
Comparing Performance Heatmaps

David Krakov Dror G. Feitelson

School of Computer Science and Engineering
The Hebrew University of Jerusalem

91904 Jerusalem, Israel

Abstract. The performance of parallel job schedulers is often expressed
as an average metric value (e.g. response time) for a given average load.
An alternative is to acknowledge the wide variability that exists in real
systems, and use a heatmap that portrays the distribution of jobs across
the performance×load space. Such heatmaps expose a wealth of details
regarding the conditions that occurred in production use or during a
simulation. However, heatmaps are a visual tool, lending itself to high-
resolution analysis of a single system but not conducive for a direct
comparison between different schedulers or environments. We propose
a number of techniques that allow to compare heatmaps. The first two
treat the heatmaps as images, and focus on the differences between them.
Two other techniques are based on tracking how specific jobs fare under
the compared scenarios, and drawing underlying trends. This enables
a detailed analysis of how different schedulers affect the workload, and
what leads to the observed average results.

1 Introduction

Graphs and visualizations are generally acknowledged to be important tools for
understanding complex systems. But as Anscombe [1] noted, few of us escape
the notion that graphs are rough, and when dealing with large amounts of data
numerical computations are the “real” analysis. Such analysis assumes that we
are able to find a numerical formula that is congenial to the data. However, nu-
merical recipes typically entail an abstraction and simplification, while in many
real-world examples it is best to first look at the data in all its complexity and
observe its behavior, perhaps forgoing more formal analysis altogether [2].

Parallel job scheduler performance evaluation is no exception to this rule.
The conventional approach for performance evaluation of parallel jobs sched-
ulers tries to condense the varied information about scheduling behavior into
few representative metrics such as the mean response time (the time between
job submittal and completion) or the mean slowdown (the ratio between the
actual runtime and the response time, which includes the wait time). However,
using the mean fails miserably on asymmetrical distributions [4]. Slowdown is es-
pecially problematic, as short jobs may have disproportionately high slowdowns.
Downey [5] calls the tendency to report summary statistics for non-symmetric
distributions that exist in real workload data a “bad habit”; Frachtenberg [7]

mentions using the mean for asymmetrically distributed (skewed) results as one
of the pitfalls of parallel job scheduling evaluation.

A major reason for using simple condensed metrics is the need to compare
different job scheduling strategies applied to the same workload, or to show how
performance depends on some parameter (e.g. how simulation results change
with load conditions). But if our metrics (and specifically, their averages) mis-
represent reality, any comparison based on them becomes questionable. As re-
search of parallel job scheduling strategies commonly revolves around comparison
of alternatives, finding a good comparison tool becomes an important problem.

Heatmaps are a powerful tool to visualize large amounts of data, and are
gaining hold in various areas as an analysis tool for complex information. When
applied to parallel job schedulers performance evaluations they can help to visu-
alize how various job metrics distribute relative to different load conditions [8],
in contrast to the traditional approach of using the average metric as a single
data point for evaluation. Thus heatmaps can help avoid the pitfall of misleading
performance metrics.

However, it is difficult to visually compare different runs. Such comparisons
are important to identify odd patterns and find better behavior. But — as the
examples we explore will show — heatmaps may “look the same” despite hav-
ing important but subtle differences. Naturally, since heatmaps visualize a job
distribution over the load×performance space (as recorded from some scheduler
and workload), one can use statistical analysis tools to compare different job
distributions and obtain numerical results. But as we will show, this approach
can be misleading as well.

As an alternative, we suggest to stay in the visual domain. We therefore
need ways to highlight changes in behavior and allow high resolution analysis
of the differences between heatmaps representing different scheduling algorithms
or conditions. We present a number of such techniques in this paper. The first
is simple image subtraction. The second is based on ratios, and is similar in
spirit to the Kullback-Leibler divergence. Two additional schemes are based on
tracking how individual jobs move across the load×performance space.

2 Heatmaps Applied to Evaluation of Parallel Job
Schedulers

The performance of a computer system obviously depends on the workload it
handles. Reliable performance evaluations therefore require the use of represen-
tative workloads. The workload used for the evaluation should represent real job
distributions, including internal correlations and structure emerging from user
feedback and system boundaries. As a result, evaluations of new schedulers often
use workload logs obtained from real production systems to drive a simulation.
Many real world traces are available at the Parallel Workloads Archive [11],
converted into the Standard Workload Format (SWF) [3].

Heatmaps were recently proposed as a tool that allows high resolution anal-
ysis of a job trace or of simulation results [8]. This is based on the observation

that a single trace or simulation contains a wealth of information about behavior
under different load conditions, which can be exploited to zoom in on different
conditions [12].

Specifically, a heatmap is like a scatter-plot showing the distribution of the
jobs in the log. In our heatmaps the X axis is the load experienced by each job,
and the Y axis is the job’s performance, as measured per-job by common metrics
such as slowdown or response time. The heatmap image is based on a fine grid
where each bin shows how many jobs experienced the load and performance
represented by the bin’s coordinates. “Hot” (dark) bins mean lots of jobs and
“cold” (light) bins are few jobs.

We use the same engine for heatmap calculation as was used in our previous
work [8], and have made its code available online [13]. The load experienced by a
job is computed as the weighted average of the utilizations of the system during
the job’s lifetime. During a job’s lifetime the utilization changes at discrete points
when some other job either starts or terminates. Assume this happens n times,
and denote the job’s arrival time by t0, its termination by tn, and the utilization
at interval i by U(ti, ti + 1). The load experienced by the job is then

load =

n∑
i=1

ti − ti−1
tn − t0

U(ti−1, ti)

Since the distribution of most metrics is very skewed (for example for wait
time, there are very few jobs that wait a lot and many jobs that wait a little,
covering times from few seconds to days), the Y axis is plotted in logarithmic
scale. Bin shades are also log scaled — there are many bins with very few jobs
(typically 1–2) and few bins with a lot of jobs (hundreds). The bins are hexagonal
and use a 50× 50 grid with approximately 2,500 bins.

As an example, consider the behavior of the job scheduler of the CTC-SP2
system based on a year-long trace. Figure 1 shows a heatmap of the wait time
jobs experienced in the original trace as a function of the load. The blue X marks
the spot of the average wait time and load. Few observations are evident:

1. The mean wait time is not very representative of the distribution.
2. There is a distinct blob of jobs at the left side that seems to reflect a set of

jobs that suffered from some congestion condition.
3. Wait times follow a bimodal distribution, with many jobs concentrated around

low wait times and many more around a higher wait time. The short wait
times may reflect some minimal granularity of activating the scheduler,
meaning that it only runs say once a minute and therefore does not schedule
newly arrived jobs immediately.

4. There are many jobs in the “background”, showing no distinct relation be-
tween load level and experienced wait time.

Moreover, compare this with an EASY simulation based on same job arrivals
as the original trace, shown in Figure 2. The simulation is quite different from
the original log, notably in the spread of jobs and in the maximal wait times ob-
served. Generally, looking into heatmaps of many real world systems, it has been

Fig. 1. Heatmap of the original log from
the CTC-SP2 computer, showing asym-
metrical job distribution.

Fig. 2. Heatmap of EASY simulation
based on the CTC-SP2 log.

shown that both real world traces and simulation results exhibit distributions
for which the traditional mean-based comparison metrics are ill-suited [8].

For our comparison evaluation we use FCFS, EASY backfilling, and conser-
vative backfilling (CONS) schedulers. In FCFS (First-Come-First-Serve) jobs are
kept in order of arrival and whenever there are enough resources (free proces-
sors) for the first queued job, it is allocated its required resources and starts to
run. If sufficient resources are not available, jobs are queued waiting for them to
become available. Jobs never jump each other in the queue.

EASY [9] is a popular backfilling algorithm, and the most commonly used
method for batch scheduling [6]. It approaches the problem of idle resources in
the FCFS setting using the following optimization: when a job arrives or termi-
nates the scheduler scans the queue of waiting jobs by order of arrival, running
them as available processors allow. Once it reaches a job it can’t run (requires
more processors than available) the scheduler makes a reservation for the job.
A reservation guarantees enough processors at the earliest time when the job
will be able to run, based on current knowledge of when enough processors will
become available after termination of currently running jobs. The scheduler then
continues to scan the queue for smaller jobs that can be started without inter-
fering with the reservation, and executes them. This action is called backfilling.
Since the scheduler can not know when the jobs will end, it relies on run time
estimates provided by the user. Once a running backfilled jobs exceed its user
estimation it is killed by the scheduler to ensure waiting jobs with reservations
start on time. “EASY P”, a hypothetical EASY with “perfect” exact user esti-
mations, is also used as a reference for comparison.

CONS [10] is the “vanilla” backfilling algorithm, in which no job can delay
any previous job in the queue. All jobs in the queue receive reservations upon
their arrival (unlike the more aggressive EASY which reserves only the top job
on the queue). Thus, response times and order are guaranteed upon submittal.

3 Heatmap Comparison Techniques

Heatmaps serve as a tool to investigate the whole population of jobs instead
of summary statistics such as the average slowdown. Thus, by comparing the
heatmaps describing the performance of a certain log under two different sched-
ulers, we may hope to achieve a fine-grained comparison of these schedulers.
However, no common practice exists for the comparison of different heatmaps.
We suggest two possible approaches:

– Visual heatmap comparison: Visual (image) comparison can help iden-
tify changed areas between two job distributions. Since it is image based,
such a visual approach can be used to compare vastly different populations.
The input of this approach is a set of two heatmaps (two matrices of same
size), and the output is an image that highlights differences between these
heatmaps. Uses include (1) comparison of different schedulers on the same
workload, especially powerful for comparing similar schedulers to highlight
small changes in the resulting performance distribution; and (2) comparison
of scheduling of different job sets, and observation of the behavior of the
same scheduler over different workloads.

– Job aware comparison: If the compared heatmaps portray performance
distribution of the same workload, that is the same set of jobs but under
different schedulers, it is interesting to compare the performance experienced
by individual jobs. Visual comparisons as described above do not use this
information. The aim of this approach is to identify trends in the behavior
of specific classes of jobs, such as what happens to high slowdown jobs, or
how jobs with low run time are affected. This approach does not directly
compare heatmaps — instead it shows how sets of jobs that created one
heatmap moved in order to create the second heatmap.

The next two sections detail these two approaches.

4 Visual Heatmap Comparison

The visual approach is completely general, and can be applied to any pair of
heatmaps. In its simplicity and applicability lies its greatest advantage.

A naive image comparison is employed. Each heatmap is actually a rendering
of a 2D histogram, showing the number of jobs in each bin. The bins in the
heatmaps correspond to each other, with a bin for each combination of load and
performance. Denote bin i in the two heatmaps by Ai and Bi. Then, calculate
the difference between the values for each bin, and determine the color based on
whether is it less or greater than zero. We use two different differences:

Simple difference Di = Bi −Ai

Ratio difference Di =
Bi

Ai

Fig. 3. Ratio comparison of two simulations based on the SDSC SP2 workload: EASY
and “perfect” EASY (EASY P). The original heatmaps are very similar. The darkest
blue indicates that EASY P had 32 times as many jobs in this bin as EASY.

Fig. 4. Simple difference comparison of two different simulations (FCFS and EASY)
based on the HPC2N workload. The darkest blue indicates that EASY had 3174 more
jobs in this bin than FCFS.

In both cases, we assign colors to differences using a logarithmic scale. Thus
successively darker shades indicate growth in the order of magnitude of the dif-
ference. This approach helps to identify subtle differences between possibly very
similar distributions of results. For example, see Figure 3, which compares two
very similar runs of the EASY scheduler. The second simulation (with some-
what better backfilling due to using perfect runtime estimates) has less jobs
with high wait times across all utilization levels. The visual produces even more
pronounced results when simulations are different enough — for example, Figure
4 shows unsurprisingly clear advantage of EASY over FCFS.

In the above examples we use red and blue shading to distinguish whether the
first or second heatmap dominates. This shows up prominently in color displays,
but is not suitable for black and white printing. In a black and white version,
equality can be gray, with advantages for one heatmap shown in darker shades
and advantages for the other shown in lighter shades.

Figure 5 shows side-by-side comparisons between simple and ratio differences.
Ratio differences sometimes create wider boundaries between areas where either
heatmap dominates — as the SDSC-SP2 EASY vs. EASY P comparison. This
happens because in the boundary areas the advantage of one heatmap over the
other is usually small in relative terms, even if it is large in absolute terms.
On the other hand ratios are more susceptible to noise, as the noisy SDSC-SP2
CONS vs EASY ratio comparison shows, while simple difference clearly shows
the advantage of EASY over conservative backfilling for that workload.

Relation to Kullback-Leibler Divergence

A comparison of two heatmaps is essentially just a comparison of two histograms,
or distributions. Thus an alternative to our visual approach is to use statistical
tools that compute the difference between two distributions. Applying this to our
context, we can compute the difference between how two sets of jobs distribute
over the performance×load space.

One commonly used tool to measure difference between distributions is the
Kullback-Leibler divergence DKL. This comes from information theory, and is
typically used to compare a model distribution with the underlying “true” theo-
retical distribution. Specifically, given a base distribution P and an approxima-
tion Q, the divergence is defined as

DKL =

n∑
i=1

P (i)log
P (i)

Q(i)

If we’re just interested in comparing distributions, this expression can be inter-
preted as follows. First, for each possible value i, find the ratio of the probabilities
to observe i under P and Q. Then take the log of this ratio, to find its order
of magnitude. Next, weight these values by P (i), meaning that more weight is
assigned to the more probable values. Finally sum it all up to obtain a measure
of the overall divergence. A small divergence signifies similar distributions, or a

Fig. 5. Comparison of ratio differences (on the left) and simple differences (on the
right) for the same pairs of heatmaps. Ratios show that some of the large absolute
differences are actually small in relative terms.

good model. Note that the first steps are the same as in our ratio difference: we
assign colors based on the log of the ratio.

To apply this to our performance heatmaps, we can transform each bin into
a probability by dividing by the total number of jobs: P (i) = ji/N , where
ji is the number of jobs in bin i. But due to the ratio, DKL is only defined
if P (i) = 0 whenever Q(i) = 0 (absolute continuity). The simplest practical
approach to ensure this uses a uniform prior, which amounts to adding 1 to each
bin and renormalizing the heatmap. Denoting the number of bins by S we then
get P (i) = (ji + 1)/(N + S), and similarly for Q. These are plugged into the
equation to compute DKL.

When comparing performance heatmaps, DKL has two shortcomings. First,
it quantifies only the magnitude of the difference, with no indication which is
better. Second, due to summing over all possible values, different pairs of distri-
butions may lead to similar results. In particular, things may cancel out, leading
to situations where a meaningful difference receives a very low divergence score.

Fig. 6. Left: ratio comparison of between EASY and conservative backfilling for SDSC-
SP2. Right: weighted version of same results (DKL inspired). Note color levels adjusted
to accommodate asymmetry around zero level. Note that most of the high ratios ap-
parently have low weights.

Consider as an example Fig. 6 comparing EASY scheduling based on SDSC-
SP2 workload with conservative scheduling (CONS). The computed DKL is par-
ticularly low (0.084), indicating no significant difference. But looking at the
weighted ratio heatmap we find that there are in fact two areas with relatively
high probability and different patterns for the two schedulers, that apparently
cancel out:

– With CONS the odds are higher than EASY for jobs experiencing higher
wait time and slightly lower load. This combination results from using more
reservations, more waiting in queue, and thus overall lower utilization.

– With CONS there is considerably less chance of a job to experience no slow-
down with full utilization. One possible explanation is that these bins may
represent small jobs that are executed under EASY due to aggressive back-
filling.

5 Job-Aware Heatmap Comparison

Job aware comparisons use heatmaps as a tool to map what happened to certain
classes of jobs by creating a heatmap of those jobs only and trying to generate
a “before” and “after” view. It relies on domain specific understanding and
especially the fact that the compared heatmaps show distributions of the same
jobs. Thus this can’t be used to compare arbitrary heatmaps or even the results
of simulations using different logs.

Two approaches are explored: per-area comparison, where we plot heatmaps
of jobs from select areas only in the original heatmap, and quiver plots, where
we plot the trends of all jobs by creating a “stream flow” plot.

5.1 Area Plots

To compare performance results A and B for the same workload, we split the
heatmap of A into a mesh sized N ×M , and plot a separate heatmap based on
B for jobs that come from every square of the A mesh.

We use a 3× 3 mesh in the figures below. Thus we partition the A heatmap
into 9 squares, and partition the jobs in the workload into 9 sets, such that the
jobs in each set contributed to one square of the heatmap. The sets correspond
to all possible combinations of low, medium, and high load with low, medium,
and high performance. In other words, we get 9 sets of jobs based on how they
fared in the A evaluation: those jobs that experienced high load and low wait
times will be in one set, those that experienced high load and medium wait times
in a second set, those that experienced high loads and high wait times in a third
set, and so on. Then we use the second evaluation to draw a separate heatmap
showing the load and performance of the jobs in each of these sets.

Note that the sets need not be of equal size. Usually there are very few jobs
that enjoy a low load but still suffer from high wait time or slowdown values,
and sometimes there may even be no such jobs. On the other hand there are
many jobs that experienced high loads, both with high and low performance.

The advantages of this approach are that it allows to keep the high resolution
analysis (a heatmap) for classes of jobs. It can easily be extended to plotting
any groups of jobs (such as jobs by a specific user) instead of basing classes on
performance areas in A.

Results When comparing different simulations using the same workload data
set, the area plots allow to see differences in behavior:

Fig. 7. Comparison of SDSC SP2 EASY and EASY P simulations. The heatmaps
derived from the two simulations are shown on top. The array of 9 heatmaps below
show disjoint areas in the EASY heatmap (blue outline), and how the jobs in these
areas were mapped to the EASY P heatmap.

– Figure 7 shows EASY vs. EASY P (“perfect EASY”, same as EASY but
uses actual job runtimes instead of user estimates to determine reservations).
Perfect EASY clearly performs better — all jobs with high wait times ex-
perienced lower wait times and moved “down” on the plot. Surprisingly, the
class of few jobs with low wait times and high utilization (lower right) saw
a substantial increase in wait times. Better packing comes at the expense of
the jobs that did not previously wait in high load conditions.

Fig. 8. Comparison of HPC2N FCFS and EASY simulations.

– Figure 8 shows FCFS vs. EASY, based on the HPC2N workload, which
produced rather similar plots. Jobs in upper right were strongly affected,
experiencing much lower wait times. Jobs in the center and middle right
were affected as well: many jobs moved to the bottom zero wait-time line,
probably because other jobs were packed better and left more processors
free.

Fig. 9. Comparison of original KTH workload and FCFS simulation.

On the other hand, comparison of original schedulers versus simulations (Figure
9) shows that there was very little relation between the job distribution in the
original log and what these jobs experienced in the simulation. No matter where
the jobs were originally, the distribution of each subset in the simulation is
essentially the same.

5.2 Quiver Plots

In this approach we split the A heatmap into a grid of relatively high resolution
(a 40 × 40 grid with 1,600 cells is used). For each cell we potentially draw a
quiver as follows:

1. Let J be the set of jobs in that cell of A. Look at the subset of jobs Jout ⊂ J
that leave the cell, that is that either the load they experienced (their x
coordinate) or their performance level (their y coordinate) are out of the cell
boundary in the B heatmap.

2. A quiver (vector) is plotted only for cells with more that a minimal number
of leaving jobs (|Jout| > 25). This is done to reduce the amount of “noise”
from changes in insignificant cells. The minimal number (25) is tuned for the
logs analyzed, but an adaptive approach based on the average cell size can
be employed.

3. Compute the placement of the quiver. The quiver’s tail is placed at the mean
location of the jobs in the A heatmap (by definition this is within the cell).
Its head is placed at the mean location of the Jout jobs in the B heatmap:

tail.d = 1
|Jout|

∑
j∈Jout

jA.d for d ∈ {x, y}

head.d = 1
|Jout|

∑
j∈Jout

jB .d for d ∈ {x, y}

4. The quivers are based on only the leaving jobs to allow for a visually mean-
ingful vector even when only a small percentage of the jobs are leaving, and
so the mean of all the jobs is close to the cell or even within the cell. The
color of the quiver is based on the percentage of the jobs moved, making it
easy to distinguish cases where only a small fraction of the jobs moved from
cases where most of the jobs moved.

Results We first look at behavior of similar schedulers to check if trends can
be identified, and whether there is symmetry between them. Consider the com-
parison EASY and EASY P based on the SDSC SP2 data trace, Figure 10.

– Top, EASY→ EASY P: jobs move towards a new “center” with higher load
and lower wait time. Some percentage of the jobs with low wait time along
the high load 1.0 axis may experience higher wait times in result. Jobs that
experienced no wait time at all load levels may experience high wait times
— the “picket fence” on the bottom. Zooming in on bottom cells shows a
very uneven distribution: most of the jobs move right or left in terms of
experienced load, but stays at zero wait time, while a small group (up to

Fig. 10. Quiver plot comparison of SDSC SP2 EASY and EASY P simulations. On
the top the changes in job performance when moving from EASY to EASY P, and on
the bottom the other way around.

40%) “enters the game” and experiences higher (103) wait time closer to the
average.

– Bottom, reversed plot of the same two simulations. A new center of weight
draws jobs to it, with higher wait time and lower load. Interestingly, two
trends are very similar to the previous plot. First, the “picket fence” at the
bottom is present in both plots, as there are distinct jobs that had to wait
in one scheme but not in the other. Second, Jobs that had an almost perfect
packing (100% experienced load) and low wait time move to the left, now
experiencing higher delay. It seems that for the EASY scheduler both these
effects are common to any run.

A similar center of weight shift can be seen when comparing EASY vs. Conser-
vative backfilling, based on a number of different workload traces (Figure 11).

When comparing the non backfilling FCFS to EASY (HPC2N workload based
simulation in Figure 12), EASY clearly helps lower wait times of jobs in all
load levels and create a denser packing, resulting in higher achieved load. There
are a couple of cells with a downward arrow not following the general trend,
representing a class of jobs that waited much less while experiencing on average
the same load. Unlike backfilling comparisons, the edges of the plot are almost
not affected: no ”picket fence” is observed, even though there is a large number
of jobs at the bottom, and jobs that experience 100% utilization also do not
move.

6 Conclusions

We suggested several different heatmap comparison techniques, some general
image-based that are usable for any heatmaps (and in particular for perfor-
mance heatmaps), and others that use specific domain knowledge on the un-
derlying data and are only suitable for comparison of simulations based on the
same underlying workload. These techniques visualize how the whole distribu-
tion of performance results changes between the compared systems. Thus they
are significantly different from the common approach of comparing average per-
formance values.

In some cases, looking at the whole distribution is crucial for reaching the
correct conclusions. When conventional techniques are used, all the details are ul-
timately lost in favor of a single summary statistic. Thus a low Kullback-Leibler
divergence (for example) is taken to mean that the compared distributions are
similar. But this is not necessarily the case. It is also possible that some differ-
ences existed, but they canceled out. When looking at the whole distribution,
these differences would be seen.

The image-based (visual) comparisons can be applied to any heatmaps, not
only of parallel job scheduling evaluations. Moreover, they can even compare
different job populations. In the context of job scheduling, such comparisons
retain the ability of heatmaps to overcome the limitation of conventional average
metrics, and provide a tool for comparing skewed distributions where average
metrics are misleading.

Fig. 11. Quiver plot comparison of CONS and EASY simulations on three workload
traces.

Fig. 12. Quiver plot comparison of HPC2N FCFS and EASY simulations.

Major advantages over the other methods are simplicity to compute and
conciseness — a single heatmap is produced. Ratio difference visual comparison
highlights more clearly acute differences between very similar job distributions,
while simple difference is more representative of the overall changes. One dis-
advantage of using two colors is the inappropriateness for B&W printing or
color-blind researchers. Gray levels may be used as a remedy.

A second group of methods is job aware plots. These can only be applied to
the same job population. They are not applicable when the underlying data is
different — e.g. to compare simulations based on a model that generates new
jobs on each run. Area plots offer a high resolution view into different classes
of jobs and can be used to dive in into edge cases. They do not allow for a single
comparison representation, as each class is visualized separately. Thus area plots
are complicated both to compute and to analyze.

Quiver plots employ averaging to plot trends of change. They create a
single-image concise result, but as with any averaging, can be misleading when
the average is not representative due to the presence of skewed distributions, as
is the case with cells on the zero wait time axis. Quiver plots also suffer from
noise in some of the logs checked. One possible remedy might be employing a
low pass filter as a preliminary step.

For many cases the naive image difference comparison might be good enough,
given its simplicity in computation and in visual understanding. For example, in
the comparison of SDSC-SP2 EASY vs. EASY P the visual comparison (Figure
3) plainly shows that EASY P reduces the number of high wait time jobs, which
is exactly the basic result seen in the job-aware area plot and quiver comparisons
(Figures 7 and 10).

The job-aware comparisons allow for more advanced observations, at the
possible expense of obscuring the general picture. In particular they can serve
to understand some deeper behaviors:

– Looking into a job-aware comparison of a log’s original scheduler versus a
simulated one shows that the distribution of jobs remains similar in any
large sub class of jobs. This shows that the simulation completely mixes the
jobs and does not retain any relations with how they were treated in reality.
This is a much stronger conclusion than can be derived based on the plainly
visible difference between the heatmaps.

– Quiver plots show a “center of weight” that exists in backfilling based sched-
ulers (both EASY and conservative backfilling). Jobs are drawn to it from
all sides. This is a similar result to the postulation Rudolph and Smith made
that schedulers have a “Desired Operating Range” (DOR) [12].

– Looking in both directions of comparison allows to highlight invariants in
scheduler behavior. For EASY those are jobs with zero wait time or with
100% experienced load. This might allow to distinguish more “interesting”
jobs in the evaluation.

This paper is only a first try at heatmap comparison, which may serve as
a basis for development of more advanced scheduler evaluation and comparison
tools. Naturally, it would be interesting to apply the same techniques to a wider
class of schedulers and environments. The techniques used can be extended, both
in usability (how good is the visual representation) and applicability for different
scenarios. One possible development of another type of comparison would be to
compare time frames instead of comparing what happens to jobs: the change in a
particular time window between two different scheduling runs. Another would be
to group the jobs by different properties, such as the users who submitted them.

As further research, heatmaps can also be drawn for different axes, for example
wait time vs. job duration or job parallelism, allowing to observe correlations
between performance effects and different job attributes.

Acknowledgments

Many thanks to all those who have made their workload data available through
the Parallel Workloads Archive.

References

1. F. J. Anscombe, “Graphs in Statistical Analysis”. The American Statistician
27(1), pp. 17–21, Feb 1973.

2. D. G. Feitelson, “Looking at Data”, In 22nd Intl. Parallel & Distributed Processing
Symp. (IPDPS), Apr 2008.

3. S. J. Chapin, W. Cirne, D. G. Feitelson, J. P. Jones, S. T. Leutenegger,
U. Schwiegelshohn, W. Smith, and D. Talby, “Benchmarks and standards for the
evaluation of parallel job schedulers”. In Job Scheduling Strategies for Parallel
Processing, pp. 67–90, Springer-Verlag, 1999. Lect. Notes Comput. Sci. vol. 1659.

4. M. E. Crovella, “Performance evaluation with heavy tailed distributions”. In Job
Scheduling Strategies for Parallel Processing, pp. 1–10, Springer Verlag, 2001. Lect.
Notes Comput. Sci. vol. 2221.

5. A. B. Downey and D. G. Feitelson, “The elusive goal of workload characterization”.
Performance Evaluation Rev. 26(4), pp. 14–29, Mar 1999.

6. Y. Etsion, D. Tsafrir, and D. G. Feitelson, “Process prioritization using output pro-
duction: scheduling for multimedia”. ACM Trans. Multimedia Comput., Commun.
& App. 2(4), pp. 318–342, Nov 2006.

7. E. Frachtenberg, D. G. Feitelson, F. Petrini, and J. Fernandez, “Adaptive parallel
job scheduling with flexible coscheduling”. IEEE Trans. Parallel & Distributed
Syst. 16(11), pp. 1066–1077, Nov 2005.

8. D. Krakov and D. G. Feitelson, “High-resolution analysis of parallel job workloads”.
In Job Scheduling Strategies for Parallel Processing, pp. 178–195, Springer-Verlag,
May 2012. Lect. Notes Comput. Sci. vol. 7698.

9. D. Lifka, “The ANL/IBM SP scheduling system”. In Job Scheduling Strategies for
Parallel Processing, pp. 295–303, Springer-Verlag, 1995. Lect. Notes Comput. Sci.
vol. 949.

10. D. G. Feitelson, L. Rudoplh, U. Schwiegelshohn, K. C. Sevcik and P. Wong, “The-
ory and Practice in Parallel Job Scheduling”, In IPPS ’97 Proceedings of the Job
Scheduling Strategies for Parallel Processing, pp. 1–34, Springer-Verlag, 1997. Lect.
Notes Comput. Sci. vol. 1291

11. Parallel Workloads Archive. URL http://www.cs.huji.ac.il/labs/parallel/workload/.

12. L. Rudolph and P. Smith, “Valuation of ultra-scale computing systems”. In Job
Scheduling Strategies for Parallel Processing, pp. 39–55, Springer Verlag, 2000.
Lect. Notes Comput. Sci. vol. 1911.

13. Performance Heatmap Utilities. URL https://bitbucket.org/krakov/heatmaps.

