
A Periodic Portfolio Scheduler for
Scientific Computing in the Data Center

Kefeng Deng1,2, Ruben Verboon2, Kaijun Ren1, and Alexandru Iosup2

1 National University of Defense Technology, Changsha, China
{dengkefeng,renkaijun}@nudt.edu.cn

2 Delft University of Technology, Delft, the Netherlands
R.S.Verboon@student.tudelft.nl, A.Iosup@tudelft.nl

Abstract. The popularity of data centers in scientific computing has led
to new architectures, new workload structures, and growing customer-
bases. As a consequence, the selection of efficient scheduling algorithms
for the data center is an increasingly costlier and more difficult challenge.
To address this challenge, and contrasting previous work on scheduling
for scientific workloads, we focus in this work on portfolio scheduling—
here, the dynamic selection and use of a scheduling policy, depending
on the current system and workload conditions, from a portfolio of
multiple policies. We design a periodic portfolio scheduler for the
workload of the entire data center, and equip it with a portfolio of
resource provisioning and allocation policies. Through simulation based
on real and synthetic workload traces, we show evidence that portfolio
scheduling can automatically select the scheduling policy to match
both user and data center objectives, and that portfolio scheduling can
perform well in the data center, relative to its constituent policies.

Keywords: portfolio scheduling; data center; provisioning and alloca-
tion; scheduling policies; scientific workloads.

1 Introduction

Cluster-based data centers of all sizes are increasingly popular, a result of both
increasing demand for efficient computational resources, and of several decades
of technological advancement and education of administrators in distributed
systems. Especially when servicing the demanding workloads typical of scientific
computing [1, 2], these data centers need efficient algorithms for scheduling
their users’ workloads on the data center resources. Many existing scheduling
algorithms have already addressed specific workload properties [3, 4] and types
of applications [5–8], but data centers still rely on (expensive) human system
administrators to select a scheduling algorithm and configure it appropriately.
Moreover, the selection process is made significantly more difficult by changing
workloads due to technology transitions (e.g., the use of virtualization and new
networking architectures), and by new customers starting to use data centers
as Infrastructure-as-a-Service clouds. In contrast to previous approaches, we



2 Deng, Verboon, Ren, Iosup

investigate in this work portfolio scheduling [9]—in this context, the dynamic
selection and use of a scheduling policy, depending on the current system and
workload conditions, from a portfolio of multiple policies—used to efficiently
schedule scientific workloads for the entire data center.

Cluster-based data centers have been much employed for scientific computing
workloads. For example, small data centers are commonly integrated into multi-
cluster grids, such as the World Large Hedron Collider Grid (WLCG), the
US Open Science Grid, the French Grid’5000, and the Dutch DAS. However,
human administrators have become increasingly rare and more overloaded, as
modern data centers rely increasingly on automation and allocate only 5% of the
operational budgets for human administration [10]; this situation is anecdotally
supported by our experience with the DAS system over the past decade.

A variety of scheduling and administrative techniques have been developed
recently for the data centers, but, simultaneously, data center architectures have
evolved quickly. For the former, research has focused on both sharing of net-
working resources [11] and time-cost-energy optimizations. For the latter, recent
work has focused on new layouts of networks [12, 13] and new virtualization
architectures [14, 15]. Our previous scheduling studies [8, 16, 17], which evaluate
a large variety of scheduling policies for various types of scientific computing,
indicate that no single policy can accommodate all workload conditions, and all
user and system objective functions. Thus, a tension arises in trying to select
the appropriate resource scheduling policies for the data center.

Not only the data center architecture, but also the properties of scientific
workloads change over time. Long-term arrival patterns can suddenly be
interrupted by bursts of arrivals [2]. As systems mature, their users may
transition from loosely coupled jobs to more integrated workflows [18] and even
tightly coupled parallel jobs. New approaches to computing—MapReduce and
its many flavors, the graph-processing model Pregel, etc.—have appeared in
the past few years. For months after data centers are launched in production
and prior to their decommissioning, reduced yet system-stressful workloads with
different operational patterns may appear [19]. Thus, the problem of selecting
an appropriate scheduling policy remains open and increasingly in need of a
solution.

In this work we investigate if a portfolio scheduler can automatically select
the scheduling policy, from the set with which the portfolio is configured, such
that the user and the data center’s objective functions remain within their
target (optimal) range. Among other differences from previous work on portfolio
scheduling [9], our context rarely allows an optimal range to be computed; thus,
the target range is relative to the performance of individual policies used in the
portfolio. A portfolio scheduler should support many types of workload patterns
and application types, yet perform similarly to the scheduling policy that has
been specifically designed to support the workload pattern and application type.
This has an important consequence: portfolio scheduling can then alleviate the
need for human expertise in selecting scheduling policies and even configurations,



Periodic Portfolio Scheduling 3

and thus become an important component in the administration of modern data
centers.

A full exploration of the concept portfolio scheduling would greatly exceed
the scope of this work. Among the challenging questions we do not explore
are: Which policies should be selected in the portfolio? How can a portfolio
support a mix of application types? Should the portfolio also configure policies,
as part of its operational process? Should the portfolio select the scheduling
policy periodically or continuously? In this work, we focus on exploring portfolio
scheduling, with a twofold contribution:

1. We adapt the notion of periodic portfolio scheduling in the context of data
centers (Section 3). We propose a periodic portfolio scheduler, and create a
comprehensive portfolio for provisioning and allocation of resources.

2. We evaluate our portfolio scheduler experimentally, through synthetic and
real trace-based simulation (Section 5). We compare the portfolio scheduler
against its constituent policies and show evidence that portfolio scheduling
can be beneficial in the context of data centers.

2 System Model

In this section we present the system model used throughout this work.

2.1 Workload and Resource Model

The workloads we consider in this work match the cluster-based traces of the
Parallel Workloads Archive [20]. We further assume that jobs are CPU-bound
and their runtime depends linearly on the speed of the (virtual) processor where
they are executed. Because it offers a trade-off between accuracy of simulation
and simplicity, this model has been much used by the parallel and grid computing
communities for simulation-based work. For example, we have used it in our
DGSim simulator [21].

In this work, we consider the functioning of a data center comprised of
homogeneous physical resources. This model is common for the multi-cluster
grids of the late-1990s up to mid-2000s—many of their clusters and even entire
data centers have been initially built with homogeneous resources. This model
also matches today’s virtualized (homogenized) infrastructure.

Similarly to simulation-based studies in parallel and grid computing, we
assume that resources can be benchmarked to quantify their speed for processing
typical scientific computing workload, for example with the SPEC CPU2006
benchmark. Although this assumption may fail for other application domains or
for scientific applications with irregular operational patterns [22], this approach
to benchmarking has been successfully employed in the operation of several
multi-cluster grids, such as the Worldwide LHC Computing Grid (WLCG), the
French Grid’5000, and the Dutch DAS.



4 Deng, Verboon, Ren, Iosup

4. Provision

Job Queue

6. A
llocate

5.

7.

Fig. 1. Operational model of the data-center scheduler.

2.2 Operational Model

In this work, resources are provisioned exclusively from a single data center.
We do not consider hybrid computing environments that span multiple data
centers, because scientific and especially parallel workloads can rarely withstand
co-allocation across geographically-separate data centers without significant loss
of performance [7, 23].

In our resource usage model, all resources belong to the data center and
are provisioned on-demand for incoming workload as virtual machines (VMs).
Besides on-demand resource provisioning, we do not consider in this work
advance reservation, consolidation of multiple jobs on the same resources, and
other usage models [24]. The use of virtualization allows the data center to
service a diverse set of scientific computing users on the same set of physical
resources; the performance impact of virtualization for scientific computing has
been well studied in the past and shown [25–28] to be small, for non-I/O-bound
and small-scale scientific applications.

The data-center scheduling model investigated in this work is adapted from
our previous work [16]. As depicted in Figure 1, users send their workloads to
a system-wide scheduler, which uses an allocation policy to either allocate these
jobs to the VMs already provisioned for the submitting user (the VM pool), or
to enqueue the jobs in the system-wide job queue. VMs are provisioned, that is,
leased and released, on behalf of the user by the system-wide scheduler via a
provisioning policy. To inform proactive provisioning decisions, the provisioning
policy can query the state of the allocation. From the perspective of the data
center operator, the provisioning policy is in general responsible for the efficient
allocation of resources to users.

Inspired by the use of data centers as IaaS cloud infrastructure, we use the
billing model of Amazon EC2: VM use is charged in hourly increments.

3 A Periodic Portfolio Scheduler

In this section we adapt traditional portfolio scheduling [9] for use in the data
center. We describe, in turn, our periodic portfolio scheduler, an overview of
the system including the portfolio scheduler, and the set of policies used by our
portfolio scheduler (later used in experimental work, in Section 5).



Periodic Portfolio Scheduling 5

3.1 The Portfolio Scheduler

Portfolio schedulers follow a traditional process with four steps, creation,
selection, application, and reflection. We adapt this process to data centers and
design a periodic portfolio scheduler, as follows.

In the creation step, a set of policies is created for the portfolio scheduler,
prior to the actual use of policies. The main trade-off in the creation of this set is
between capability to schedule different workload patterns and application types,
and time required to explore the set during the selection and application phases.
The selection of policies is usually done by an expert, as we do in Section 3.3,
but can also be done automatically, for example as the result of an automated
comparative study of policies specific to one domain [8, 16, 17].

During selection, the portfolio scheduler has to select one of the scheduling
policies, to be used, in the case of continuous portfolio scheduling, for the next
scheduling decision or, for periodic portfolio scheduling, during the next period
of taking scheduling decisions. As for the creation step, the selection step can be
guided by an expert or be automated, and needs to address a trade-off between
time spent in selection and quality of selection, which is typically a single-user
utility function or a system-wide performance metric. The portfolio scheduler we
propose in this work is periodic and automated; we explore various metrics for
the quality of selection in Section 5. We detail in Section 3.2 a practical selection
process that can be used in data center scheduling.

In the application step, the policy selected in the previous step takes
scheduling decisions. Additionally, the portfolio scheduler collects information
about the application of scheduling decisions, and may use the collected
information to evaluate how the non-selected policies in its portfolio would
have performed if selected. Although this step also appears in non-portfolio
scheduling, for portfolio scheduling this step can be more complex. If the selected
policy is complex, its application may raise non-trivial system stability issues
and lead to system inefficiency. For example, the newly selected policy may be
undoing some of the advanced reservations or other long-term planning decisions
of previously selected policies. We see the exploration of the non-trivial interplay
between the selection and application steps, including stabilization of a multi-
policy system, as fertile ground for future research.

The reflection step analyzes the operation of the last selection and application
steps, and may take the decision to change the portfolio or tune the other
steps. Changing the portfolio is similar to the creation step. Tuning the other
steps may, for example, lead to switching the selection step from a periodic
to a continuous process, adapting the selection criterion, and setting different
thresholds regarding the overturning of previous scheduling decisions when
applying the newly selected policy. We leave the exploration of this step for
future work.

Ideally, the portfolio scheduler has the ability to always select, for an
arbitrary workload mode (i.e., workload pattern or application type), the best
scheduling policy in the portfolio. Thus, a portfolio scheduler cannot outperform
its constituent policies when confronted with a mono-modal workload. Instead,



6 Deng, Verboon, Ren, Iosup

Selection
P1P1 P2

TimeW
or
klo

ad

Fig. 2. Selected policy over the lifetime of a system with changing workload modes.

Fig. 3. The policy selection process of our periodic portfolio scheduler.

a portfolio scheduler should become useful when the workload changes modes
in quick succession. For example, Figure 2 depicts a synthetic workload that
alternates two arrival patterns, to be scheduled by a portfolio scheduler
comprised of two policies, each adapted to one of the arrival patterns. In this
constructed example, the policy is changed automatically after each selection
step, in response to changes in the workload. The result in an alternation
between policies P1 and P2. Moreover, when the succession is aperiodic or has
a long period, the portfolio scheduler should become increasingly more difficult
to replace with human decision-making.

3.2 System Using Portfolio Scheduling

We now extend the operational model introduced in Section 2.2 to accommodate
a periodic portfolio scheduler. The main elements of this model, the system-wide
scheduler, the order of operations involving the selected policies, etc., remain
unchanged. Because the application of the (selected) scheduling policy remains
unchanged from the initial operational model, we focus in this section on the
portfolio creation and selection steps of the process introduced in Section 3.1.

For our portfolio scheduler, the creation step is executed once and the
selection step is executed periodically. The selection automatically evaluates the
set of policies in the scheduler’s portfolio, and selects from it the policy to be



Periodic Portfolio Scheduling 7

applied for the entire next period. The main choices in the design of our periodic
portfolio scheduler are:

(Creation step) Which policies? The data center scheduler includes vari-
ous policies, each of which can be selected through portfolio scheduling.
Moreover, the combination of policies can also be selected through portfolio
scheduling. Assuming that most policies have a similarity in computational
demand, which matches well the simple heuristics commonly employed
in data center scheduling, the time required for single- and multi-policy
selection increases linearly and exponentially, respectively. We design our
portfolio scheduler to cover the combination of provisioning and allocation
policies, that is, the portfolio is comprised of pairs of provisioning and
allocation policies. We detail the specific policies used in this work in
Section 3.3.

(Selection step) How to evaluate? We design the evaluation of policies to
use a simulation-based approach; alternatives include running selected
workload parts in a reserved system partition and extrapolating results, using
historical performance information and periodically risking on previously un-
tried policies, etc. In the simulation approach (see Figure 3), each scheduling
policy in the portfolio is evaluated against a simulated environment that
matches the data center, subject to the currently running and queued jobs
in the data center. After all the simulations are complete, a selection criterion
is used to select the next active policy.

The selection step also involves several important configuration parameters:

The simulator The choice of a simulator is non-trivial, with the main trade-
off in the accuracy of results (the ability to match the real environment)
and execution time. Fast and accurate simulators already exist for various
data center architectures [29, 21]. We select from these simulators and use in
our portfolio scheduler DGSim [21], which has been used previously for data
center architectures such as independent and multi-cluster system.

The interval between selections (the period of the selection step), τ , is set
by the system administrator (e.g., to τ = 20s). If τ is small, the selection
may overload the system scheduler and may occur too frequently to allow for
meaningful scheduling. It τ is large, delays are unnecessarily incurred on the
execution of the workload. We leave for future work the automatic setting
and tuning of this system parameter.

The maximal simulation time , T , defined as the maximal duration for each
independent simulation. We have selected this single parameter from the
broader trade-off between the number of parameters in the system and the
ability to configure the maximal runtime for several (classes of) policies.

The selection criterion (or the utility function), U , which is used to select
the next active policy after all the simulations are complete. In this work
we use a selection criterion that balances the job slowdown as a proxy for
user experience, and utilization of the provisioned resources as a proxy for
system efficiency and cost; the metric will be detailed in Section 4.3.



8 Deng, Verboon, Ren, Iosup

3.3 Portfolio Policies

In this section, we describe the policies that we select for our portfolio scheduler.
We present, in turn, the selected provisioning and allocation policies. We use
six provisioning policies from our recent study of IaaS clouds [16] and two
allocation policies commonly used in data centers. Our choice of provisioning
policies matches the system model requirement of hourly charging per VM (see
Section 2.2). Among the six provisioning policies, we use the last five policies in
our portfolio:

1. (The baseline provisioning policy) StartUp (STU): This policy leases
a new instance whenever there is no idle VM for the current job unless
the number of rented VMs reach its maximum. Moreover, the rented VMs
will not be released until the end of the workload. The advantage of STU
is that it can provide user with good experience by over-provisioning VM
instances. However, it cannot deal well with changing workloads such as
bursty workload, since it is static and keeps VM instances alive after the
flash-crowd even when there are no jobs.

2. On-Demand Single VM (ODS): This is a simple dynamic provisioning policy.
It leases a new VM instance for each job that is waiting in the queue,
whenever available instances can be provisioned in the data center (whenever
there are free resources). Since instances are charged hourly, they are released
when there is no job for them to run and their run time is reaching integral
hours. This policy is naive: although it may lead to good user experience,
it also incurs unnecessarily high cost—resources charged for an entire hour
may be released after just a few minutes.

3. On-Demand Geometric (ODG): Because scientific workloads may include
many short jobs that finish before the hourly charging of resources, it is not
necessary to rent a new instance for every job. Therefore, The ODG policy
is used to rent VMs gradually. ODG leases and releases VM instances in a
similar way to TCP’s exponential back-off mechanism [30]. A parameter α ≥
1 is used to control the growth (shrink) of the number of VMs to be leased
(released) at each provisioning step, i.e., this policy leases α0, α1, α2, . . . , αn

instances, successively. We have shown in our previous work [16] evidence
that this policy is helpful for bursty workloads.

4. On-Demand ExecTime (ODE): Job information may be helpful for taking
better scheduling decisions. The ODE policy takes the execution time of the
jobs into consideration for leasing VM instances. First, it estimates the run
time of the queued jobs as the (historically recorded) average run time of
similar jobs, for example jobs submitted by the same user. Then, it computes
the number of VMs to be rented by rounding up the total execution time to
hours. This policy also uses the VM release strategy of the ODS policy.

5. On-Demand WaitTime (ODW): Similarly to the ODE policy, and taken
from previous work [16], the ODW policy uses the job wait time to decide
how many instances to be rented. First, a threshold is empirically set for the
maximal job wait time, to the next 5-minute increment that exceeds by 5
times the latency to acquire and boot a VM instance; we set it in this work to



Periodic Portfolio Scheduling 9

20 minutes. At every provisioning point, ODW checks the wait time of each
job, then leases VMs for each job having waited longer than the threshold.
This policy also releases VMs near integral hours of run time.

6. On-Demand XFactor (ODX): This policy tries to give an upper bound for
job slowdown. To this end, ODX uses both the (observed) wait time and the
(estimated) run time to rent instances. ODX uses the same method as ODE
to estimate the job run time. Idle VM instances are reused or, if none exists,
leased whenever a job has been delayed longer than its run time (a slowdown
of 2). This policy also uses the VM release strategy of the ODS policy.

We also consider two allocation policies for our portfolio, First-Come-First-
Served (FCFS) and the second one is Shortest-Job-First (SJF). FCFS is the
traditional allocation policy used in many data centers; it is fair but may cause
fragmentations in the system. SJF is an aggressive policy: it can reach lower
average job slowdown or wait time, but may also cause starvation for long jobs.

4 Experimental Goals and Setup

We evaluate in this section portfolio scheduling for scientific workload executed in
the data center using an experimental approach. We compare the performance of
the portfolio scheduler and of its constituent policies, when used independently.
We conduct this evaluation using simulation (Section 4.1). As input to the
simulator, we use synthetic and real-world traces corresponding to scientific
workloads (Section 4.2). Last, as user- and data-center-oriented objective
functions we use several metrics (Section 4.3).

When presenting results in this section, we use predominantly two-letter
terms to denote the policy combinations in our experiments. For the six
provisioning policies described in Section 3.3 we use the letters U, S, G, E,
W, and X, respectively. For the FCFS and SJF allocation policies described
in Section 3.3 we use the letters F and S, respectively. Thus, the combination
between the provisioning policy ODX and the allocation policy FCFS is depicted
as XF. Our portfolio scheduler is indicated through the acronym PO.

4.1 Simulator

In this paper, we use simulation3 to evaluate the effectiveness of our portfolio
scheduler, and to compare it with the individual pairs of provisioning and
allocation policies that can be formed with the policies introduced in Section 3.3.

To this end, we extend our discrete event simulator DGSim [21] with entities
such as a cloud-like resource manager and VM instances. The cloud-like resource
manager implements Amazon EC2-like APIs for leasing and releasing VM
instances, and implements the cost model of on-demand instances leased by

3 The simulator used in this section should not be confused with the simulator running
as part of the portfolio scheduler. Replacing the simulator used in this section, we
have begun experimenting with a real-world prototype of our portfolio scheduler.



10 Deng, Verboon, Ren, Iosup

0 20 40 60 80 1000

50

100

Time (Hour)

Jo
b 

Ar
ri

va
l 

(C
DF

)

 

 

Steady
Increment
Decline
Periodic
Bursty

Fig. 4. The arrival of jobs for the five synthetic workloads.

Amazon EC2. To simulate a virtualized environment, we set realistically a
delay for instance acquisition and booting, which is 4 minutes based on our
previous research [31, 16]. To enable future comparative experiments between
the environment simulated in this work and our real-world system DAS-4,
which provides OpenNebula-based and Eucalyptus-based cloud interfaces, the
maximum number of VMs that can be rented is set to 64.

Our simulator implements the system model introduced in Section 2. We
further assume in our simulation that jobs run exclusively on their VMs and
cannot be preempted or migrated. Although these assumptions are both common
and do not affect the simple allocation policies investigated in this work, we
intend to work on relaxing these assumptions, in future work.

4.2 Workloads

We use both synthetic workloads and real workload traces for evaluation. The
synthetic workloads are short-term but with significantly different job arrival
patterns, allowing us to better characterize the impact of the arrival process
on portfolio scheduling. The real workload is a whole trace from the Parallel
Workloads Archive [20] and allows us to gain valuable insight into the operation
of our portfolio scheduler in realistic conditions.

Synthetic Workloads: In this paper, we generate five types of workloads that
have different user behaviors but the same (real) job run times. We take the jobs
run times from the first 1000 jobs of the ANL Intrepid 2009 workload from the
Parallel Workload Archive [20]. Then, we generate the arrival time of each job
such that each synthetic workload exhibits a different arrival patterns. The five
arrival patterns, for which the generated workloads are compared in Figure 4,
are:

1. Steady: the interval between two consecutive jobs is statically set to 5
minutes.

2. Increment: The initial interval in this workload is set to 10 minutes. After
every 100 job arrivals, the interval is decreased by 70 seconds.

3. Decline: In contrast to Increment, Decline sets the initial interval to 5
seconds, then increased by 70 seconds for every 100 job arrivals.



Periodic Portfolio Scheduling 11

4. Periodic: This workload exhibits a periodic pattern from an increasing arrival
rate to an decreasing one. Each increasing and decreasing trend continues for
100 job arrivals. The inter-arrival times range from 10 seconds to 10 minutes.

5. Bursty: Real workloads often include short periods of bursty behavior. For
our bursty arrivals, the submit interval during a bursty period is set to 5
seconds, and bursts include 100 jobs; there are 10 bursts in the workload.

The Real Workload Trace: To evaluate the performance of portfolio
scheduling for scientific computing in realistic conditions, we use the entire
ANL Intrepid 2009 workload [20] for our real trace-based experiments. The ANL
Intrepid 2009 trace has a makespan of 8 months and contains a total number of
68,936 jobs.

4.3 Performance Metrics

We consider in this work various user and data-center objective functions,
expressed as traditional and compound metrics. Job slowdown (S) and job wait
time (W ) are used as common proxies [3] for user objectives. We also measure
the total run time of all the jobs (RJ ) and the total run time of all rented
VM instances (RV ). Because VMs are charged by the hour, the run times are
rounded up to the next hour if they are not integer hours; thus, RV also denotes
the charged cost. The utilization of the scheduler is defined as the ratio between
RJ and RV , and indicates the efficiency of the policies. Resource utilization is
an important metric for both data center administrators and users. For users,
it means cost efficiency when using the virtual resources; for system operators,
more efficient policies and thus higher market competitiveness.

Although a lower slowdown is to be desired, it may be the result of (much)
higher cost, for example when the provisioning policy is STU (StartUp in
Section 3.3). To balance these considerations, we use an extension of an utility
function, which is defined elsewhere [16, 17]:

U = κ ·
(
RJ

RV

)α

·
(
1

S

)β

For this metric, κ is a scaling factor for the total score, which we set to 100 in our
experiments. The metric parameters α and β are used to express different utility
functions: α is used to emphasizes the efficiency of resource usage and β is used
to stress the urgency of the jobs. For example, to finish jobs as soon as possible,
the utility function is set such that β ≫ α. In this paper, similarly to previous
work we set α = β = 1 to balance system efficiency and user experience.

5 Experimental Results

In this section, we report our experimental results. First, we show the results
of using portfolio scheduling for synthetic workloads (Section 5.1). Then, we



12 Deng, Verboon, Ren, Iosup

Steady Increment Decline Periodic Bursty
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

First−Come−First−Served

Jo
b

 S
lo

w
d

o
w

n

 

 
UF SF GF EF WF XF PO

Steady Increment Decline Periodic Bursty
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Shortest−Job−First

Jo
b

 S
lo

w
d

o
w

n

 

 
US SS GS ES WS XS PO

Fig. 5. Job slowdown for different synthetic workloads.

show the results for a real workload trace (Section 5.2). Finally, we analyze
the operation of our portfolio scheduler during the experiments (Section 5.3).
Overall, we find that portfolio scheduling is useful for data centers.

5.1 Results of Synthetic Workloads

We perform this set of experiments to evaluate our portfolio schedule for the five
workload arrival patterns described in Section 4.2.

We first find that the combined policy US (STU+SJF) delivers the lowest
average slowdown, but also that PORTFOLIO delivers consistently better results
than the other policies. Supporting this finding, Figure 5 depicts the average job
slowdown for all the policy combinations, for the five synthetic workloads. In
general, and consistently with previous studies of slowdown and also job wait
time [32], provisioning policies have relatively lower slowdown when combined
with the SJF allocation policy,rather than with FCFS. The performance under
Steady, Increment, and Periodic workloads is consistent for all the policy
combinations. More pronounced variation appears for Decline and, especially,
Bursty workloads. Our portfolio scheduler (PO in Figure 5) performs consistently
well in all the cases—PORTFOLIO is the second-best in the first four workloads
and very close to the second best in the Bursty workload.

We find that the results for job wait time are much more varied than for
job slowdown; as depicted by Figure 6, PORTFOLIO behaves relatively slightly
worse in the ranking of policies than for the job slowdown. For many combined
policies, the wait time for Decline and Bursty workloads is larger by a factor
of about two than for the other workloads. Bursty workloads introduce very
challenging scheduling conditions, in which too many jobs overload the system
and wait time accumulates. Decline workloads have a quick arrival of jobs in the
beginning, similarly to a Bursty workload. During the rapidly varying conditions
of Bursty and Periodic workloads, PORTFOLIO is relatively weaker than several
other policies, but still delivers relatively good job wait time.

We now investigate the resource utilization, and depict the results in Figure 7;
we also depict the charged cost in Figure 8. From these figures, we find that



Periodic Portfolio Scheduling 13

Steady Increment Decline Periodic Bursty
0

5

10

15

20

25

30

35

First−Come−First−Served

Jo
b

 W
a

it 
T

im
e

 (
M

in
u

te
)

 

 
UF SF GF EF WF XF PO

Steady Increment Decline Periodic Bursty
0

5

10

15

20

25

30

35

Shortest−Job−First

Jo
b

 W
a

it 
T

im
e

 (
M

in
u

te
)

 

 
US SS GS ES WS XS PO

Fig. 6. Job wait time for different synthetic workloads.

Steady Increment Decline Periodic Bursty
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

First−Come−First−Served

U
til

iz
a

tio
n

 

 
UF SF GF EF WF XF PO

Steady Increment Decline Periodic Bursty
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Shortest−Job−First

U
til

iz
a

tio
n

 

 
US SS GS ES WS XS PO

Fig. 7. Utilization for different synthetic workloads.

ODW, ODX, and our PORTFOLIO achieve the highest utilization and the
lowest charged cost. As observed in various previous studies [16], the StartUp
policy has the lowest utilizations, from 20% to 30%–in line to traditional
provisioning policies that only look at peak workloads. As in previous studies of
utilization [33], ODS, the commonly used policy in current data centers, achieves
only a moderate utilization of 65% to 80%.

Our portfolio scheduler combines consistently low job slowdown and wait
time, with low cost (through high utilization). Thus, our portfolio scheduler
yields a gain in utility, as depicted in Figure 9. PORTFOLIO is better than its
alternatives for all but the Bursty workload, where the SF (ODS+SJF) policy
performs better. For the Bursty workload, jobs are submitted every 5 seconds,
quickly saturating the system. Thus, it is better to provision resources as soon as
possible to avoid unnecessary waiting. As our portfolio scheduler does not predict
the future workload, it cannot adapt as quickly to sudden workload changes as
the SF policy. However, our portfolio scheduler indeed selects the SF policy most
of the time during Bursty workloads, as shown in Section 5.3.

To conclude the experiments using synthetic workloads, we have
shown in this section evidence that, for a variety of workload patterns,
our portfolio scheduler can automatically select the scheduling policy



14 Deng, Verboon, Ren, Iosup

Steady Increment Decline Periodic Bursty
0

1000

2000

3000

4000

5000

6000

7000

First−Come−First−Served

C
h

a
rg

e
d

 C
o

st
 (

H
o

u
r)

 

 
UF SF GF EF WF XF PO

Steady Increment Decline Periodic Bursty
0

1000

2000

3000

4000

5000

6000

7000

Shortest−Job−First

C
h

a
rg

e
d

 C
o

st
 (

H
o

u
r)

 

 
US SS GS ES WS XS PO

Fig. 8. Charged cost for different synthetic workloads.

Steady Increment Decline Periodic Bursty
0

10

20

30

40

50

60

70

First−Come−First−Served

U
til

ity
 F

u
n

ct
io

n

 

 
UF SF GF EF WF XF PO

Steady Increment Decline Periodic Bursty
0

10

20

30

40

50

60

70

Shortest−Job−First

U
til

ity
 F

u
n

ct
io

n

 

 
US SS GS ES WS XS PO

Fig. 9. Value of the utility function for different synthetic workloads.

such that it meets the user and the data center’s objective functions
at least similarly to, but sometimes even better than, the other
scheduling policies investigated here.

5.2 Results of Real Workload Traces

We now turn our attention to the real workload trace collected from ANL
Intrepid. We first study the job slowdown and wait time for the real workload
trace, and depict the results in Figure 10. StartUp is the best policy and has a
slowdown nearly 1–the jobs do not have to wait for execution. PORTFOLIO is
among a group of second-best policies, with a slowdown of around 1.5, but has the
lowest standard deviation in the group. This favorable behavior of PORTFOLIO
is not repeated for the job wait time metric. We attribute this to the selection
criterion used in this work, which is based on slowdown.

We further study the charged cost, utilization, and achieved utility for
the various policies, when running the ANL Intrepid trace; the results are
depicted in Figure 11. The charged cost of StartUp (the earlier best-performer)
is about 3 times higher than the competitive policies such as ODW, ODX, and
PORTFOLIO; we attribute this to the workload bursts that ANL and many



Periodic Portfolio Scheduling 15

0

1

2

3

4

5

J
o
b
 
S
l
o
w
d
o
w
n

 

 

UF SF GF EF WF XF US SS GS ES WS XS PO

ANL−Intrepid−2009−1
0

5

10

15

20

25

J
o
b
 
W
a
i
t
 
T
i
m
e
 
(
M
i
n
u
t
e
)

Fig. 10. Job slowdown and wait time for the ANL Intrepid Trace.

0

20

40

60

80

100

C
h
a
r
g
e
d
 
C
o
s
t
 
(
H
o
u
r
)

ANL−Intrepid−2009−1
0

0.2

0.4

0.6

0.8

U
t
i
l
i
z
a
t
i
o
n

0

10

20

30

40

50

60

U
t
i
l
i
t
y
 
F
u
n
c
t
i
o
n

 

 

UF SF GF EF WF XF US SS GS ES WS XS PO

Fig. 11. Charged cost, utilization, and utility for the ANL Intrepid Trace.

Steady

Increment

Decline

Periodic

Bursty

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
eq

ue
nc

y 
of

 
Se

le
ct

ed
 P

ol
ic

ie
s

 

 

SF
GF
EF
WF
XF
SS
GS
ES
WS
XS

XSXSXSXS

SS

SS

WFWFWFWF

XFXF
XF

XFSFSFSF SF
SF GF EF WF XF SS GS ES WS XS0

2
4
6
8
10
12
14
16
18

x 10 4

Nu
mb

er
 o

f 
Po

li
cy

 C
ha

ng
es

Fig. 12. Ratio and number of policy changes made by the portfolio scheduler.

other production systems exhibit [2]. PORTFOLIO achieves a good combination
of utilization and slowdown, leading to overall-best achieved utility.

To conclude the experiments using real workload traces, we have
shown in this section evidence that, for the compound metric that
characterizes both user and data center objectives, our portfolio
scheduler can automatically select the scheduling policy achieving
better performance than its constituent scheduling policies.

5.3 Analysis of Portfolio Scheduler Operation

To explain the performance obtained in the previous experiments, we analyze
the policy selection behavior of our portfolio scheduler. Figure 12 breaks-down



16 Deng, Verboon, Ren, Iosup

0 0.5 1 1.5 2 2.5 3 3.5
x 105

0

.5

1.0

Time (Second)

Cu
mu

la
ti

ve
 n

um
be

r 
of

 c
ha

ng
es

, 
no

rm
al

iz
ed

 

 Steady
Increment
Decline
Periodic
Bursty

0 0.5 1 1.5 2 2.5
x 107

0

.5

1

Time (Second)

Cu
mu

la
ti

ve
 n

um
be

r 
of

 �
ch

an
ge

s,
 n

or
ma

li
ze

d

Fig. 13. Cumulative policy changes by the portfolio scheduler, normalized, over time.

the presence of selected policies over entire experiments as relative size (left side)
and as absolute counts (right side). Two main conclusions can be made from the
figure: (1) although the portfolio scheduler does choose one policy often, several
other policies account for a significant fraction of the selections; (2) no single
policy is dominant for all the workloads.

We also observe the cumulative number of policy changes over time, and
depict this in normalized form in Figure 13. The policy change patterns match
very well with the job arrival patterns, indicating that our portfolio scheduler is
adaptive and explaining its good performance.

6 Related Work

In this section we survey a large body of related work, related to the concept of
computational portfolio design [9], to the modern portfolio theory in finance [34],
and to general scheduling in data centers and IaaS clouds. In contrast to these
related studies, ours is the first to apply portfolio scheduling to data centers
and scientific workloads. Our adaptations of the seminal idea of Huberman [9]
and Markowitz [34] to data centers are non-trivial: designing a portfolio around
scheduling policies typical to the data center, selecting of utility functions related
to both users and data center operators, and designing an operational process
that includes simulation-based scheduling.

Closest to our work, Huberman [9] designs a portfolio of search instruments
for hard computational problems. This seminal work has led to the creation
of a broad field in satisfiability and algorithm portfolio design [35]. Since then,
extensive work has focused on improving the selection by and use of heuristics in
the portfolio. Streeter et al. [36] consider the duration of heuristics when selected
one of them, in the context of dynamic allocation of CPU time. Bougeret [37]
and Goldman et al. [38] study the concurrent execution of different heuristics
on parallel resources. Besides scheduling of constituent heuristics, Streeter et
al. [39] simultaneously address predicting the runtime of heuristics. Gagliolo et
al. [40, 41] study the allocation of CPU time based on performance models of
constituent algorithms, in the broader context of bandit problems. Our work
differs significantly from this body of previous work: previous use of portfolio
scheduling tries to find the fastest heuristic for a given set of problem instances,
whereas we seek through our scheduler to find the policy that maximizes the



Periodic Portfolio Scheduling 17

performance objectives given by users and system administrators; the heuristics
in previous portfolios generate the same result, whereas those in our portfolio
have different solution properties; and the aforementioned work solves a given
set of problem instances, whereas our work addresses scheduling of many kinds
of unknown and continuous workload patterns.

The portfolio creation and reflection steps, as defined in our work, are
important mechanisms in finance. Markowitz [34] introduced a seminal algorithm
and set of assumptions for the creation of a portfolio, later refined by Merton [42].
We share with financial portfolios the costs for adding new policies, the risk that
the added policy would not perform, the transition costs [43] in changing the
portfolio to adapt to expected future conditions in the market or scheduling
problem, and the reflection step which is typical in hedging derivatives [44].
Important differences between our work and financial portfolios are that the
policies can be infinitely and freely shared among data centers, whereas financial
portfolio elements are owned by a single entity at any given time; and that the
return of our portfolio is the result of a single, selected policy, whereas in financial
portfolios it is the combined return of all the individual assets in the portfolio.

The study of policies for data centers and IaaS clouds has already resulted
in a large body of related work. Closest to our work, our own [8, 16, 17] and
related [45–47, 5] studies of multiple scheduling policies have emphasized the
inability of any single policy to perform well under a wide yet realistic variety
of scientific workloads.

The concept of portfolio scheduling may also follow from historical simulation
of policies. Historical simulation to adopt the scheduling policy has been done
via genetic algorithms in cloud [48] and grid [49] environments. Workloads that
have changing properties over time perform better with an adaptive provisioning
policy [50], especially one which predicts well the future [51].

7 Conclusion and Future Work

Because data centers around face a growing user base, and an increasingly set of
user and data center objectives, the selection of efficient scheduling algorithms
is ever costlier and more difficult. Addressing this challenge, we have focused
in this work on portfolio scheduling, that is, the dynamic selection and use of
a scheduling policy, depending on the current system and workload conditions,
from a portfolio of multiple policies.

We have designed in this work a periodic portfolio scheduler for the entire
data center. Our portfolio scheduler combines provisioning and allocation
policies, and periodically selects from them a pair that optimizes a user-defined
or data center-wide utility function. The selection process is simulation-based,
that is, our portfolio scheduler simulates at each decision point each of the
policies included in its portfolio. Our approach contrasts with previous work
on scheduling for scientific workloads, where individual scheduling policies are
designed for specific workload patterns and application types but may perform
poorly for the dynamic workloads typical of scientific computing. Intuitively,



18 Deng, Verboon, Ren, Iosup

our portfolio scheduling approach holds the promise of exploiting the collective
strengths of its constituent policies, and thus alleviate any of their individual
weaknesses.

We have evaluated the behavior of our portfolio scheduler through simula-
tions, based on real and synthetic workload traces. By comparing the statistically
meaningful results obtained for our scheduler and for each of its individual
policies, independently, we have shown evidence that our portfolio scheduler
can perform well in the data center, and better than the alternatives we have
considered. We have also shown evidence that our portfolio scheduler can
automatically select the scheduling policy to match various user and data center
objectives that are common in scientific computing, such as low job slowdown,
high resource utilization, and a runtime-efficiency-based utility function. Thus,
portfolio scheduling can alleviate the need for human expertise in selecting
scheduling policies, and become an important component in the administration
of modern data centers.

Extending this work, we are currently conducting a comprehensive sensitivity
analysis that covers all the configuration parameters of our portfolio scheduler,
such as the interval between selections and the maximal simulation time.
Reducing the maximal simulation time may require prioritizing policies for
evaluation, to use the spare time remaining from already evaluated policies.

Acknowledgments

Supported by the STW/NWO Veni grant 11881, the National Natural Science
Foundation of China (Grant No. 60903042 and 61272483), and the R&D Special
Fund for Public Welfare Industry (Meteorology) GYHY201306003.

References

1. Lublin, U., Feitelson, D.G.: The workload on parallel supercomputers: modeling
the characteristics of rigid jobs. J. Parallel Distrib. Comput. 63(11) (2003)

2. Iosup, A., Dumitrescu, C., Epema, D.H.J., Li, H., Wolters, L.: How are real grids
used? the analysis of four grid traces and its implications. In: GRID. (2006)

3. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U.: Parallel job scheduling - a status
report. In: JSSPP. (2004) 1–16

4. Klusácek, D., Rudová, H.: Performance and fairness for users in parallel job
scheduling. In: JSSPP. (2012) 235–252

5. Zhao, H., Sakellariou, R.: Advance reservation policies for workflows. In: JSSPP.
(2006) 47–67

6. Sabin, G., Lang, M., Sadayappan, P.: Moldable parallel job scheduling using job
efficiency: An iterative approach. In: JSSPP. (2006) 94–114

7. Bucur, A.I.D., Epema, D.H.J.: Scheduling policies for processor coallocation in
multicluster systems. IEEE Trans. Parallel Distrib. Syst. 18(7) (2007) 958–972

8. Iosup, A., Sonmez, O.O., Anoep, S., Epema, D.H.J.: The performance of bags-of-
tasks in large-scale distributed systems. In: HPDC. (2008) 97–108

9. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard
computational problems. Science 27(5296) (1997) 51–53



Periodic Portfolio Scheduling 19

10. Greenberg, A.G., Hamilton, J.R., Maltz, D.A., Patel, P.: The cost of a cloud:
research problems in data center networks. Comp. Comm. Rev. 39(1) (2009)

11. Popa, L., Kumar, G., Chowdhury, M., Krishnamurthy, A., Ratnasamy, S., Stoica,
I.: Faircloud: sharing the network in cloud computing. In: SIGCOMM. (2012)

12. Greenberg, A.G., Hamilton, J.R., Jain, N., Kandula, S., Kim, C., Lahiri, P., Maltz,
D.A., Patel, P., Sengupta, S.: Vl2: a scalable and flexible data center network.
Commun. ACM 54(3) (2011) 95–104

13. Farrington, N., Porter, G., Sun, P.C., Forencich, A., Ford, J., Fainman, Y., Papen,
G., Vahdat, A.: A demonstration of ultra-low-latency data center optical circuit
switching. In: SIGCOMM. (2012) 95–96

14. Gordon, A., Amit, N., Har’El, N., Ben-Yehuda, M., Landau, A., Schuster, A.,
Tsafrir, D.: ELI: bare-metal performance for I/O virtualization. In: ASPLOS.
(2012)

15. Ben-Yehuda, M., Day, M.D., Dubitzky, Z., Factor, M., Har’El, N., Gordon, A.,
Liguori, A., Wasserman, O., Yassour, B.A.: The turtles project: Design and
implementation of nested virtualization. In: OSDI. (2010) 423–436

16. Villegas, D., Antoniou, A., Sadjadi, S.M., Iosup, A.: An analysis of provisioning
and allocation policies for infrastructure-as-a-service clouds. In: CCGRID. (2012)
612–619

17. Agmon Ben-Yehuda, O., Schuster, A., Sharov, A., Silberstein, M., Iosup, A.:
Expert: Pareto-efficient task replication on grids and a cloud. In: IPDPS. (2012)

18. Iosup, A., Epema, D.H.J.: Grid computing workloads. IEEE Internet Computing
15(2) (2011) 19–26

19. Iosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu, C., Wolters, L., Epema, D.H.J.:
The grid workloads archive. Future Generation Comp. Syst. 24(7) (2008) 672–686

20. Feitelson, D.: Parallel workloads archive. http://www.cs.huji.ac.il/labs/

parallel/workload/

21. Iosup, A., Sonmez, O.O., Epema, D.H.J.: Dgsim: Comparing grid resource
management architectures through trace-based simulation. In: Euro-Par. (2008)
13–25

22. Petrini, F., Fossum, G., Fernández, J., Varbanescu, A.L., Kistler, M., Perrone,
M.: Multicore surprises: Lessons learned from optimizing sweep3d on the cell
broadband engine. In: IPDPS. (2007) 1–10

23. Sonmez, O.O., Mohamed, H.H., Epema, D.H.J.: On the benefit of processor
coallocation in multicluster grid systems. IEEE Trans. Parallel Distrib. Syst. 21(6)
(2010) 778–789

24. Shen, S., Deng, K., Iosup, A., Epema, D.: Scheduling jobs in the cloud using
on-demand and reserved instances. In: Euro-Par. (2013) To Appear

25. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.L., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP. (2003)

26. Clark, B., Deshane, T., Dow, E., Evanchik, S., Finlayson, M., Herne, J., Matthews,
J.N.: Xen and the art of repeated research. In: USENIX ATC. (2004) 135–144

27. Menon, A., Santos, J.R., Turner, Y., Janakiraman, G.J., Zwaenepoel, W.:
Diagnosing performance overheads in the Xen virtual machine environment. In:
VEE. (2005) 13–23

28. Youseff, L., Seymour, K., You, H., Dongarra, J., Wolski, R.: The impact of
paravirtualized memory hierarchy on linear algebra computational kernels and
software. In: HPDC, ACM (2008) 141–152

29. Donassolo, B., Casanova, H., Legrand, A., Velho, P.: Fast and scalable simulation
of volunteer computing systems using simgrid. In: HPDC. (2010) 605–612



20 Deng, Verboon, Ren, Iosup

30. Jacobson, V.: Congestion avoidance and control. In: SIGCOMM. (1988) 314–329
31. Iosup, A., Ostermann, S., Yigitbasi, N., Prodan, R., Fahringer, T., Epema,

D.H.J.: Performance analysis of cloud computing services for many-tasks scientific
computing. IEEE Trans. Parallel Distrib. Syst. 22(6) (2011) 931–945

32. Feitelson, D.G.: Experimental analysis of the root causes of performance evaluation
results: A backfilling case study. IEEE Trans. Parallel Distrib. Syst. 16(2) (2005)
175–182

33. Jones, J.P., Nitzberg, B.: Scheduling for parallel supercomputing: A historical
perspective of achievable utilization. In: JSSPP. (1999) 1–16

34. Markowitz, H.: Portfolio selection. The Journal of Finance 7(1) (1952) 77–91
35. Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1-2) (2001) 43–62
36. Streeter, M.J., Golovin, D., Smith, S.F.: Combining multiple heuristics online. In:

AAAI. (2007) 1197–1203
37. Bougeret, M., Dutot, P.F., Goldman, A., Ngoko, Y., Trystram, D.: Combining

multiple heuristics on discrete resources. In: IPDPS. (2009) 1–8
38. Goldman, A., Ngoko, Y., Trystram, D.: Malleable resource sharing algorithms

for cooperative resolution of problems. In: IEEE Congress on Evolutionary
Computation. (2012) 1–8

39. Streeter, M.J., Smith, S.F.: New techniques for algorithm portfolio design. CoRR
abs/1206.3286 (2012)

40. Gagliolo, M., Schmidhuber, J.: Learning dynamic algorithm portfolios. Ann. Math.
Artif. Intell. 47(3-4) (2006) 295–328

41. Gagliolo, M., Schmidhuber, J.: Algorithm portfolio selection as a bandit problem
with unbounded losses. Ann. Math. Artif. Intell. 61(2) (2011) 49–86

42. Merton, R.C.: Optimum consumption and portfolio rules in a continuous-time
model. MIT (1970)

43. Magill, M.J., Constantinides, G.M.: Portfolio selection with transaction costs.
Journal of Economic Theory 13(2) (1976) 245–263

44. Black, F., Scholes, M.: The pricing of options and corporate liabilities. The journal
of political economy (1973) 637–654

45. Marshall, P., Keahey, K., Freeman, T.: Elastic site: Using clouds to elastically
extend site resources. In: CCGRID. (2010) 43–52

46. den Bossche, R.V., Vanmechelen, K., Broeckhove, J.: Cost-optimal scheduling in
hybrid iaas clouds for deadline constrained workloads. In: IEEE CLOUD. (2010)
228–235

47. Palankar, M.R., Iamnitchi, A., Ripeanu, M., Garfinkel, S.: Amazon s3 for science
grids: a viable solution? In: Proceedings of the 2008 international workshop on
Data-aware distributed computing, ACM (2008) 55–64

48. Hu, J., Gu, J., Sun, G., Zhao, T.: A scheduling strategy on load balancing of virtual
machine resources in cloud computing environment. In: PAAP. (2010) 89–96

49. Gao, Y., Rong, H., Huang, J.Z.: Adaptive grid job scheduling with genetic
algorithms. Future Generation Comp. Syst. 21(1) (2005) 151–161

50. Calheiros, R.N., Ranjan, R., Buyya, R.: Virtual machine provisioning based on
analytical performance and qos in cloud computing environments. In: ICPP. (2011)
295–304

51. Ali-Eldin, A., Kihl, M., Tordsson, J., Elmroth, E.: Efficient provisioning of bursty
scientific workloads on the cloud using adaptive elasticity control. In: ScienceCloud.
(2012) 31–40


