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Abstract. We apply recent variations of Conservative backfilling in an
effort to improve scheduler fairness. These variations modify the com-
pression operation while preserving the key property that jobs never
move later in the profile. We assess the variations using two known mea-
sures of scheduler fairness. Each of the variations turns out to be better
than Conservative according to one of the metrics.

1 Introduction

This paper looks at scheduling to achieve fairness. From the very beginning
of job scheduling research, some notions of fairness have been sought, such as
measures to prevent job starvation. Many times, however, fairness has been a
secondary consideration behind various performance-oriented metrics such as
utilization or response time. Concern for these metrics has led to a variety of
different backfilling strategies. We turn this around and look at the use of back-
filling to improve measures of fairness.

Our algorithms are variations of the well-known Conservative scheduling al-
gorithm [10]. The specific variations, PC and DC, were developed to exploit some
apparent flexibility in the compression operations that Conservative performs
when a job finishes before its estimated completion time [8]. These variations
perform compression by rescheduling jobs according to a user-specified priority
function. By supplying first-come first-served (FCFS) as the priority function,
we create two scheduling algorithms that attempt to use backfilling to favor
early-arriving jobs, matching an intuitive notion of FCFS as a fair scheduling
strategy.

To evaluate these algorithms, we use two previously-formulated notions of
job-level fairness [14]. The first of these is that it is unfair for jobs to run out of
arrival order, directly incorporating the idea of FCFS. The other notion is that
each job deserves an equal share of the system resources. Each of these notions
has been formalized, the first in metrics that compare job starting times with
their “fair starting time” and the second as metrics that compare the resources
jobs receive relative to their “fair share”.

We evaluate the algorithms using trace-based simulations run using traces
from the Parallel Workloads Archive [2]. For each job, we take its arrival time,
number of processors used, actual processing time, and estimated processing



time. The simulated runs are evaluated using the fairness metrics. We find that
the two fairness metrics are significantly different and that each of them is favored
by one of the scheduling algorithms.

The rest of this paper is organized as follows. We describe the algorithms and
fairness metrics in Sections 2 and 3. Then we describe our simulation results in
Section 4. We discuss related work in Section 5 and conclude in Section 6.

2 Algorithms

In this paper, we examine two new scheduling algorithms, both of which are
based on Conservative Backfilling [10]. Conservative maintains a profile giving
a tentative schedule for all queued jobs. Each job’s starting time in this profile
serves as a reservation, a time by which the job is guaranteed to start. Newly
arriving jobs are placed into this profile at the earliest possible time that does
not interfere with any other job. When a job finishes early (i.e. in less than
its estimated processing time), this profile must be adjusted. If the jobs are
simply rescheduled from scratch in the order they arrived, the resulting profile
may cause a job to violate its reservation; the reservation may have required
backfilling which is no longer possible in the new profile. Instead, Conservative
initiates compression, in which each queued job is removed from the profile and
rescheduled to the earliest possible time that does not interfere with any other
job (including those that arrived after it). Since each job can fit back into its
current spot, no job is ever moved to a later time, meaning that Conservative
can always give users an upper bound on the starting time of their job.

The order in which jobs are rescheduled during compression is not entirely
specified. One effective choice is to use the order that jobs appear in the old
profile. This order is attractive because it allows jobs to be rescheduled as they
are encountered in a traversal of the profile. Using the as-currently-scheduled
order also allows the new profile to be built from scratch since later jobs can-
not interfere with a job’s ability to reschedule to an earlier time. We use this
compression order for the implementation of Conservative that we use as a base-
line. The simulator whose results are reported in the original paper to use the
name “Conservative” [10] also used the as-currently-scheduled order for com-
pression [3]. Intuition suggests that this compression order tends to preserve the
order of jobs in the profile. Since the profile is built as jobs arrive, the initial or-
der has a first-come first-served (FCFS) tendency, making Conservative a logical
baseline schedule with respect to fairness.

The idea of performing compression by rescheduling jobs in the order that
they originally arrived to enhance fairness was actually suggested in the original
paper [10]. Using this order would mean that the rescheduling operations must
place jobs into the full profile rather than building a new one from scratch. It
turns out that rescheduling in this order can also leave unnecessary gaps in the
schedule. Figure 1 shows an instance where this occurs. Part (a) shows the profile
of 4 jobs which arrived in ascending numeric order; job 4 backfilled to reach the
position shown. The displayed width of each job is its estimated running time.



When job 2 finishes early, job 3 moves slightly earlier (shown in (b)) and then
job 4 moves earlier (shown in (c)), leaving a large gap. Job 3 could move earlier,
but it has already been rescheduled.
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Fig. 1. Instance where compressing in order of job arrival leads to a gap in the profile.
Jobs arrive in numerical order. (a) Original profile. (b) Profile after 2 finishes early and
3 is rescheduled. (c) Ending profile after 4 is rescheduled, leaving a gap.

Lindsay et al. [8] addressed the problem of unnecessary gaps based on an ex-
ample similar to Figure 1, but with a different compression order. They proposed
two variations of Conservative that are parameterized by a priority function spec-
ifying in which compression occurs. Prioritized Compression (PC) attempts to
reschedule the jobs in the order specified by this priority function rather than
the order they occur in the profile. To resolve the issue of unnecessary gaps, it
returns to the highest-priority job whenever a job is successfully rescheduled,
potentially rescheduling a job multiple times during a single compression oper-
ation. The second variation, conservative with Delayed prioritized Compression
(DC), further modifies compression by only rescheduling jobs that can start im-
mediately or if new lower-priority jobs arrive. The goal in delaying rescheduling
operations is to allow holes opened by early job completions to grow as much as
possible before backfilling. There are some priority functions that are aided by
this growth. Both PC and DC preserve the property of Conservative that jobs
never start later than the guaranteed start time given when they arrive.

In an effort to improve fairness, we evaluate PC and DC using the FCFS
priority function, which orders jobs based on their arrival time. As noted above,
Conservative already has a FCFS tendency since it prioritizes jobs in the order
of the profile, which is constructed as jobs arrive. Reordering the compression
operations by explicitly using the FCFS priority function potentially allows the
scheduler to move the profile toward FCFS order even when jobs are initially
placed out of this order.

In addition to these algorithms, we also compare our results against EASY [7],
a more aggressive backfilling algorithm which will backfill a job unless doing so
delays the current first job in the queue. This algorithm is used in practice to
promote high system utilization and the restriction that the first job in the queue
cannot be harmed by backfilling is sufficient to guarantee that no job starves
forever [10], but it has been shown to discriminate against jobs requiring many



processors since these jobs have difficulty backfilling (e.g. [17]). Thus, EASY
represents a choice that could be used on systems not overly concerned with
fairness.

3 Definitions of fairness

To quantify fairness, we look at two types of metrics, following a classification
by Sabin and Sadayappan [14]. The first of these is based on the notion that it
is unfair for jobs to “cut” in line and run ahead of jobs that arrived earlier. The
second is based on the notion that each job in the queue deserves an equal share
of the system resources.

3.1 Fair Start Time

When people are waiting, cutting in line (aka “queue jumping”) is viewed as
a violation of social justice, with the seriousness dependent on how long one has
waited for the resource [9]. If the goal is to avoid cutting, then the gold standard
for fairness would be FCFS without backfilling, since it never starts a job before
all earlier-arriving jobs. There are two issues with this characterization. The
first is performance-related; scheduling without backfilling will reduce system
utilization and make all users unhappy. The second is that it assumes that the
jobs suffer envy rather than just wanting to minimize their own start time; one
job receiving prompt service because it can jump ahead in the queue is not
unfair unless other jobs are disadvantaged. Sabin and Sadayappan [14] use the
analogy of service in a restaurant to explain this: Restaurant customers typically
expect to be served in FCFS order, but do not normally object if someone who
just ordered a drink receives it immediately because such an order is quick and
does not cause a delay in anyone else’s service. In parallel job scheduling, the
analogous phenomenon is benign backfilling, where jobs arriving later can backfill
without delaying the start time of other jobs. Thus, Conservative would be fair
under this definition if job lengths were accurately estimated. (The issue of
accurate estimates is important because an apparently benign backfill can delay
other jobs if their position in the profile is based on an inaccurate estimate.)

Based on the idea that the key to unfairness is delaying a job past its “right-
ful” start time, Sabin and Sadayappan [14] defined a job’s strict Fair Start Time
(strict FST) as the starting time a job would get if no jobs arrived after it.

One issue with strict FST is that inaccurate estimates can create sets of
strict FSTs that are not all together feasible. For example, consider the profile
illustrated in Figure 2. Figure 2(a) shows the Conservative backfilling schedule
with two jobs. The shaded portion of job J1 shows the actual duration of this
job, whose length is significantly overestimated. Since job J2 can start as soon as
job J1 completes, its fair start time is at the end of the shaded region. Now job
J3 arrives and the profile becomes as shown in Figure 2(b). Job J3 has backfilled
since the reservation for job J2 is based on the estimated processing time of job
J1 rather than its actual processing time. Starting each job at the given fair



start times would require running jobs J2 and J3 simultaneously, however, and
is therefore infeasible.
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Fig. 2. Instance where strict fair start times are infeasible. Anticipated schedule (a)
before and (b) after arrival of job J3. The shaded region and the block of job J1 shows
its actual length and estimated time respectively. Labels below the figures indicate the
strict fair start time of each job.

The recognition that backfilling decisions can make the strict FSTs infeasible
justifies a variation. Sabin and Sadayappan [14] define the relaxed Fair Start
Time (relaxed FST) of a job as its starting time if no jobs arrive after it, but
it is not allowed to backfill. In particular, it must start no earlier than the last
of the other jobs in the queue when it arrives. This yields generally larger FST
values and avoids sets of infeasible fair start times.

To calculate the amount by which a specific job was unfairly treated, we
consider the difference between one of the FST values and its actual starting
time. To prevent algorithms from benefiting by preferentially treating jobs, we
take the maximum of this difference and zero. Averaging this over all jobs gives
either the average strict unfairness or the average relaxed unfairness, depending
on which FST value is used. These metrics, proposed by Sabin and Sadayappan
[14], are fairness analogs of average waiting time. Other metrics based on FST
are discussed in Section 5.

As an aside, we note that the FST values require considerable effort to com-
pute. To do so, our simulator copies the current state whenever a job arrives and
runs that copy until the job starts, either normally for strict FST or after the
last other queued job starts for relaxed FST. This is inconvenient for our experi-
ments, but we note that the calculation is only required for reporting the fairness
metrics. As none of the algorithms use the metric values in their operation, this
step would not be required for a production scheduler.



3.2 Resource Equality

The other measure of fairness that we consider is based on the idea of resource
equality, a notion developed for serial jobs by Raz et al. [12] and extended to
parallel jobs by Sabin and Sadayappan [14]. The basic idea is that each active
job, i.e. one that has arrived but not yet been completed, deserves an equal share
of system resources. A job’s perception of unfairness is then the amount less than
this that it receives.

There are two subtleties in dividing system resources equally. First of all,
no job’s fair share of the processors is allowed to exceed the number that it
wants to use. For example, in a 30 processor system, if a 10-processor job and
a 20-processor job are active, the smaller job is not considered to be unfairly
treated for only getting 10 processors rather than the 30/2 = 15 that would be
an equal share. Secondly, fair shares are based on the number of processors in
use rather than the total system size. For example, if there are 3 active jobs on
a 100-processor system but only use 90 processors are being used, each job’s fair
share is 90/3 = 30 rather than 100/3 = 33.3. This prevents fragmentation from
being the cause of unfairness and helps make the scheduler goals of fairness and
utilization orthogonal.

We use two ways to calculate the fair share of job Ji. Both are defined in
terms of its arrival time ai, completion time ci, and number of processors pi.
The first one is its unweighted fair share:∫ ci

ai

min
{

util(t)
active(t)

, pi

}
dt (1)

where util(t) and active(t) are the numbers of processors in use and the number
of active jobs respectively. For the weighted fair share, we replace active(t) by
the proportion of all requested processors that are from job Ji:∫ ci

ai

min

{
pi∑

Jj is active pj
· util(t), pi

}
dt (2)

This modification increases the fair share allocated to larger jobs, with the idea
that they should get a larger portion of the system.

From either of the measures of a job’s fair share given in equations 1 and 2, we
can calculate the corresponding measure of fairness by subtracting the amount
of resources it actually received, which is the product of its processing time and
the number of processors used. For a job’s unweighted unfairness, we subtract
the resources received from equation 1. Similarly, for its weighted unfairness, we
subtract from equation 2. We report the average of these values over all jobs.

We note that the fairness metrics based on fair share are easier to compute
than those based on FST. We compute them as a post-processing step, though
it would be possible to keep a running total of each job’s fair share as it ran.
The only tricky part is that its rate of increase changes each time the system’s
utilization or set of active jobs changes. Thus, at each job arrival or completion,
we increase the fair share values to reflect the contribution since the last arrival
or completion event.



4 Results

We evaluated the algorithms with these fairness metrics using an event-based
simulator run with traces from the Parallel Workloads Archive [2]. Figure 3 lists
the traces used. We largely follow the lead of [8] in selecting traces except that
we add the ANL-Intrepid trace. We also removed DAS2-fs0 and HPC2N because
the fair start time calculations were taking inordinately long; this deserves closer
examination, but the culprit seems to be the queue length, which causes the
simulations from each job arrival to complete very slowly.

Even with these omissions, our study uses most of the traces with esti-
mated running times. The exceptions other than the above are LLNL-uBGL
(which showed almost no variation between the Conservative, PC, and DC algo-
rithms [8]), Sandia Ross (whose entry in the archive warns about its use because
the machine size was changed during the period recorded in the trace), and RICC
(excluded for time reasons and which we plan to study subsequently). Jobs in
the traces without user estimates are given accurate estimates. (Simulations by
Smith et al. [16] suggest that better estimates reduce average waiting time for
Conservative scheduling. The effect of inaccurate estimates on EASY is the sub-
ject of many papers; Tsafrir and Feitelson [19] summarize and attempt to settle
the issue.)

Name Full file name # jobs

ANL-Intrepid ANL-Intrepid-2009-1.swf 68,936
CTC-SP2 CTC-SP2-1996-2.1-cln.swf 77,222
DAS2-fs1 DAS2-fs1-2003-1.swf 39,348
DAS2-fs2 DAS2-fs2-2003-1.swf 65,380
DAS2-fs3 DAS2-fs3-2003-1.swf 66,099
DAS2-fs4 DAS2-fs4-2003-1.swf 32,952
KTH-SP2 KTH-SP2-1996-2.swf 28,489
LANL-CM5 LANL-CM5-1994-3.1-cln.swf 122,057
LLNL-Atlas LLNL-Atlas-2006-1.1-cln.swf 38,143
LLNL-Thunder LLNL-Thunder-2007-1.1-cln.swf 118,754
LPC-EGEE LPC-EGEE-2004-1.2-cln.swf 220,679
SDSC-BLUE SDSC-BLUE-2000-3.1-cln.swf 223,669
SDSC-DS SDSC-DS-2004-1.swf 85,006
SDSC-SP2 SDSC-SP2-1998-3.1-cln.swf 54,041

Fig. 3. Traces used in simulations

The trace job counts given in Figure 3 differ from the values given in the
Parallel Workloads Archive [2] because we ignored jobs that were partial execu-
tions (they were checkpointed and swapped out; status 2, 3, or 4) and jobs that
were cancelled before starting (status 5 and running time ≤ 0). We also ignored
8 jobs in the SDSC-DS trace with running time -1 (unknown).



4.1 Fair start time: DC

The first thing that jumped out of our results was that DC does very badly for
FST-based fairness. Figure 4 shows the percent improvement of DC over Conser-
vative for average strict and relaxed unfairness. (Calculating percent improve-
ment as (Conservative - Other)/Conservative.) The values are nearly always
negative, meaning that DC performed substantially worse than Conservative.
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Fig. 4. Improvement in average strict and relaxed unfairness of DC over Conserva-
tive. Not shown is LPC-EGEE for which all algorithms except DC produce average
unfairness of 0; DC gives unfairness ∼ 0.102 for both (−∞ improvement).

The delays before compression operations seem to make DC particularly
prone to assigning jobs very low strict FSTs, as in Figure 2. When this happens,
the algorithm is made to seem particularly unfair since the jobs cannot meet the
unrealistic fair start times. Consider the following set of jobs:

Job Arrival time # processors Processing time User estimate
J1 0 90 100 200
J2 1 45 100 200
J3 2 40 95 200
J4 3 90 100 200
J5 4 45 100 200

Shortly after all these jobs have arrived, the profile of both Conservative and
DC is as shown in Figure 5. They also generate identical strict FSTs for the
first four jobs, as shown in the figure. (We use Conservative here for concrete-
ness, but Conservative, EASY, and PC all generate the same schedule and fair
start times on this instance.) The FST of job J4 comes from starting jobs J2

and J3 immediately after the (early) completion of job J1 and then starting J4

immediately after J2 completes. With Conservative, the FST for job J5 is then
determined by when it can run after job J4. For DC, however, job J4 doesn’t
compress when job J1 finishes early and jobs J2 and J3 start. (Recall that DC
only reschedules jobs if they can start immediately or to prevent newly-arrived



lower-priority jobs from backfilling.) Thus, job J5 is able to backfill as soon as
job J3 finishes; job J4 cannot start at this time because job J2 is still running.
The result is a delay for J4, making DC significantly unfair.
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Fig. 5. Profile after all jobs arrive in instance showing DC’s potential for unfairness.
The shaded region and the block of each job show its actual length and estimated time
respectively . Labels below the figures indicate the strict fair start time of each job.

Note that if job J5’s running time were accurately estimated (and the instance
is otherwise unchanged), both Conservative and DC would backfill it. In this
case, both would assign identical strict FSTs and they would register as equally
unfair. As previously noted, however, job lengths are typically overestimated.
This is where DC’s hesitation to compress comes in; it doesn’t move job J4

earlier when job J1 finishes early, allowing it to backfill job J5 even when its
length is overestimated. This tendency to backfill was a design goal of DC, but
it seems to be a liability according to the FST metrics even when the FCFS
priority function is used.

Note that the example described above only directly explains why DC is so
unfair when using the strict FST measure; the instance shown relies on backfilling
job J5. We have a larger example showing that DC can also assign low values to
relaxed FST.

4.2 Fair start time: PC

PC does much better according to the FST-based fairness measures. Figure 6
shows the percent improvement of PC over Conservative for the FST-based mea-
sures. (EASY is also included for comparison.) On the strict measure, PC does
as well as Conservative on the DAS2-fs3 and LPC-EGEE traces, but beats it
on all the others (admittedly by only 0.16% on LLNL-Atlas). On the relaxed
measure, the performance is mostly the same: matching Conservative on DAS2-
fs3 and LPC-EGEE, beating it by a small amount on LLNL-Atlas, and winning
handily on most of the others. The exception is LLNL-Thunder, where it loses
to Conservative by nearly 39%. We are not sure of the cause of this poor perfor-
mance, but note that this trace gave PC and DC difficulty in previous work [8]



as well. LLNL-Thunder is also the trace in which the smallest fraction of the jobs
have user estimates supplied in the trace (32.47%). Since our simulator assigns
accurate estimates to jobs without them, this means that only about a third of
the jobs in this trace finish early, greatly reducing the opportunities PC has to
use its special backfilling operation.
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Fig. 6. Improvement in average strict and relaxed unfairness of EASY and PC over
Conservative. Not shown are LPC-EGEE (all algorithms except DC produce unfairness
of 0) and DAS2-fs3 for which PC gives no improvement and EASY produces “improve-
ments” of −3, 010% and −2, 784% for strict and relaxed unfairness respectively.

Although it is not targeted at fairness, Figure 6 also reveals that EASY
improves upon Conservative for many of the traces. It is less consistent than
PC, however, and performs substantially worse on some of the traces. For strict
fairness, PC does at least as well on all but two of the traces, DAS2-fs1 and
LLNL-Thunder, and its performance on DAS2-fs1 is comparable (a 61.9% im-
provement vs 63.2% for EASY). For relaxed, PC does at least as well as EASY
on all but one of the traces; the exception this time is LLNL-Atlas, on which it
gives a 0.16% improvement vs 0.22% for EASY.

4.3 Fair share

While PC clearly outperforms the other algorithms for the FST-based fair-
ness metrics, the situation with fair share metrics is much less clear. Figure 7
shows the percent improvement over Conservative for the other algorithms on
the unweighted and weighted measures respectively.

For unweighted fairness, DC seems to be the best algorithm, beating Conser-
vative on all but three of the traces (DAS2-fs1, DAS2-fs3, and LLNL-Thunder)
and outperforming all the other algorithms on 11 of the 14 traces. For the
weighted measure, both PC and DC do fairly well, each defeating the other
algorithms on 6 of the traces. With both measures, the improvements are gen-
erally by less than 5%, however. The fairness metrics based on fair share seem
to be much harder to improve.
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Fig. 7. Improvement in unweighted (top) and weighted (bottom) unfairness (fair share
approach) over Conservative.

4.4 Response time

We conclude our presentation of the results by showing that our algorithms
are not achieving fairness at great cost in terms of traditional performance-
oriented measures. Figure 8 shows percentage improvements over Conservative
on average waiting time. DC beats Conservative on all but one of the traces
(DAS2-fs3), achieving double digit improvements on five of them. PC is worse
than Conservative on 9 of the traces, but always by less than 3.5% and by less
than 2% on all but two of them.

5 Related work

There are several types of previous work related to our study.

PC and DC. Lindsay et al. [8] originally proposed PC and DC to improve either
overall system responsiveness or the treatment of wide jobs (i.e. those using
large numbers of processors). With the shortest job first priority function, PC
and DC reduced average waiting time and average bounded slowdown relative
to Conservative and EASY on most traces. Notably, this is achieved without
greatly penalizing particular jobs since PC and DC still achieved lower average
waiting time than Conservative and EASY when the average was taken over just
the top 5% or top 1% of the waiting times. With the widest job first priority
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function, PC and DC reduced the average waiting time of wide jobs by 10–35%
while still also improving the overall average waiting time.

Prioritized backfilling. Many other scheduling schemes have been proposed that
use a priority function in connection with backfilling. A typical approach is to or-
der the jobs by priority and then backfill to improve utilization. Jackson et al. [4]
describe a version of this used in the Maui scheduler that provides a reservation
to the highest-priority queued job (essentially a prioritized version of EASY).
Perković and Keleher [11] add elements of randomization and speculation to
this approach. These approaches differ from ours because, like Conservative, PC
and DC provide guaranteed starting times to all jobs from the time they are
submitted.

Fair start time. Srinivasan et al. [17] give a precursor to FST based specifi-
cally on Conservative. They define FST as the earliest possible start time a job
would have received under FCFS conservative if the scheduling strategy were
suddenly changed to strict FCFS without backfill at the instant the job arrived.
This version of FST has the advantage of being independent of the scheduler
being considered since the FST is always computed using Conservative. The
disadvantage is that it partially combines the effects of scheduler throughput
and fairness; a scheduler that achieves shorter waiting times will tend to appear
more fair since those waiting times also impact where each job finishes relative
to its FST. This phenomenon may conflict with user perceptions since increased
backfilling could result in both more “cutting” and greater fairness. Sabin and
Sadayappan [14] resolved this paradox by generalizing the FST calculation to
the definitions we use.

Leung et al. [6] introduce a “hybrid” FST that considers the allocation of
specific processors. This is calculated using per-node estimated completion times.
Under this scheme, a job’s FST is the earliest time that enough nodes will be
free; the estimated completion time of these nodes is then updated. The implied
schedule is more restrictive than Conservative as holes cannot be used, but it is
less restrictive than strict FCFS.



As mentioned above, our average unfairness metric is an analog of average
waiting time since it is the difference from when the job “should” start when
it does start. Other metrics can be derived from FSTs as well. Sabin et al. [13]
use fair turnaround time, which adds job running times and is thus an analog
to flow time. Sabin and Sadayappan [14] introduce fair slowdown, which is the
ratio of this to job running time, making it an analog of slowdown or stretch.

Fair share. The idea of the fair share metric comes out of an effort to quantify
fairness in queueing systems; see Avi-Itzhak et al. [1] for a survey. Raz et al. [12]
extended this to multi-server and multi-queue systems (but with serial jobs).
They used the Resource Allocation Queueing Fairness Measure (RAQFM), which
uses the philosophy that all the active users in system deserve an equal share
of system resources. This includes the refinement that only the actively used
resources should be shared, which becomes our use of only the active processors
rather than the total number. Sabin and Sadayappan [14] extended this to the
fair share fairness metrics we use, though they did not actually compute the
unweighted measure.

Other approaches. A variety of other scheduling mechanisms have been proposed
to achieve various measures of fairness. Schwiegelshohn and Yahyapour [15] in-
troduce a preemptive FCFS (PFCFS) algorithm where a job in the schedule may
be preempted by a later arriving job. To prevent starvation, they assign each
job a weight equal to its resource consumption and limit the amount of time a
job can be delayed by later arriving jobs. Fairness is then measured using a new
metric λ fairness; a scheduling strategy is λ-fair if no job can have its flow time
increased more than a factor of λ by later arriving jobs.

Sabin et al. [13] advocate “dynamic reservations”, in which the entire schedule
is recomputed from scratch. This lessens the damage caused when later jobs
backfill ahead of earlier ones (since these decisions can be revisited until the jobs
actually start), but it eliminates the scheduler’s ability to give jobs guaranteed
starting times when they arrive. Srinivasan et al. [17] propose a scheduler that
adds reservations to ameliorate unfairness without rebuilding the schedule. Their
strategy does not give reservations to jobs initially, but does once their estimated
slowdown (waiting time plus estimated running time over estimated running
time) reaches a threshold value. Leung et al. [6] compare the effect of these
strategies with several other measures designed to encourage fairness and/or
prevent starvation: job runtime limits, job priorities based on the submitter’s
recent usage, and differential treatment for jobs of heavy users.

Rather than consider fairness on a per-job basis, Klusáček and Rudová [5]
consider fairness to each user by considering a measure of the average wait-
ing times for each user’s jobs. This is combined with traditional performance-
oriented metrics into a multi-objective optimization problem, to which tabu
search is applied.

Stoica et al. [18] introduced a scheduling algorithm that uses a market para-
digm to achieve user-level fairness and and also provides users with some control
over the relative performance of their jobs. In their system, each user has a



savings account in which they receive virtual money at a constant rate. To run a
job, users create an expense account for it and transfer money to the job. Each
job uses its funds to buy the system resources it requires at market rates. The
allocation of system resources to each user depends upon the rate at which they
receive money and users can control their jobs’ relative performance by adjusting
the rates at which they are funded.

6 Discussion

The original idea behind PC and DC was to exploit flexibility in the compres-
sion operation of Conservative. It was previously shown that this flexibility could
be utilized to improve average system response time or to improve the treatment
of large jobs. In this study, we have examined whether the same ideas could be
used to improve system fairness. We have shown that PC does so for the fairness
metrics based on fair start times while DC seems to be better for those based on
fair share. Although it would be preferable for a single algorithm to dominate
by both metrics, our split result highlights that the different metrics are really
measuring different notions of desired behavior. “Fairness” is a somewhat slip-
pery concept, but our results do show that the general approach of modifying
Conservative’s compression operation has potential to improve it. Notably, both
of the algorithms also retain the worst-case predictability of Conservative in that
both are able to give arriving jobs a guaranteed start time.

Going forward, we are interested in continuing to explore the fair share met-
rics to understand how they can be optimized. It is also desirable to develop
a modification of DC that avoids its tragic performance on FST-based metrics
since it does so well otherwise (in both this study and previous work [8]).
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