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Abstract. Energy expense is becoming increasingly dominant in the
operating costs of high-performance computing (HPC) systems. At the
same time, electricity prices vary significantly at different times of the
day. Furthermore, job power profiles also differ greatly, especially on HPC
systems. In this paper, we propose a smart, power-aware job scheduling
approach for HPC systems based on variable energy prices and job power
profiles. In particular, we propose a 0-1 knapsack model and demon-
strate its flexibility and effectiveness for scheduling jobs, with the goal
of reducing energy cost and not degrading system utilization. We design
scheduling strategies for Blue Gene/P, a typical partition-based system.
Experiments with both synthetic data and real job traces from produc-
tion systems show that our power-aware job scheduling approach can
reduce the energy cost significantly, up to 25%, with only slight impact
on system utilization.
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1 Introduction

With the vast improvement in technology, we are now moving toward exascale
computing. Many experts predict that exascale computers will have millions of
nodes, billions of threads of execution, hundreds of petabytes of inner memory,
and exabytes of persistent storage [1]. Exascale computers will have unprece-
dented scale and architectural complexity different from the petascale systems
we have now. Hence, many challenges are expected to emerge during the transi-
tion to exascale computing. Four major challenges—power, storage, concurrency,
and reliability—are identified where current trends in technology are insufficient
and disruptive technical breakthroughs will be needed to make exascale com-
puting a reality [2]. In particular, the energy and power challenge is pervasive,



affecting every part of a system. Today’s leading-edge petascale systems consume
between 2 and 3 megawatts per petaflop [2]. It is generally accepted that an ex-
aflop system should consume no more than 20 MW; otherwise their operating
costs would be prohibitively expensive.

High-performance computing generally requires a large amount of electricity
to operate computer resources and to cool the machine room. For example, a
high-performance computing (HPC) center with 1,000 racks and about 25,000
square feet requires 10 MW of energy for the computing infrastructure and an
additional 5 MW to remove the dissipated heat [3]. At the Argonne Leadership
Computing Facility (ALCF), our systems consume approximately $1 million
worth of electricity annually. As of 2006, the data centers in the United States
were consuming 61.4 billion kWh per year [4], an amount of energy equivalent to
that consumed by the entire transportation manufacturing industry (the indus-
try that makes airplanes, ships, cars, trucks, and other means of transportation)
[5]. Since the cost of powering HPC systems has been steadily rising with grow-
ing performance, while the cost of hardware has remained relatively stable, it
is argued that if these trends were to continue, the energy cost of a large-scale
system during its lifetime could surpass the equipment itself [6].

Several conventional approaches to reducing energy cost have been adopted
by organizations operating HPC systems. For instance, a popular and intuitive
strategy is to manipulate the nodes within an HPC system through techniques
such as dynamic voltage and frequency scaling, power state transitions, and the
use of separation in hot and cold aisles. Meanwhile, new cooling technologies,
load-balancing algorithms, and location-aware computing have been proposed
as new ways to reduce the energy demand of HPC centers [7].

In this paper we develop and analyze a new method to reduce the energy
cost of operating large-scale HPC systems. Our method relies on three key ob-
servations.

1. Electricity prices vary. In many districts in the United States with whole-
sale electricity markets, the price varies on an hourly basis. Sometimes the
variation can be significant as much as a factor of 10 from one hour to the
next [7]. HPC centers often make a contract with the power companies to
pay variable electricity prices. A common arrangement is that HPC centers
pay less for electricity consumed during an off-peak period (nighttime) than
during an on-peak period (daytime)[4].

2. Job power consumption differs. Studies have shown that most HPC jobs have
distinct power consumption profiles. For example, in [8] the authors analyzed
the energy characteristics of the production workload at the Research Center
Juelich (FZJ) and found that their jobs have a power consumption ranging
from 20 kW to 33 kW per rack on their Blue Gene/P system. Usually, an
application has relatively high power consumption during its computational
phases, and its power consumption drops during the communication or I/O
phase [8]. For example, I/O-intensive jobs and computation-intensive jobs
have totally different energy-consuming behaviors leading to variation in
their power consumption.



3. System utilization cannot be impacted in HPC. Most conventional power sav-
ing approaches focus on manipulating nodes by turning off some nodes or
putting the system into an idle phase during the peak price time. An imme-
diate consequence of these approaches is that they lower system utilization
[4]. Lowering system utilization for energy saving is not tolerable for HPC
centers, however. HPC systems require a significant capital investment; and
hence making efficient use of expensive resources is of paramount importance
to HPC centers. Unlike Internet data centers that typically run at about 10–
15% utilization, systems at HPC centers have a typical utilization of 50–80%
[9], and job queues are rarely empty because of the insatiable demand in sci-
ence and engineering. Therefore, an approach is needed that can save energy
cost while maintaining relatively high system utilization.

We argue that HPC systems can save a considerable amount of electric costs
by adopting an intelligent scheduling policy that utilizes variable electricity
prices and distinct job power profiles—without reducing system utilization. More
specifically, we develop a power-aware scheduling mechanism that smartly selects
and allocates jobs based on their power profiles by preferentially allocating the
jobs with high power consumption demands during the off-peak electricity price
period. Our design is built on three key techniques: a scheduling window, a 0-1
knapsack model, and an on-line scheduling algorithm. The scheduling window
is used to balance different scheduling goals such as performance and fairness;
rather than allocating jobs one by one from the wait queue, our scheduler makes
decisions on a group of jobs selected from the waiting queue. We formalize our
scheduling problem into a standard 0-1 knapsack model, based on which we
apply dynamic programming to efficiently solve the scheduling problem. The
derived 0-1 knapsack model enables us to reduce energy cost during high elec-
tricity pricing period with no or limited impact to system utilization. We use
our on-line scheduling algorithm together with the scheduling window and 0-1
knapsack model to schedule jobs on Blue Gene/P.

By means of trace-based simulations using real job traces of the 40-rack Blue
Gene/P system at Argonne, we target how much cost saving can be achieved
with this smart power-aware scheduling. One major advantage of using real job
traces from production systems of different architectures is to ensure that exper-
imental results can reflect the actual system performance to the greatest extent.
Experimental results show that our scheduling approach can reduce energy bills
by 25% with no or slight loss of system utilization and scheduling fairness. We
also perform a detailed analysis to provide insight into the correlation between
power and system utilization rate, comparing our power-aware scheduling with
the default no-power-aware scheduling. We also conduct a sensitivity study to
explore how energy cost savings and utilization can be affected by applying dif-
ferent combinations of power ranges and pricing ratio.

The remainder of the paper is organized as follows. Section 2 discusses related
studies on HPC energy issues. Section 3 describes our methodology, including
the scheduling window, 0-1 knapsack model, and on-line scheduling algorithm.



Section 4 describes our experiments and results. Section 5 draws conclusion and
presents future work.

2 Related Work

Research on power- or energy-aware HPC systems has been active in recent years.
Broadly speaking, existing work has mainly focused on the following topics:
hardware design, processor adjustment, computing nodes controlling and power
capping.

Energy-efficient hardware is being developed so that the components consume
energy more efficiently than do standard components [10]. Several researchers
[11] and [12] argue that the power consumption of a machine should be pro-
portional to its workload. According to [12]a machine should consume no power
in idle state, almost no power when the workload is very light, and eventually
more power when the workload is increased. However, power consumption does
not strictly follow this because of the various job behaviors during runtime. In
[8], the authors discuss these phenomena by presenting core power and memory
power for a job on Blue Gene/P.

Dynamic voltage and frequency scaling (DVFS) is another widely used tech-
nique for controlling CPU power since the power consumption of processors oc-
cupies a substantial portion of the total system power (roughly 50% under load)
[10]. DVFS enables a process to run at a lower frequency or voltage, increasing
the job execution time in order to gain energy savings. Some research efforts on
applying DVFS can be found in [13], [14], and [15]. Nevertheless, DVFS is not
appropriate for some HPC systems. For example, DVFS is both less feasible and
less important for the Blue Gene series because it does not include comparable
infrastructure and already operates at highly optimized voltage and frequency
ranges [8].

In a typical HPC system, nodes often consume considerable energy in idle
state without any running application. For example, an idle Blue Gene/P rack
still has a DC power consumption of about 13 kW. Some nodes are shut down
or switched to a low-power state during the time of low system utilization [10,
16]. In [13] the authors designed an approach that can dynamically turn nodes
on and off during running time. Jobs are concentrated onto fewer nodes, so that
other idle nodes can be shut down to save energy consumption. Experiments
on an 8-node cluster show about 19% energy savings. In their testbed, the time
used to power on the server is 100 seconds, while the time to shut down is 45
seconds, causing approximately 20% degradation in performance.

Many large data centers use power capping to reduce the total power con-
sumption. The data center administrator can set a threshold of power consump-
tion to limit the actual power of the data center [6]. The total power consumption
is kept under a predefined power budget so that an unexpected rise in power
can be prevented. The approach also allows administrators to plan data centers
more efficiently to avoid the risk of overloading existing power supplies. The
idea of our scheduling borrows the idea of using power capping as a way to limit



the power consumption of the system. However, our work is different from the
conventional power capping approach in several aspects. First, we do not control
the total power consumption through adjusting the frequency of CPU or power
consumption of other components. Second, our goal is not to reduce the over-
all power consumption; instead, we aim at reducing energy cost by considering
various job power ranges and dynamic electricity prices.

3 Methodology

In this section, we present the detailed scheduling methodology. As mentioned
earlier, our scheduling design is built on three key techniques: scheduling window,
0-1 knapsack problem formulation, and on-line scheduling.

3.1 Problem Statement

User jobs are submitted to the system through a batch job scheduler. The job
scheduler is responsible for allocating jobs in the wait queue to compute nodes.
Before performing job scheduling, we have made two essential assumptions: (1)
electricity prices keep changing during the day, with significant variation between
low and high prices; (2) HPC jobs have different power profiles caused by differ-
ent characteristics, which are available to the job scheduler at job submission.
Also, our expected scheduling method should be based on the following design
principles: (1) the scheduling method should save considerable energy cost by
taking advantage of variable electricity prices and job power profiling, (2) there
should be no or only minor impact to system utilization, and (3) job fairness
should be preserved as much as possible. When electricity price is high (i.e.,
during the on-peak period), in order to save energy costs, we reduce the total
amount of power consumed by the jobs allocated on the system. To limit the
total power consumption, we set an upper bound denoted as the power budget
that the system cannot exceed. Thus, our scheduling problem is as follows: How
can we schedule jobs with different power profiles, without exceeding a prede-
fined power budget and at the same time not affecting system utilization and
not breaking the fairness of scheduling as much as possible?

Figure 1 illustrates a typical job-scheduling scenario on a 9-node cluster.
Assume we have 5 jobs to be scheduled, which come in the order J1, J2, J3,
J4, and J5. Job 1 stays at the head of the waiting queue and Job 5 at the tail.
A 9-node atom cluster (one core per node) is ready to run these jobs. Each
job is labeled with its requested number of nodes and total power consumption
inside the rectangle. A job scheduler is responsible for dispatching jobs to its
allocated nodes. Other unnecessary components are ignored because we focus
only on the scheduling issue in terms of job size and power. We assume at this
time that the electricity price is staying in the on-peak period and the power
budget is 150 W for the whole system. The two rectangles in the right part of
Figure 1 represent two potential scheduling solutions. The upper one stands for
the typical behavior of the backfilling scheduler where the jobs’ power is not a



Fig. 1. Scheduling 5 jobs using traditional (top right) and power-aware scheduling
(bottom right) separately.

concern. Once the scheduling decision for this time slot is made, there will be
no changes unless some jobs cannot acquire needed resources. As shown in this
figure, two jobs (J1 and J5) occupy eight nodes, leaving one node idle because
J3, J4, and J5 all require more than one node. So at this time 8 out of 9 nodes
are running jobs, with a total power of 140 kW. In contrast, the rectangle in
the lower right corner shows another possible combination of jobs. Its aim is
to choose jobs whose aggregated power consumption will not exceed the power
budget and to try to utilize nodes as much possible. Instead of choosing jobs
in a first com, first served (FCFS) manner, it searches the waiting queue for an
optimal combination of jobs that can achieve the maximum system utilization
and do not break the power budget constraint. As a consequence, we can see J3,
J4, and J5 are picked up and put on the cluster. With their total size exactly
equivalent to the cluster size, their total power is 145 W, which does not exceed
the power budget.

3.2 Scheduling Window

Balancing fairness and system performance is a critical concern when developing
schedulers. The simplest way to schedule jobs is to use a strict FCFS policy plus
backfilling [17, 18]. It ensures that jobs are started in the order of their arrivals.
FCFS plus EASY backfilling is widely used by many batch schedulers; indeed,
it has been estimated that 90% to 95% of batch schedulers use this default
configuration [19, 20]. Under FCFS/EASY, jobs are served in FCFS order, and
subsequent jobs continuously jump over the first queued job as long as they do
not violate the reservation of the first queued job.

In our design, we use a window-based scheduling mechanism to avoid break-
ing the fairness of job scheduling as much as possible. Rather than allocating



jobs one by one from the front of the queue as adopted by existing schedulers,
our method allocates a window of jobs at a time. The selection of jobs into the
window is to guarantee certain fairness, while the allocation of the jobs in the
window onto system resources is to meet our objective of maximizing system
utilization without exceeding the predefined power budget. The job scheduler
makes decisions on a group of jobs selected from the waiting queue. Jobs within
the group are called to be in a scheduling window. To ensure fairness as much
as possible, the job scheduler selects jobs in the scheduling window based the
system’s original scheduling policy. This can be seen as a variant of FCFS in
that this window-based approach treats the group of jobs in the front of the
wait queue with the same priority.

3.3 Job Scheduling

We now describe how to formalize the scheduling problem listed in Section 3.1
into a 0-1 knapsack model. We then present dynamic programming to efficiently
solve the model.

0-1 Knapsack Model Suppose there are S available nodes in the system, J jobs
as {ji|1 ≤ i ≤ J} to be scheduled, and a power budget denoted as PB. Hence
we can formalize the problem into a classical 0-1 knapsack model as follows:

Problem 1. To select a subset of {ji|1 ≤ i ≤ J} such that their aggre-
gated power consumption is no more than the power budget, with the objective
of maximizing the number of nodes allocated to these jobs.

For each job ji, we associate it with a gain value vi and weight wi. Here vi
represents the number of nodes allocated to the job, which will be elaborated
in the next subsection, and wi denotes its power consumption, which is usually
measured in kilowatts per node or kilowatts per rack.

Problem 2. To determine a binary vector X = {xi|1 ≤ i ≤ J} such that

maximize
∑

1≤i≤J

xi · vi, xi = 0 or 1

subject to
∑

1≤i≤j

xi · wi ≤ PB.
(1)

Job Power Profiling To make an intelligent job allocation, we must precisely
model the job power consumption. The IBM Blue Gene series is representative of
contiguous systems, which means that only logically contiguous subsets of nodes
can be grouped to serve a single job. For instance, in Blue Gene/P systems,
the basic unit of job allocation is called midplane, which includes 512 nodes
connected via a 3D torus network [21]. Two midplanes are grouped together to
form a 1024-node rack. Hence a job can be allocated more nodes than it actually
requests.

Calculating job power consumption of a job on a contiguous system is a bit
complicated. Because of the existence of the basic allocation unit, some nodes



in the group serving a job may stay idle. Therefore, we derive the job power
consumption as follows.

wi = Pwork nodes + Pidle nodes (2)

As shown in this equation, the total power consumption of job ji is the sum
of two parts: that of the working nodes Pwork nodes and that of the idle nodes
Pidle nodes.

To calculate Pwork nodes and Pidle nodes, we take the Blue Gene/P system as
a simple example. We get the following formulas.

Pwork nodes =
Ni

Nalloc
i

· Pi

1024

Pidle nodes =
Nalloc

i −Ni

Nalloc
i

· Pidle

1024

(3)

In Equation 3, Pi is the power consumption of job ji, which is measured in kW
per rack; Ni is the number of nodes ji requests; and Nalloc

i is the number of
nodes ji actually get allocated. Sometimes Ni 6= Nalloc

i because there exists a
basic allocation unit (512-node midplane). Pi

1024 and Pidle

1024 denote the power con-
sumption in kW/node transformed from kW/rack with a rack consisting of 1,024
computing nodes. Pi and Pidle can be obtained by querying the historical data
of a job recorded by a power monitor. Many HPC systems have been equipped
with particular hardware and software to detect the running information (e.g.,
LLView for Blue Gene/P; see [8]).

Dynamic Programming After setting up the gain value and weight, the 0-1
knapsack model can be solved in pseudo-polynomial time by using a dynamic
programming method [22]. To avoid redundant computation, when implementing
this algorithm we use the tabular approach by defining a 2D table G, where
G[k,w] denotes the maximum gain value that can be achieved by scheduling
jobs {ji|1 ≤ i ≤ k} with no more than the power budget as w, where 1 ≤ k ≤ J .
G[k,w] has the following recursive feature.

G[k,w] =

0 k = 0 or w = 0
G[k − 1, w] wi ≥ w
max(G[k − 1, w], vi +G[k − 1, w − wi]) wi ≤ w

(4)

The solution G[J, PB] and its corresponding binary vector X determine the
selection of jobs scheduled to run. The computation complexity of Equation 4 is
O(J · PB).

3.4 On-Line Scheduling on Blue Gene/P

We apply the 0-1 knapsack model after the scheduling decision has been made.
The detailed scheduling steps are as follows.



Step 1: Use a traditional scheduling method to select a set of jobs denoted
as J .

Step 2: Decide whether it is an on-peak period. If so, go to Step 3. If not,
set J as the optimal solution, and go to Step 5.

Step 3: Apply the 0-1 knapsack model to the job set J using weight and
value functions, and get the optimal combination of jobs.

Step 4: Release allocated nodes of jobs that are not in the optimal set.
Step 5: Start jobs in the optimal set.

Table 1. Experiment Configuration

Workload Intrepid (BG/P) at Argonne National Lab.

No. of Nodes 40,960 (40 racks)

No. of Jobs
March, 2009: 9709; Arpil, 2009: 10503
May, 2009: 7925; June, 2009: 8317
July, 2009: 8241; Aug, 2009: 7592

Price Oeriod
On-peak(9am-11pm)
Off-peak(11pm-9am)

Pricing Ratio On-peak:Off-peak = 1:3, 1:4, 1:5

Job Power Profile
20 to 33 kW per rack
30 to 90 kW per rack
30 to 120 kw per rack

Power Budget 50%, 60%, 70%, 80%, 90%

4 Evaluation

We evaluate our power-aware scheduling algorithm by using trace-based simu-
lations. In particular, we use the event-driven simulator called Qsim [23], which
supports simulation of the BG/P system and its partition-based job scheduling.
We extend Qsim to include our power-aware scheduling method. In this section,
we describe the experiment configuration and our evaluation metrics. We then
present our experimental results by comparing our power-aware scheduling with
the default power-agnostic scheduling. Table 1 shows the overall configuration
of our experiment that will be described in the next subsection.

4.1 Experiment Configuration

Job trace. Our experimental study is based on real job traces from workloads
collected from two different systems: one workload is from the 40-rack Blue
Gene/P system called Intrepid at Argonne. Intrepid is a partitioned torus sys-
tem, so nodes can be allocated in order to connect them into a job-specific torus
network [24]. One major advantage of using real job traces is that experimental
results from simulation are more convincing and can reflect the system perfor-
mance to the greatest extent. For Intrepid, we use a six-month job trace from



the machine (40,960 computing nodes) collected by Cobalt, a resource manager
developed at Argonne [25]. It contains 52,287 jobs recorded from March 2009
to August 2009. We apply our power-aware scheduling algorithm on a monthly
base to see the results for months. By doing so, we are able to examine our
algorithm under diverse characteristics of jobs such as different numbers of jobs
and various job arriving rate.
Dynamic electricity price. In our experiments, we assume the most common
type of variable electricity price, namely, on-peak/off-peak pricing. Under this
pricing system, electricity costs less during off-peak periods (from 11pm to 9pm)
and more when used during on-peak periods (from 9am until 11pm) [4]. Here we
are not concerned about the absolute value of electricity price. Instead we care
only about the ratio of on-peak pricing to off-peak pricing because one of our
goals is to explore how much energy cost can be saved under our smart power-
aware scheduling as compared with a default job scheduler without considering
power or energy. According to the study listed in [7], the most common ratio of
on-peak and off-peak pricing varies from 2.0 to 5.0. Hence we use three different
ratios, 1:3, 1:4, and 1:5, in our experiments. In the figures in the following sec-
tions, we use “PR” to denote “pricing ratio” for short.
Job power profile. Because we lack the power information directly related to
the testing workloads, we use the field data listed in [8] to estimate the approx-
imate power consumption of jobs for our workloads. For the Intrepid workload,
job power ranges between 20 to 33 kW per rack. We assign each job a random
power value within this range using normal distribution, which fits the observa-
tion in [8] that most jobs fall into the 22 to 24 kW per rack range. For definiteness
and without loss of generality, we apply another two sets of ranges as 30 to 90
kW and 30 to 120 kW per rack. These numbers should not be taken too lit-
erally since they are used to represent a higher ratio between high-power and
low-power jobs for the newest supercomputers. In the following sections, we use
“power” to denote the meaning “power per rack” for short.
Power budget. We evaluate five power budgets in our experiments as follows.
We first run the simulation using the default scheduling policy and monitor the
runtime power of the system; we then calculate the average power and set it as
the baseline value. Respectively, we set the power budget to 50%, 60%, 70%,
80%, and 90% of the baseline value.

4.2 Evaluation Metrics

Our power-aware scheduling has three targets: saving energy cost, impacting
system utilization only slightly, and preserving a certain degree of fairness.

Energy cost saving. This metric represents the amount of the energy bill
that we can reduce by using our power-aware scheduling, as compared with the
default scheduling approach without considering power or energy. In detail, the
energy cost is calculated by accumulation during runtime. Because the price
changes at different time periods, a monitor is responsible for calculating the
current energy cost as an extension to Qsim.



System utilization rate. This metric represents the ratio of the utilized node-
hour compared with the total available node-hours. Usually it is calculated as
an average value over a specified period of time.
Fairness. Currently, there is no standard way to measure job fairness. Pre-
vious work on fairness of scheduling includes using “fair start time” [26] and
measuring resource quality [27, 28]. To study the fairness of our power-aware
scheduling, we propose a new metric by investigating the temporal relationship
between the start times of jobs. Because we adopt a scheduling window when
apply the 0-1 knapsack algorithm, Aay job within this window can be selected
for scheduling. Such scheduling may disrupt the execution order between jobs
included in that window. Here we introduce a new metric called “inverse pair.”
This idea is borrowed from the concept of permutation inverse in discrete math-
ematics. In combinatorial and discrete mathematics, a pair of element of (pi, pj)
is called an inversion in a permutation p if i ≥ j and pi ≤ pj [29]. Similarly,
we build a sequence of jobs, S, based on their start time using a traditional job
scheduling method. Si denotes the start time of job Ji. Also we build another
sequence of jobs, called P, using our power-aware job scheduling method. In the
same way Pi denotes the start time of job Ji. In sequence S and P, for a pair
of jobs Ji and Jj , if Si ≤ Sj and Pi ≥ Pj , we call jobs Ji and Jj an “inverse
pair.” We count the total number of inverse pairs to assess the overall fairness.
This metric reflects the extent of disruption to job execution caused by using
budget controlling.

4.3 Results

Our experimental results are presented in four different groups. First, we evaluate
energy cost saving gained by using our power-aware scheduling policy. Second, we
study the impact to system utilization after using our scheduling policy. Third,
we study the extent to which scheduling fairness is impacted by our power-aware
scheduling policy. We also conduct detailed analysis of how the average power
and system utilization change within a day. In the three groups above, we use
the power range 20 to 33 kW of real systems and a pricing ratio 1:3 to present
detailed analysis. We then conduct a complementary sensitivity study on energy
cost savings and system utilization using different combinations of power ranges
and pricing ratios.

Energy cost savings. Figure 2 presents the energy cost saving of six months
on BG/P. In this figure, each group of bars represents one month in our job log.
In each group, one single bar represents a power budget value (i.e., “PB-50%”
means power budget is set to 50% of the baseline value). Obviously, our power-
aware scheduling approach can help reduce energy cost significantly for BG/P
systems. We notice that a lower power budget can save more energy cost than
can a higher power budget. Intuitively, a higher power budget limits the power
usage during the on-peak period more than a lower power budget does. The bars
within each group appear to have a decreasing trend with higher power budget,
with only two exceptions: in June a power budget of 90% can save a little more
than one of 80%, and similarly in May. The largest energy cost savings happen
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in August, as much as 23% with a power budget of 50%. For the other five
months, using a power budget of 50% can achieve more than 15% cost savings.
Even when using the highest power budget (PB-90%), most months can achieve
more than 5% energy cost savings.

Impact on utilization. Figure 3 shows the system utilization of six months
on BG/P. The bars are similar to those in Figure 2, and in each group there is an
additional bar for the default scheduling method without power-aware schedul-
ing. The figure shows that the system utilization is roughly 50% to 70%, which
is comparable to many real scientific computing data centers and grids [30, 12].
Two features are prominent. First we observe that our power-aware scheduling
approach only slightly affects the system utilization rate. Unlike energy cost
savings, the disparity between high and low power budget is not large, com-
pared with the base value. For example, the most utilization drop is in June
when the original utilization rate using default scheduling policy is around 75%,
while using a power budget of 50% results in a utilization rate of 62%. Second,
whereas five power budgets are used in July, the utilization rates are almost the
same, around 55%. This phenomenon is caused by our power-aware scheduling
approach, which shifts some of the workload from the on-peak period to the off-
peak period. We note that using a power budget would affect the utilization rate
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only during the on-peak period and would be compensated during the off-peak
period.

Impact on fairness. We assess the fairness of scheduling using the metric
“inverse pair.” Her we evaluate how the power budget will affect the fairness of
job scheduling. Figure 4 depicts the total number of inverse pairs on BG/P. The
x-axis represents the power budget as introduced in the simulation configuration
section. The y-axis denotes the total number of inverse pairs when we impose
different power budgets. First we found that the number of inverse pairs occupies
only a small portion of the total number of job pairs. For example, when we use
a 50% power budget job log from March 2009 on BG/P, the number of inverse
pairs is nearly 7,000, and the total number of job pairs in the job sequence is
about 107 (9,709 jobs and C2

9709 ≈ 108). From Figure 4 we can clearly see that
the number of inverse pairs decreases as the power budget goes up; generally,
the trend shows a linear decline as the power budget grows up. Even under the
lowest power budget (50%) the total order of job executions is not affected too
much, with the number of inverse pairs up to 8,000. Moreover, for all months,
the number of inverse pairs dropped by nearly 50% when the power budget rose
from 50% to 60%. We found that the number of inverse pairs is also related to the
number of jobs in the job trace. Intuitively, a larger power budget is beneficial to
scheduling more jobs and not disrupting their relatively temporal relationship.

Correlation between power and utilization. So far, we have studied the
energy cost savings and system utilization rate under our power-aware scheduling
approach. Here we present detailed results of the power and instant utilization
within a day and how power-aware scheduling affects them. Figure 5(a) shows
the average power in a day during March 2009 of a BG/P job trace. The x-axis
represents the time in one day measured in minute. The y-axis represents the
instant system power consumption recorded at each time point. The black line
above minute=540 splits the time of a day into two periods of which the left
part represents the off-peak period, whereas the right parts represents on-peak
period. The green line represents a traditional system power pattern using the
default scheduling policy. This reflects a common behavior of system power with
relatively low power consumption early in the morning and higher during the rest
of the day. Remember that in our simulation configuration, we set the on-peak
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Fig. 5. Average power and utilization of BG/P using default no power-aware job
scheduling (green line) power 20 to 33 kW per rack and pricing ratio 1:3 (red line).

period to be 9am to 11pm. Hence, we find that the system power with power-
aware scheduling (red line) starts to go down around the time where minute=540.
We can see that the red line is always below around 50% of the baseline value
as half of the power of the green line. And we can also see that during the off-
peak period where minute goes from 0 to 540, the system is running at a higher
power rate indicated by the red line. The reason is that along with power-aware
scheduling during on-peak period some jobs are delayed and get a chance to be
run after on-peak period. These jobs can be seen as being “pushed” to off-peak
period. This situation leads to more jobs in the waiting queue, causing more
power consumption than the original scheduling method does. This fits what we
expect, namely, that during the on-peak period less energy should be consumed
and during the off-peak period more energy should be consumed.

Figure 5(b) shows the average utilization within a day for job log March
2009. The black dashed line where minutes=540 still acts as the splitting point
between off-peak period and on-peak period. Obviously, we can see the curve
of the utilization line conforms very closely to that in Figure 5(a). This fits the
conclusion of multiple studies [6, 12] which have indicated that CPU utilization
is a good estimator for power usage. First we examine the left part of the dashed
line. Beginning from minute=540, the system utilization under default scheduling
fluctuates around 80% and has a small drop off to 70% later on. This is typical in
the real world because systems are always highly utilized in daytime where more
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Fig. 6. Energy cost savings under various combinations; “Power” is the power range
per rack, and “PR” is the pricing ratio.

jobs are submitted into the system. Also from minute=540, system utilization
under power-aware scheduling policy starts to drop off and swiftly reaches a
relatively stable value about 40% to 50%. Now we refer to the right part denoting
the off-peak period. As shown in Figure 8, the green line and red line resemble
the tendency in Figure 7. The utilization use power-aware scheduling is higher
than scheduling without power budget most of the time. Overall, our power-
aware scheduling approach reduces the system utilization during on-peak period
and on the contrary raise it during off-peak period as compensation. Hence, it
has only a slight impact on the whole system utilization, as we presented in the
previous section.

Sensitivity study Our initial profiling experiments show that in future sys-
tems the difference of job power consumption is expected to be higher. Today’s
leadership-class supercomputers have wider power ranges, where the ratio be-
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Fig. 7. Utilization under various combinations; “Power” is the power range per rack
and “PR” is the pricing ratio.

tween peak and idle state can be as high as 1:4. Also with the smart grid project
ramp-up and deployment in North America, more flexible electricity price policy
will be provided in the future. So in this section, we conduct a sensitivity study
to explore the potentiality of how different combinations of power and pricing
ratio will affect our evaluation metrics. We use three power ranges, 20 to 30 kW,
30 to 90 kW, and 30 to 120 kW, along with three pricing ratios, 1:3, 1:4, and
1:5, in our experiments.

Figure 6 presents the energy cost savings under different combinations of
power ranges and pricing ratios. In each small figure, “PR” is short for “pricing
ratio”. First we can see that our power-aware scheduling approach also works
under these scenarios. For all months, a power budget of 50% can lead to no
more than 10% energy cost savings. The largest energy cost savings can achieve
more than 25%, as shown in Figure 6(e). We interpret these figures as follows.



First, we compare energy cost savings under variable power ranges and fixed
pricing ratios. We observe that a narrower power range is likely to save more
energy cost savings than is a wider power range. For example, when the pricing
ratio is fixed to 1:4, the effect of a power range of 20 to 33 kW is greater than
that of power range 30 to 90 kW and 30 to 120 kW in all months. Also under the
same pricing ratio 1:4, a power range 30 to 90 kW results in greater energy cost
savings than in almost all the months with a power range of 30 to 120 kW. The
reason is that the majority of jobs in the BG/P log are small and thus require
nodes less than 2 racks, which can have many more idle nodes. With many small
jobs running in the systems, the system power tends to be lower than on systems
where job sizes are more uniformly distributed. As a result, imposing a power
budget cannot constrain the power of the whole system as much as that under
a narrower power range.

Second, we focus on savings under a fixed power range and variable pricing
ratio. Obviously, higher pricing ratios produce more energy cost savings in every
month. Since some portion of the system power usage is shifted from the on-peak
period to the off-peak period, higher pricing ratios lead to more difference in the
cost of the amount of power transferred. Hence we believe one can saving save
energy costs with a personalized electricity pricing policy in the future.

Figure 7 shows the system utilization rates under different combinations of
power ranges and pricing ratios. Since the pricing ratio does not influence the
utilization, we focus only on variable power ranges. First, similar to Figure 3, our
power-aware job scheduling brings minor impact to system utilization rate. The
largest utilization drop is in June in Figure 7(e), a drop of about 15%. Second,
we observe that system utilization rates under wider power ranger are higher in
some months. For example, in Figure 7(g) when the price is fixed at 1:5, using
a power range of 30 to 120 kW gives rise to higher utilization in June than does
a power range of 20 to 33 kW. This result reflects the role of our 0-1 knapsack
algorithm. Under the same power budget, a wider power range can generate a
more optimal solution because of the larger choosing space. But we notice that
the effect is not that obvious because in BG/P the system resources released by
jobs each time are relatively small compared with the whole system size, thus
leaving little space for optimizing the system utilization rate.

4.4 Results Summary

In summary, our trace-based experiments have shown the following.

• Our power-aware scheduling approach can effectively reduce the energy cost
by up to 25%. For HPC centers such as the ALCF, this energy cost savings is
translated into over $250,000 saving per year.

• This energy cost savings comes at the expense of a slight impact on system
utilization during the on-peak price period. We also observe a modest increase
in system utilization during the off-peak price period. In other words, the
overall system utilization does not change much on a daily base.



• While our scheduling window preserves some degree of scheduling fairness,
some jobs, especially those having high power consumption, will be delayed;
but the delay is limited to a day.

• Based on our sensitivity study, we find that our power-aware job scheduling
has a high potential to save energy costs and maintain system utilization.

5 Conclusion and Future Work

In this paper, we have presented a smart power-aware scheduling method to
reduce electric bills for HPC systems under the condition of limiting the impact
on system utilization and scheduling fairness. The design explores variable elec-
tricity prices and distinct job power profiles. Our approach contains three key
techniques: a scheduling window, 0-1 knapsack, and on-line scheduling algorithm.
Using real workloads from BG/P, we have demonstrated that our power-aware
scheduling can effectively save energy costs with acceptable loss to system met-
rics such as utilization.

This is our first step in investigating power-aware job scheduling to address
the energy challenge for HPC. We plan to extend our work in several ways. First,
we will explore data analysis technology on historical data in order to examine
power profiles for HPC jobs at various production systems; our aim is to en-
able us to predict job power profiles at their submission. Additionally, we are
enhancing our power-aware scheduling with an adaptive self-tuning mechanism;
the resulting job scheduler will be able to adjust its decision to external condi-
tions such as electricity price automatically during operation. We also plan to
integrate this work with our prior studies on fault-aware scheduling [23, 20, 31].
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