when the state is far over the target.

5.2 Input density analysis

Calculation method For this analysis we needed to calculate the relationship
between the input values corresponding to an effective priority value and the
complete input range. The method follows a geometry approach when possible.
In Figure 6 we can observe the effect of the discretization on the output of the
Absolute operator: for each priority value p there is one horizontal surface related
to the set of (t, s) that produced that effective priority value. The area of each
surface will represent the relative size of that set, as a consequence, what we are
looking for: the input density corresponding to p. When the geometrics of the
surface were not simple enough, we used sampling to study the number of input
values corresponding the the same priority value.

10 Gonzalo P. Rodrigo, Per-Olov Östberg, Erik Elmroth

Fig. 6. 3D Representation of effec-
tive priorities for the Absolute oper-
ator, output resolution 3 bits (8 val-
ues).

Fig. 7. Input density, Absolute operator, 3
bits, 8 values.

Input density results In order to generate all the input density maps, we run
experiments for all the resolutions between 8 and 1048576, in order to ease this
description we will talk from now on about the bits needed to represent a given
resolution, in this case from 3 to 20 bits. Also, as we increased resolution we
noticed something expected, the differences between the priority values became
less and less significant. However, for the lower resolutions the operators kept
a similar relationship in the same priority value areas.We have chosen 3 bits (8
values) to present the results as it is enough to show the effects of low resolution
on each operator.

The results for the operators are presented in the format shown in Figure 7.
The data of all operators is presented in the heat map on Figure 8. We can
observe many things in this graph, in the first place there is an symmetric be-
havior around balance for most of the operators (except for the Combined and
SLURM). Also we observe that the Relative operator presents the same input
density for all its priority values. That the Sigmoid-2 presents the lowest den-
sity around balance while the highest around the over/under target cases. The
Absolute operator is the one presenting the lowest density in the over/under tar-
get cases. This implies that the Sigmoid-2 operator should present the highest
resolving power around balance while the lowest in the case of over usage and
under usage. In the case of the Relative it presents the same resolving power
along the whole output spectrum.

Considerations about this analysis The input density analysis gives a coarse
grained picture of the resolution problem, it presents roughly how the whole in-
put is mapped to the output. However, it fails to demonstrate the particularities
of the operators. As we will see in the next section, the operators present dif-
ferent input local density distribution for different target values. As the density

Priority Operators for Fairshare Scheduling 11

Fig. 8. Absolute Input density comparison
among all operators, 3 bits, 8 values.

Fig. 9. Aggregation of the input density
analysis for different target values, Abso-
lute operator. Resolutions 3 bits.

of a priority value is the normalized aggregation of the local input densities in
the whole target ranges, higher values are combined with lower ones, averaging
the final result, even more significant as the operators are not covering the full
output range for all the target values. Let’s illustrate this with an example: the
Absolute operator. According to the results in this section it presents a high
resolving power around the over/under target areas and low around balance.
However, lets look into what happens for each target value (results derived from
next section), in Figure 9 we can see the aggregation of input local densities
for 11 different targets between 0.0 and 1.0. The first observation is that, as
expected, not all targets can generate the full priority range. However, what is
more important is that, the resolving power is the same in all cases. This result
seems contradictory to the one observed in Figure 7. This apparent divergence
comes from the fact that the input density is the aggregation of the input local
density along the target range, hiding the local behavior, best cases scenarios and
worst case scenarios. We can conclude that the input density view gives an over-
all picture of the operator behavior but it is incomplete without the per-target
input local density study.

5.3 Input local density analysis

Calculation methods In order to calculate the input local density for an op-
erator, we will use an inverse method. For a operator F , a priority p, target t
and resolution r, we will compute the lowest and highest state values which pro-
duce the effective priority p for target t. The local density will be the difference

12 Gonzalo P. Rodrigo, Per-Olov Östberg, Erik Elmroth

between them. This can be expressed as:

D(F, p, t, r) = |sj − si| : S(p, r) = f ∧
(∀si ≤ s ≤ sj , F (t, s) = f) ∧

(∀s < si ∧ sj < s, F (t, s) 6= f)

(18)

In order to calculate those sj , si we will use the inverse expression of the
operators on the input s and the set of possible effective priority values for
resolution r, Pr. The resulting operation is:

D(F, pi, t, r) = si+1 − si = Is(F, pi+1, t)− Is(F, pi, t) (19)

where:

Pr = {pi : i ∈ Nr, pi = −1 + (i− 1) · 2

r
} (20)

(For example P4 = {−1,−0.5, 0, 0.5}) and the inverse function on s of operator
F is:

Is(F, p, t) = s : F (t, s) = p (21)

Input local density results For this study we run experiments for all the
resolutions between 3 and 20 bits. The target range was divided in 10 values,
[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], as the functions are strict increasing on
the target, this should be enough to appreciate the general tendency. This con-
forms 180 operator profiles, which had to be analyzed. One example of the
aggregation of all the profiles for the Absolute operator and resolution 3 bits is
the Figure 9.

As the resolution was increasing we noticed something expected, the local
densities were becoming more similar for a given operator, policy and target.
However, for the lower resolutions they kept a similar relationship in the same
priority areas. We have chosen 3 bits for the resolution and 0.1, 0.5 as the target
values (as they represent one extreme and middle point) to illustrate the behavior
of the operators under low resolution.

In Figure 10 we can see one way to represent this data, the operator profile:
an overlap between the input density corresponding and the operator plot for the
defined target value. It will correlate graphically the priority value, input target,
input state and input density, where we consider lower input local densities as
something desirable since they indicate higher resolving power. This is the way
to interpret them: The horizontal axis represents normalized state from 0.0 to
1.0 while the vertical axis is composed by a range of priority values from -1
to 1. On the graph we represent the overlay of different operators in different
colors: The priority values and their corresponding state values in the shape of a
plotted line in the corresponding color. On the vertical axis the input density on
each priority value in the shape of an horizontal bar, in the corresponding color
(its unit is normalized state). In this representation it is possible to observe the
different operator function shapes while comparing the different density inputs.
In Figure 11 we can observe the contraposition of the Sigmoid-2 and Relative-2,

Priority Operators for Fairshare Scheduling 13

Fig. 10. Operator Profile overlay all oper-
ators. Resolution 3 bits. target value 0.1

Fig. 11. Operator Profile overlay all oper-
ators. Resolution 3 bits. target value 0.5

how the Sigmoid shape is designed to offer the bigger slope (and thus, smaller
local density) around balance, and is more flat in the extremes.

As we compare the graphs in Figures 10 and 11 we observe that the range
of priority values present in the graphs is smaller as the target increases. This
is due to how the operator functions are built: none of them fully covering the
range [−1, 1]. As the target value increases the most negative value possible
for over-state becomes closer to 0.0 (for example, with the Absolute operator,
target=0.5 and state = 1.0, the minimum possible priority value is -0.5). This
has a first consequence on some of operators: as the target value increases, the
same input range of [0, 1] is mapped onto a smaller output range, increasing the
overall input local density, increasing the average size of the bars in the graphs.
One interesting point is that the Absolute operator presents a constant density
in all the graphs and all the priority values, this is due to the subtraction only
operation that composes it.

In order to ease the density analysis we mapped the density values on a
heat map which opposes the priority values and the operators. The result are
Figures 12 and 13. In which the a redder/darker color indicates a higher local
density (and lower resolving power) for a pair or operator and target value while a
yellower/lighter color implies a lower local density (and higher resolving power).
As we observe the graphs, we confirm that, certain operators have a lower input
local density behavior for different cases: In balance situations the Sigmoid and
Sigmoid-2 presented smaller densities. In under target situations, the Relative-
2 operators presented smaller densities. In situations of over target, again the
Sigmoid and Sigmoid-2 operators presented lower densities, although not much
lower. One intuitive conclusion of this section is that the Sigmoid family presents
a higher resolving power for the balance cases and over usage cases, while the
Relative operator presents a higher resolving power for the under usage cases.

14 Gonzalo P. Rodrigo, Per-Olov Östberg, Erik Elmroth

Fig. 12. Input local density heat map.
Resolution 3 bits. target value 0.1

Fig. 13. Input local density heat map. Resolu-
tion 3 bits. target value 0.5

5.4 Job Size Analysis

In this study we will bring our analysis to a semi-real environment, a grid sce-
nario with a time window (representing the total historical usage taken into
account) and a set of resources. The idea is to understand how big a job has
to be to be significant for a user so its effective priority value changes to the
next possible one. This will show how many decisions would be made with the
same priority values (although new jobs had been completed) or how many bits
(minim resolution) would be required for a single job to be significant.

Calculation Method In order to do this analysis we will start from the input
local density study. For a given resolution r, operator F , priority p and target t,
D(F, p, t, r) can be seen as the minimum amount that the state has to increase
to change the output effective priority. This step can me expressed as:

M(F, t, s, r) = m : m ∈ (0, 1] ∧
S(F (t, s), r) 6= S(F (t, s+m), r) ∧

@n : 0 < n < m ∧ S(F (t, s), r) 6= S(F (t, s+ n), r)

(22)

This minim step can be translated to a job size, however, it is not trivial:
The impact of a job size on the normalized state will depend on the normalized
state by itself, as it represents how much of the state pool corresponds to this
user: Meaning that one job of a certain size will have a bigger impact for a user
with less normalized state than for one with a bigger one. The current state and
the state of a user after adding the length of a job can be expressed as:

Priority Operators for Fairshare Scheduling 15

sdi =

∑
0<j≤d J

j
i

Ud
, Jd+1

i = k · Ud

sd+1
i =

∑
0<j≤d J

j
i + Jd+1

i

Ud + Jd+1
i

=

∑
0<j≤d J

j
i + k · Ud

Ud + k · Ud

=
(1 + k)(

∑
0<j≤d J

j
i + k · Ud)

Ud
= (1 + k)(sdi + k)

(23)

were sdi is the normalized state of a user i at a time d, Jj
i is the size of a job

submitted by user i in the time j, Ud is all the state recorded for all users until
time d and k is the proportion between the job submitted in time d and the
total state recorded until d. This equation is an expression of the new state as a
function of the previous state and the proportion between the job and the time
window.

Our target is to obtain a function that calculates how big that proportion has
to be to jump from one two state values a user (sdi) to the next (sdi + 1). Taking
those states as the boundaries for the local density calculation and expressing
sd+1
i − sdi substituting sd+1

i by the result in the Equation 23 we obtain:

D(F, pi, t, r) = sd+1
i − sdi = (1 + k)(sdi + k)− sdi

k2 + (1 + sdi)k −D(F, pi, t, r) = 0
(24)

Which can be solved by using the quadratic equations solving formula:

k = K(F, pi, t, r, s
d
i) =

−(1 + sdi) +
√

(1 + sdi)2 + 4 ·D(F, pi, t, r)

2
(25)

This final result is an expression of k as a function of the operator, previous
state, target priority value and resolution. This will be used to calculate what
is the minimum job size to be submitted in order to change one user’s priority
value according to its current state and target and the corresponding operator
and resolution. Now that we can find the job size in any case, we established a
strategy for the calculations on each operator in each resolution: for each priority,
among all the possible k on each target , which is the biggest one (as a bigger k
means smaller job). This will allow us to calculate what would be the minimum
job size that would assure a change in the effective priority value.

Job size analysis results We took the Swegrid [11] as a reference for this
study to create a synthetic example in which the time window is 1 year and the
resources managed 600 nodes. This implied that the total state pool of the time
window was Ud = 8760h/n ·600n = 5256000h. By using that Ud and the method
to obtain k we calculated the corresponding job size. We can say that a bigger
job size implies a smaller resolving power and a smaller job size implies a bigger
resolving power.

For the priority value to study, we focused our calculations in 3 contexts:
around balance, where the state is close to the target and the priority values are

16 Gonzalo P. Rodrigo, Per-Olov Östberg, Erik Elmroth

Fig. 14. Job size in hours required to
alter user’s priority value when state is
close to target.

Fig. 15. Job size in hours required to alter
user’s priority value when state is under target.

in the range [−0.25, 0.25]; under target, where priority values are in the range
[0.6, 0.9]; and over target, where the priorities values are in the range [−0.9,−0.6].

We can observe the results of the around balance study in in Figure 14.
This heat map represents the worst case (bigger) among the minimum job size
required to make a difference in the priority value for each resolution with each
operator. Bigger jobs (and thus smaller resolving power) are represented with
darker/redder color while smaller jobs (and thus bigger resolving power) imply
a lighter/yellower color. We limited the color range at jobs size 10,000h and used
a logarithmic scale for the color distribution. As we can observe the results are
independent of the resolution: the Absolute operator needs bigger jobs to make
a difference, while the Sigmoid-2 has enough resolving power around balance to
always require a smaller job than the rest operators. If we order the operators by
job sizes from better to worse resolving power we obtain the following ordering:
Sigmoid-2, Sigmoid, SLURM, Relative, Relative-2, Combined, Absolute. This
ordering does not change as we increase resolution, although, as it was expected,
the job size decreases as the resolution increases.

In the over target scenario presented in Figure 16 we observe the follow-
ing ordering from better to worse resolving power in all resolutions: Sigmoid-2,
Sigmoid, SLURM, Relative, Absolute, Relative-2 and Combined. In the under
target scenario presented in Figure 15 we observe the following ordering in all
resolutions: Relative-2, Combined, SLURM, Sigmoid, Relative, and Sigmoid-2.

At this point we had a good vision of what was the impact of a certain job
for each operator in the studied cases. However we wanted to understand it from
a different point of view: For a given job size, what was the minimum resolution
in bits needed for an operator to make a difference? We chose an average job size

Priority Operators for Fairshare Scheduling 17

Fig. 16. Job size in hours required to al-
ter user’s priority value when state is over
target.

Operator Balance Over t. Under t. Overall

Absolute 12 14 12 14
Relative 9 14 9 14
Relative-2 9 15 8 15
Sigmoid 9 12 9 12
Sigmoid-2 6 11 9 11
SLURM 9 13 8 13
Combined 10 15 8 15

Fig. 17. Output resolution bits required for
a job of 2,000h to be significant for a Tw=1
year and Rs=600 nodes. Less is better.

of 2000h (200h,10 nodes). This parameter only affects to the gross value of bits
obtained for each operator however, it won’t change the relative relationship of
the operators.

By parsing the Figures 14, 15 and 16 we produced the results for Figure 17.
We can see how the Sigmoid-2 presents a clear advantage around situations
of balance. The Sigmoid-2 is the one requiring less bits in the case of balance
and over target. For under target, the Relative-2, SLURM and Combined per-
form better but only with small difference. If we look at the overall picture, the
Sigmoid-2 operator is the one which requires less bits in balance and over target
while for under target it is just one bit away from the best.

6 Prior and related work

The need of this work was detected in earlier efforts. In [6] and [12], the family
of Relative and Combined operator were added as pointed in Section 3. The
system’s robustness and capabilities were tested and, as a side product, it was
discovered that the absolute operator and relative operator generated different
ordering when some users did not submit jobs. Also, convergence delays appeared
with low resolutions (required for large scale experiments). Those findings are
the motivation of this paper.

Fairshare priority is present as a decision factor in well known schedulers.
SLURM ([12] shows how our system can substitute SLURM’s fairshare engine),
as the rest of schedulers, is not meant to deal with as deep hierarchies as Karma
([8], [7]) so the output resolution of its operator is not constrained. SLURM
operator, as studied in this paper, complies with all our desired characteristics.
Maui [13] presents similar characteristics but uses a version of the Relative as
its operator. Other well known example is LSF used by the CERN [14], which
choses the absolute operator [15].

18 Gonzalo P. Rodrigo, Per-Olov Östberg, Erik Elmroth

The Karma hierarchical system is prepared for much deeper tree schemas
than current schedulers and to find work related to the priority resolution we
had to look into another scheduling field in which memory is limited: real time
schedulers for communication and embedded systems. During the study of the
monotonic scheduling algorithm in [16], this problem is named priority granu-
larity : ”fewer priority levels available than there are task periods”, similar to the
idea of a number of users with very similar priority and limited resolution around
it. In [17], a solution was pointed by creating an exponential grid to distribute
the priorities increasing the resolving power around a certain desired area, very
similar to what we intended by designing the Sigmoid operator. Finally, [18]
presents how the low output resolution can affect negatively to the utilization of
resources, as it would alter the best possible decisions, for this case a logarith-
mic grid is presented. This studies are focused on the final priority value without
taking into account the relationship of the input of the prioritization system and
its output. In our work we understand how are the system states (input to the
priority operator) affected by the limitation on resolution, this allows to modify
the system accordingly to the desired resolving power behavior.

7 Future work

This study is a mathematical understanding of the operators in the fairshare
prioritization scheduling. it allows to establish boundaries on the mathematical
behavior of the functions, however, it would be desired to confront the results
with the Karma [7], system: To establish a simulation environment in which all
the operators ares tested in a close to real situation, with different output reso-
lutions, tree models (different target values, target tree shapes and depths) and
sources of system noise (as presented in [6]). In this context it would interesting
to study a possible adaptive operator: a dynamic recommendation of the best
suited operator and minimum output resolution depending on the overall state
of the system.

We also understand that it would be interesting to test the Relative and Sig-
moid operator family on the SLURM scheduling system. Our studies reflect that
these operators may have a better resolving power than the SLURM operator,
while similar general characteristics. Bringing those conclusion to SLURM, which
has a different data pipeline than Karma, would bring light on the compatibility
of our operators with other scheduling strategies.

In a different line of thinking, as it was presented in [7], the Karma prioriti-
zation engine can be used to deal with scenarios that are not strictly concerned
about the ordering of elements, but also about the magnitude of the priority
values produced by the system. It would be desirable to understand what is
the impact of the different operator output value distribution on this magnitude
aware systems.

Priority Operators for Fairshare Scheduling 19

8 Conclusions

We achieved a deeper understanding on the role of the priority operators in the
fairshare prioritization scheduling. We established their core definition and the
desired characteristics that emanate from the studied problem. This was followed
by the review of the existing operators and the contribution of a new one: The
Sigmoid operator.

To evaluate the desired characteristics we established a set methods and
mathematical proofs that allow to test the compliance of the existing and future
operators. Following this methods, all the presented operators were tested deter-
mining which ones complied with the desired characteristics. The results: While
the Relative, Relative-n, Sigmoid, Sigmoid-n and SLURM operators comply with
all of them, the Absolute and Combined does not on some of them.

At this point our study moved into another dimension, understanding the
impact of the limitation in output resolution on the whole prioritization. The first
contribution was a three step methodology to evaluate its impact on the resolving
power of each operator: the study of the input density, input local density and
significant job size. We reviewed the potential of the different possibilities and
understood the need to go through the three steps in order to have first, an
overall view; second, a local detailed understanding of the operator behavior in
all its input domain; and finally, a real world quantification of the relationship
between output resolution and resolving power of each operator.

By using this methodology, we were able to compare all the listed operators.
We established that the Sigmoid-2 is the one which, in overall, has a better
resolving power with less output resolution, being the best in situations of bal-
ance and over target. In the case of under target the Relative-2, SLURM and
Combined operators are the ones with a better resolving power with low output
resolution (although very close to the Sigmoid-2). We would like to highlight
that the SLURM operator, taken from the SLURM scheduling system, performs
average in the balance and over target situations. One interesting conclusion is
that the Sigmoid family, a contribution of this paper, presents the best overall
characteristics as a fairshare priority operator.

Finally, this paper establishes a set of research lines to bring these results
into the Karma prioritization system.

Acknowledgments

The authors extend their gratitude to Daniel Espling for prior work and tech-
nical support, Cristian Klein for feedback and Tomas Forsman for technical
assistance. Financial support for the project is provided by the Swedish Gov-
ernment’s strategic research effort eSSENCE and the Swedish Research Council
(VR) under contract number C0590801 for the project Cloud Control.

20 Gonzalo P. Rodrigo, Per-Olov Östberg, Erik Elmroth

References

1. Kay, J., Lauder, P.: A fair share scheduler. Communications of the ACM 31 (1)
(1988) 44–55

2. Yoo, A., Jette, M., Grondona, M.: SLURM: Simple Linux Utility for Resource
Management. In Feitelson, D., Rudolph, L., Schwiegelshohn, U., eds.: Job Schedul-
ing Strategies for Parallel Processing. Volume 2862 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg (2003) 44–60

3. Maui Cluster Scheduler: http://www.adaptivecomputing.com/products/open-
source/maui/, January 2014.

4. Foster, I., Kesselman, C.: The grid: blueprint for a new computing infrastructure.
Morgan Kaufmann (2004)

5. Elmroth, E., Gardfjäll, P.: Design and evaluation of a decentralized system for
Grid-wide fairshare scheduling. In H. Stockinger et al, ed.: Proceedings of e-Science
2005, IEEE CS Press (2005) 221–229

6. Östberg, P-O. and Espling, D., Elmroth, E.: Decentralized scalable fairshare
scheduling. Future Generation Computer Systems - The International Journal
of Grid Computing and eScience 29 (2013) 130–143

7. Östberg, P-O. and Elmroth, E.: Decentralized prioritization-based management
systems for distributed computing. In: eScience (eScience), 2013 IEEE 9th Inter-
national Conference on, IEEE (2013) 228–237

8. Slurm: Multifactor priority plugin - simplified fair-share formula. https://

computing.llnl.gov/linux/slurm/priority_multifactor.html (January 2014)
9. Rodrigo, G.P.: Proof of compliance for the relative operator on the proportional

distribution of unused share in an ordering fairshare system. http://www8.cs.

umu.se/~gonzalo/ShareDemonstration.pdf (January 2014) (To be published as
a technical report).

10. Rodrigo, G.P.: Establishing the equivalence between operators. http://www8.cs.
umu.se/~gonzalo/EquivalenceDemonstration.pdf (January 2014) (To be pub-
lished as a technical report).

11. Swegrid: Swegrid organization. http://snicdocs.nsc.liu.se/wiki/SweGrid

(January 2014)
12. Espling, D., Östberg, P-O. and Elmroth, E.: Integration and evaluation of decen-

tralized fairshare prioritization (aequus) decentralized scalable fairshare schedul-
ing. (2013) (Submitted for publication).

13. Jackson, D., Snell, Q., Clement, M.: Core algorithms of the maui scheduler. In:
Job Scheduling Strategies for Parallel Processing, Springer (2001) 87–102

14. CERN: It services - batch service. http://information-technology.web.cern.

ch/services/batch (January 2014)
15. LSF: Fairshare scheduling. http://www.ccs.miami.edu/hpc/lsf/7.0.6/admin/

fairshare.html (January 2014)
16. Lehoczky, J., Sha, L., Ding, Y.: The rate monotonic scheduling algorithm: Exact

characterization and average case behavior. In: Real Time Systems Symposium,
1989., Proceedings., IEEE (1989) 166–171

17. Sha, L., Lehoczky, J.P., Rajkumar, R.: Task scheduling in distributed real-time
systems. In: Robotics and IECON’87 Conferences, International Society for Optics
and Photonics (1987) 909–917

18. Lehoczky, J.P., Sha, L.: Performance of real-time bus scheduling algorithms. ACM
SIGMETRICS Performance Evaluation Review 14 (1) (1986) 44–53

