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Abstract. Grids enable sharing, selection and aggregation of geograph-
ically distributed resources among various organizations. They are e-
merging as promising computing paradigms for resource and compute-
intensive scientific workflow applications modeled as Directed Acyclic
Graph (DAG) with intricate inter-task dependencies. With the growing
popularity of real-time applications, streaming workflows continuously
produce large quantity of experimental or simulation datasets, which
need to be processed in a timely manner subject to certain performance
and resource constraints. However, the heterogeneity and dynamics of
Grid resources complicate the scheduling of streaming applications. In
addition, the commercialization of Grids as a future trend is calling for
policies to take resource cost into account while striving to satisfy the
users’ Quality of Service (QoS) requirements. In this paper, streaming
workflow applications are modeled as DAGs. We formulate scheduling
problems with two different objectives in mind, namely either maximize
the throughput under a budget/cost constraint or minimize the execution
cost under a minimum throughput constraint. Two different algorithms
named as Budget constrained RATE (B-RATE) and Budget constrained
SWAP (B-SWAP) are developed and evaluated under the first objective;
Another two algorithms named as Throughput constrained RATE (TP -
RATE) and Throughput constrained SWAP (TP -SWAP) are evaluat-
ed under the second objective. Experimental results based on GridSim
showed that our algorithms either achieved much lower cost with similar
throughput, or higher throughput with similar cost compared with other
comparable existing algorithms.

Keywords: streaming workflow; task scheduling; Grid computing; through-
put and budget

1 Introduction

Grid computing has emerged as a promising solution for large-scale resource
and compute-intensive applications. A wide range of scientific applications can
be represented as complex workflows comprised of many computing tasks with
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inter-task dependencies. Many of the scientific jobs can be modeled as Directed
Acyclic Graphs (DAGs) where each vertex represents a computing task and
each directed edge represents the execution dependency between adjacent tasks.
Scheduling tasks onto heterogeneous and dynamically changing Grid resources
needs to respect the precedence constraints and optimize certain criteria based
on various user and system situations. We consider the Grid environment as
an overlay network consisting of a number of heterogeneous computer nodes
interconnected by network links. The network can be modeled as a directed
weighted graph which can be complete or not due to network types.

A number of Grid workflow management systems such as Condor DAG-
Man [1], Pegasus [2], and GridFlow [3], etc. have been developed. These systems
provide middleware tools to control the mapping and execution of workflow
modules by strategically considering the availability and capacities of the under-
ling Grid resources. However, managing Grid environment to run various jobs
is a complex task which requires scheduling policies to reach certain tradeoff
due to different requirements from the perspectives of users and various Grid
providers usually from different organizations. Existing Grid resource manage-
ment systems are mainly driven by system-centric policies which aim to opti-
mize a system-wide standard of performance, whereas future Grid environments
need to guarantee certain level of Quality of Service (QoS) requirements as well
as meet user-centric economic concerns [4]. A number of Grid systems such as
Globus [5] have considered some of these multi-objective issues by using resource
trading and QoS-based scheduling [4].

In recent years, execution costs on the Grid are being considered by more
and more scientists due to the fact that different resources belonging to different
organizations may have different allocation/pricing policies on resource usage
[4]. The user computing cycle quote/allocation policy can be translated into
certain pricing scheme which will be utilized by the scheduler to balance the
workload. Such pricing mechanism is widely used by Cloud computing and could
be converted to virtual dollars and utilized in the future Grid environment.
Therefore, users with budget or quota constraint may not always desire the
highest possible QoS such as throughput, i.e., the data production rate at the last
task, for a smooth flow in streaming applications with multiple instances of input
datasets [6]. Typical examples of these applications include video-based real-
time monitoring systems that perform feature extraction and detection, facial
reconstruction, pattern recognition, and data mining, etc.

In order to build some theoretical foundations for the future generation of
paid Grid, we focus on developing workflow scheduling algorithms considering
both budget and throughput constraints. In particular, we consider two different
objectives of user requirements. One is to maximize throughput under a bud-
get constraint while another one is to minimize the execution cost under the
minimum throughput constraint.

In our approach, we strategically select an appropriate set of heterogeneous
Grid resources in an arbitrarily connected network and map each computing
task from the workflow to the most appropriate Grid nodes for certain perfor-
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mance criteria. If multiple tasks are mapped onto the same node (i.e., node
reuse), the node’s computing resource is shared in a fair manner by concurrent
tasks executing on that node. Similarly, the bandwidth of a network link is also
shared by concurrent data transfers. For budget constrained objective, the B-
RATE algorithm adopts a layer-based mapping scheme and assigns partial cost
constraint for each layer, then chooses the maximum partial throughput from
the first layer to current mapping layer; The B-SWAP algorithm starts with a
schedule that is optimized for throughput, and keeps swapping tasks between
nodes by choosing those tasks whose cost savings result in the smallest loss in
throughput under the budget constraint. To our best knowledge, there is current-
ly no algorithm to maximize the throughput for streaming applications under
budget constraint or minimize execution cost under throughput constraint in
the Grid. The superiority of these two algorithms are demonstrated in compar-
ison with some representative workflow scheduling algorithms to maximize the
throughput including Streamline [7] and LDP [6] in a set of different scales of
simulation cases. For throughput constrained objective, the TP -RATE algorith-
m also follows layer-based scheduling scheme and chooses the minimum partial
cost whose partial throughput is larger or equal to the throughput constraint for
each layer; the TP -SWAP algorithm starts with the cheapest schedule of tasks
onto resources, and keeps swapping tasks that can lead to higher throughput
with low cost increase.

This paper is organized as follows: Section 2 gives an overview of related
works. Section 3 conducts analytical models and formulates the scheduling prob-
lem. In Section 4, the algorithms are described in details. Section 5 presents the
performance evaluations. Conclusion can be found in Section 6.

2 Related Works

The optimization problem of scheduling DAG-structured tasks with complex
execution dependencies has been studied for years and is known to be NP-
complete [7]. Over the years, workflow scheduling problems in heterogeneous
environments have attracted many research efforts, among which a significan-
t amount of efforts have been devoted to workflow scheduling in Grid envi-
ronments under different scheduling and resource constraints. For example, a
number of DAG-structured Grid workflow management systems such as Condor
DAGMan [1, 8, 9], Globus [5, 10], Pegasus [2, 11] and GridFlow [3] provide tools
and infrastructure to control the execution of various workflow applications on
the Grid. Condor is a specialized workload management system for compute-
intensive jobs [8] and it can be used to serve Grid environment such as Globus
Grid [10]. Directed Acyclic Graph Manager (DAGMan) [9] is a meta-scheduler
for Condor jobs and manages dependencies between jobs at a higher level than
the Condor Scheduler. Pegasus Workflow Management System [11] bridges the
scientific domain with the execution environment (e.g., Clusters, Grids, Clouds,
etc.) by automatically scheduling and monitoring high-level workflow onto un-
derlying distributed resources. GridFlow includes a user portal and services of
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both global Grid workflow management and local Grid sub-workflow scheduling.
Simulation, execution and monitoring functionalities are provided at the glob-
al Grid level, which work on the top of an existing agent-based Grid resource
management system [3].

Meanwhile, many performance-driven workflow scheduling algorithms aim
to achieve optimal execution performances [12] including the minimum overall
execution time, the maximum reliability and throughput for streaming applica-
tions. Streamline [7], a workflow scheduler for streaming data, takes dynamic
nature of the Grid into account and takes application requirements, constraints,
and resource availability into consideration for scheduling decisions. To achieve
the reduced overall execution time, Heterogeneous Earliest Finish Time (HEFT)
heuristic algorithm [13] was proposed to initially order all the tasks of a work-
flow in descending order of their upward rank values calculated as the sum of
the execution time and the communication time of the tasks. This algorithm
is a commonly cited list-scheduling heuristic [14]. In [15], Dongarra et al. dis-
cussed the fundamental properties of a good bi-objective scheduling algorithm,
and proposed an approximation algorithm namely RHEFT, which is extended
from HEFT algorithm [13] by considering the reliability and allows the user
to subjectively choose a trade-off between high reliability and low overall ex-
ecution time. Recursive Critical Path (RCP) algorithm utilizes the dynamic
programming strategy and iteratively find critical path to minimize the overall
execution time [16]. This algorithm is used as the mapping scheme for the Scien-
tific Workflow Automation and Management Platform (SWAMP) [17] which is a
Condor/DAGMan-based workflow system that enables scientists to conveniently
assemble, execute, monitor, control, and steer computing workflows in distribut-
ed environments via a unified web-based user interface. Experiments show that
RCP provides a better mapping performance than the mapping scheme current-
ly employed by the Condor Scheduler [17, 18]. In [19], a new non-critical task
mapping approach using A* and Beam Search (BS) algorithms to improve the
RCP algorithm was proposed. For high workflow throughput, Gu et al. designed
a greedy layer-oriented heuristic workflow mapping scheme (LDP) to identify
and minimize the global bottleneck [6]. In [20], the same authors extended the
LDP algorithm by taking reliability into account, and further developed a de-
centralized mapping procedure.

However, the commercialization of Grids requires market-driven strategies
while considering users’ QoS constraints like deadline and computation cost
(budget). Such a guarantee of service is hard to provide in a Grid environment
due to its shared, heterogeneous and distributed resources owned by different
organizations with their own policies and pricing mechanisms [4]. Many algo-
rithms for deadline and budget constrained scheduling have been proposed [21–
27]. In [25], Sakellariou et al. proposed two different approaches, namely the
LOSS approach and the GAIN approach to find the schedule for a given DAG-
structured workflow and a given set of resources without exceeding the budget
and is still optimized for overall execution time. The LOSS approach starts with
a schedule that is optimized for overall execution time by using HEFT [14] or



Title Suppressed Due to Excessive Length 5

Tp

Tq
Ri

...

......
...

Tj

Ti
ij
w

pjw

jqw

Rj

Rq
ip

,
ij

ijb d
jz

( )j !

Fig. 1. Workflow model (left), Grid network model (right).

HBMCT [28] and keeps re-mapping as long as the budget is not exceeded. The
GAIN approach starts with the cheapest schedule and conducts re-mapping to
minimize the overall execution time as long as the budget is still available. In
[27], Yu et al. proposed a cost-based workflow scheduling algorithm that mini-
mizes the execution cost for time-critical workflow applications by partitioning
workflow tasks and generating schedules based on optimal task partition. It al-
so allows the scheduler to re-compute some partial workflows during execution
when their initial schedules are violated. A deadline assignment strategy was
developed to distribute the overall deadline over each task partition. Abrishami
et al. proposed a QoS-based workflow scheduling algorithm [23] based on the
partial critical paths which first tries to map the overall critical path of the
workflow such that it completes before the deadline and execution cost can be
minimized, then it finds the partial critical path for each mapped task on the
critical path and executes the same procedure recursively.

Our work differs from the above mentioned works in several aspects: (i) we
consider both throughput and budget requirements; (ii) we consider incomplete
Grid environment due to network connectivity and facility accessibility; (iii)
we consider resource sharing among multiple concurrent computing tasks on
computing nodes or concurrent data transfers over network links.

3 Problem Overview

3.1 Analytical Models

The left side of Fig. 1 shows a workflow of a distributed computing application
constructed as directed acyclic graph (DAG) GT = (VT , ET ) with |VT | = m.
Vertices are used to represent the set of computing tasks VT = {T1, T2, ...Tm}:
T1 is the starting task and Tm denotes the ending task. The weight wij on edge eij
represents the size of data transferred from task Ti to task Tj . The dependency
between a pair of tasks is shown as a directed edge. Task Tj receives a data input
wij from each of its preceding tasks Ti and performs a predefined computing
routine whose complexity is modeled as a function ζj(·) of the total aggregated
input data size zj . However, in real scenario, the complexity of a task is an
abstract quantity which not only depends on the computational complexity of
its own function but also on the implementation details realized in its algorithm.
Upon completion of execution of task Tj , data output wjk will be sent to each
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Table 1. Parameter of workflow and Grid network model

Parameters Definitions

GT = (VT , ET ) the computation workflow

m number of tasks in the workflow

Ti the i-th computing task

eij dependency edge from task Ti to Tj

wij data size transferred over dependency edge eij
zi aggregated input data size of task Ti

ζi(·) computational complexity of task Ti

GR = (VR, ER) the Grid network environment

n number of computing nodes in the Grid environment

Rj the j-th node

pj computing power of node Rj

lij network link between nodes Ri and Rj

bij bandwidth of link li,j
dij the minimum link delay of link li,j
ξj unit executing price of node j (G$/sec)

λij unit executing price of network link lij (G$/sec)

of its succeeding tasks Tk. A task cannot start its execution until all input data
required by this task arrive. To generalize our model, if an application task has
multiple starting or ending tasks, a virtual starting or ending task of complexity
zero can be created and connected to all starting or ending tasks without any
data transfer along the edges.

The right side of Fig. 1 shows a heterogeneous Grid network environment
and is represented as an arbitrary weighted network graph GR = (VR, ER) with
|VR| = n, consisting of a set of computing nodes VR = {R1, R2, ...Rn}. Depend-
ing on the network infrastructure, the topology of a computer network may be
complete or not due to network connectivity and facility accessibility. Resource
Rj is featured by its computing power pj . The network link lij between resources
Ri and Rj is featured by bandwidth bij , and the minimum link delay dij . Both
nodes and links are considered as Grid resources. The parameters of a workflow
are given in Tab. 1.

Inspired by previous work [20], executing a workflow will require the following
time and cost:

(1) Execution time of task Ti on node Ri′

texec(Ti, Ri′) =
∑ α(t)·δi(t)

pi′
(1)

where α(t) denotes the number of concurrent tasks executing on node Ri′

during ∆t, δi(t) = pi′
α(t)∆t is the amount of partial task execution completed

during time interval [t, t+∆t] when α(t) remains unchanged, and ζi(zi) =
∑
δi(t)

is the total computational requirement of task Ti.

(2) Data transfer time of dependency edge ejk over network link lj′k′
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ttran(ejk, lj′k′) =
∑ β(t)·δjk(t)

bj′k′
+ dj′k′ (2)

where β(t) denotes the number of concurrent data transfer over link lj′k′

during ∆t, δjk(t) =
bj′k′

β(t)∆t is the amount of partial data transfer execution

completed during time interval [t, t + ∆t] when β(t) remains unchanged, and
wjk =

∑
δjk(t) is the total data transfer size of dependency edge ejk.

(3) Bottleneck time

BT = max
Ti∈VT ,ejk∈ET

Ri′∈VR,lj′k′∈ER

(
texec(Ti,R

′
i),

ttran(ejk,lj′k′ )

)
(3)

(4) Throughput
Throughput is the inverse of the global bottleneck of a mapped workflow in

streaming applications where multiple instances of input datasets are continu-
ously generated and fed into the workflow.

TP = 1
BT (4)

(5) Cost of executing task Ti on node Rj

Cj(Ti) = ξj × texec(Ti, Rj) (5)

(6) Cost of transfer data of dependency edge ejk over network link lj′k′

Cj′k′(ejk) = λjk × ttran(ejk, lj′k′) (6)

(7) Total execution cost (i.e. user charge) of scheduling a workflow

Cost =
m∑
i=1

Cj(Ti) +
∑

∀ejk∈ET

Cj′k′(ejk) (7)

3.2 Problem Formulation

The scheduling problem is defined as follows:

Definition 1. Grid users can submit DAG-structured workflow applications mod-
eled as GT = (VT , ET ) that process streaming datasets with both budget and
throughput requirements. The budget constrained user aims to maximize the ap-
plication throughput within their specific budgets:

max
all possible schedules

(TP ), such that Cost ≤ Budget (8)

The throughput constrained user aims to minimize the execution cost while
the minimum throughput is guaranteed:

min
all possible schedules

(Cost), such that TP ≥ TPConst (9)

where TP is the throughput, Cost is the user charge, Budget is the budget
constraint, and TPConst is the minimum throughput constraint.
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Fig. 2. Layer based sorting of the DAG-structured workflow.

4 Algorithm Design

The following notations are introduced to facilitate the description of our algo-
rithms:

– pre(Ti): the set of preceding tasks of task Ti;
– Vone−schedule(pre(Ti)): the set of nodes for possible mapping of those tasks

in pre(Ti);
– suc(Rj): the set of succeeding nodes of node Rj ;
– ∩
∀R ∈ Vone−schedule(pre(Ti))

(suc(R)): an intersection operation that finds the set

of common succeeding nodes for Vone−schedule(pre(Ti));
– ∩
∀R ∈ Vone−schedule(pre(Ti))

(suc(R))∪R, as the candidate mapping node set for

task Ti, denoted as Vcandidate(Ti);
– VLoss−candidate(Ti): Vpre(Ti) ∩ Vsuc(Ti), an intersection operation that casts

on the set of nodes that task Ti’s predecessor tasks are mapped onto, and
the set of nodes that task Ti’s successor tasks are mapped onto;

– VGain−candidate(Ti): Vpre(Ti) ∩ Vsuc(Ti), an intersection operation that casts
on the set of nodes that task Ti’s predecessor tasks are mapped onto, and
the set of nodes that task Ti’s successor tasks are mapped onto;

4.1 Budget Constrained Approaches

We develop two algorithms, namely B-RATE, B-SWAP for budget constrained
users. The purpose of these two algorithms is to find the affordable resources to
map workflow tasks in order to achieve the maximum throughput under certain
budget constraint.

The B-RATE algorithm The B-RATE algorithm in Alg. 1 first separates
DAG-structured workflow tasks into ordered layers based on task dependency
and node connectivity in the Grid environment as shown in Fig. 2. For each layer
k (k ∈ [1,MaxLayer]), we calculate a cost constraint CostConstk using Eq. 10
where CR is the total computing requirement (i.e., number of instructions) for
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the entire workflow, and CRk denotes the partial computing requirement for
tasks in layer k:

CostConstk = CRk

CR ∗Budget (10)

Algorithm 1 B-RATE(Gt,Gn,Budget)

Input: Task graph Gt, Grid Resource graph Gn, Budget
Output: A workflow schedule that maximizes the throughput under budget constrain-
t.

1: for all Ti ∈ task graph do
2: Apply layer-based sorting;
3: Calculate computing requirement for each task;
4: end for
5: Calculate total computing requirement CR for the entire workflow;
6: MaxLayer = the number of total layers in Gt;
7: for k = layer 1 to MaxLayer do
8: Calculate computing requirement CRk for current layer;
9: Calculate cost constraint CostConstk for current layer;

10: for all task Ti ∈ current layer do
11: Find pre(Ti) and Vone−schedule(pre(Ti));
12: Find Vcandidate(Ti);
13: end for
14: Find all possible mapping combinations of Vcandidate(Ti) for all tasks Ti in cur-

rent layer;
15: for all possible mapping combinations do
16: Calculate curCost for current layer;
17: if curCost ≤ CostConstk then
18: Calculate partialTP ;
19: else
20: Continue;
21: end if
22: end for
23: Select the schedule(s) with the maximum partialTP , if there’re several schedules

with the same partialTP , choose the one with the minimum curCost;
24: end for
25: Calculate total Cost;
26: return TP , Cost;

In lines 10-14, for each task Ti in the current layer, we find its preceding
tasks pre(Ti) and possible set of their mapping nodes Vone−schedule(pre(Ti)),
then determine the candidate node set Vcandidate(Ti) for mapping. In lines 15-
22, we consider all possible combinations of Vcandidate(Ti) for all tasks Ti in
current layer and calculate their costs. For those possible mapping combinations
whose costs are within the cost constraint of current layer, the partial throughput
partialTP from the first layer to the current layer is calculated. In line 23, the
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schedule with the maximum partialTP is selected. There might exist several
possible schedules with the same throughput, we simply choose the one with the
minimum curCost. Lines 8-23 are repeated until tasks from the last level are
mapped, then we get the throughput and total execution cost. The complexity
of this algorithm is O(mn).

Algorithm 2 B-SWAP(Gt,Gn,Budget)

Input: Task graph Gt, Grid Resource graph Gn, Budget
Output: A workflow schedule that maximizes the throughput under budget constrain-
t.

1: for all Ti ∈ task graph do
2: Apply layer-based sorting;
3: Calculate computing requirement for each task;
4: end for
5: MaxLayer = the number of total layers in Gt;
6: for k = layer 1 to MaxLayer do
7: for all task Ti ∈ current layer do
8: Find pre(Ti) and Vone−schedule(pre(Ti));
9: Find Vcandidate(Ti);

10: end for
11: Find all possible mapping combinations of Vcandidate(Ti) for all tasks Ti in cur-

rent layer;
12: for all possible mapping combinations do
13: Calculate partialTP ;
14: Select the schedule(s) with the maximum partialTP , if there’re several sched-

ules with the same partialTP , choose the one with the minimum partialCost;
15: end for
16: end for
17: Calculate total Cost;
18: while Costnew > Budget && Costcur > Costnew do
19: for all Ti ∈ task graph do
20: GenerateLossCandidateSetForEachTask();
21: end for
22: for all Rj ∈ VLoss−candidate(Ti) do
23: Calculate LossWeight(j);
24: end for
25: Select the task with the minimum LossWeight to re-map;
26: end while
27: Calculate total Cost;
28: return TP , Cost;

The B-SWAP algorithm The B-SWAP algorithm in Alg. 2 starts with identi-
fying an initial schedule (in lines 1-16) which produces the maximum throughput
of the entire workflow regardless of the budget (e.g., by using LDP [6]). In lines
18-26, if the available budget is larger or equal to the cost required for this sched-
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ule, this schedule can be used right away. However, if the budget is less than the
cost of this schedule, swapping operations are invoked. The objective of this
algorithm is to re-map those tasks to achieve the minimum loss in throughput
for the largest cost savings. Each iteration ends with a reduced total cost with
similar throughput. To determine the swapping strategy, LossWeight for task
Ti as the iteration loss between the current and new possible mapping schemes
onto its candidate nodes in VLoss−candidate(Ti) are computed in Eq. 11:

LossWeight(j) = TPCur−TPNew

CostCur−CostNew
(11)

where TPCur and CostCur are the throughput and cost of current schedule,
respectively; TPNew and CostNew are the throughput and cost of Ti re-mapped
onto node Rj which is a candidate node from VLoss−candidate(Ti), respectively. If
CostNew is larger than CostCur, we ignore this candidate node. The algorithm
keeps re-mapping by considering the smallest values of LossWeight. Our selec-
tion criteria of having large cost saving and small throughput loss will result in
small value of LossWeight. The complexity of this algorithm is O(mns), where
s is the number of swaps.

4.2 Throughput Constrained Approaches

We develop two algorithms, namely TP -RATE, TP -SWAP for throughput con-
strained users. The purpose of this set of algorithms is to satisfy the minimum
throughput constraint by finding the best resources that minimizes the execution
cost.

The TP-RATE algorithm The TP-RATE algorithm (provided in Alg. 3)
applies layer-based sorting to the DAG-structured workflow and then schedule
computing tasks to network nodes layer-by-layer. In line 9-17, for each layer,
we consider all possible combinations of Vcandidate(Ti) for all tasks Ti in current
layer, calculate their partialTP , and calculate partialCost if their partialTP is
larger or equal to the throughput constraint TPConst. In line 18, the schedule
with the minimum partialCost is selected. If there are several possible sched-
ules with the same partialCost, we simply choose the one with the minimum
partialTP . Line 5-19 is repeated until the last task is reached, then we compute
the total Cost. The complexity of this algorithm is O(mn).

The TP-SWAP algorithm The TP-SWAP algorithm (provided in Alg. 4) first
schedules all the tasks to the cheapest node, there might be several nodes with
the same unit cost, then choose the one with the maximum computing power. If
the throughput is bigger or equal to required throughput constraint, then this
schedule can be used straightaway. In other cases that the throughput is smaller
than the constraint, swap is invoked. The objective of this algorithm is to achieve
the maximum gain in throughput for the least increase in cost via module re-
mapping. It means that for each re-map, the new schedule’s throughput is close
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Algorithm 3 TP-RATE(Gt,Gn,TPConst)

1: for all Ti ∈ task graph do
2: Apply lay-based sorting;
3: MaxLayer = the number of total layers in Gt;
4: for k = layer 1 to MaxLayer do
5: for all task Ti ∈ current layer do
6: Find pre(Ti) and Vone−schedule(pre(Ti));
7: Find Vcandidate(Ti);
8: end for
9: Find all possible schedule combinations of Vcandidate(Ti) for all tasks Ti in

current layer;
10: for all possible schedule combinations do
11: Calculate partialTP ;
12: if partialTP ≥ TPConst then
13: Calculate partialCost;
14: else
15: Continue;
16: end if
17: end for
18: Select the schedule(s) with the minimum partialCost, if there’re several sched-

ules with the same partialCost, choose the one with the maximum partialTP ;
19: end for
20: end for
21: Calculate total Cost;
22: return TP , Cost;

Algorithm 4 TP-SWAP(Gt,Gn,TPConst)

1: for all Ti ∈ task graph do
2: Schedule Ti to the cheapest node, if several nodes have the same unit cost, choose

the one with the maximum computing power;
3: end for
4: Calculate TP , Cost;
5: while curTP < TPConst do
6: for all Ti ∈ task graph do
7: GenerateGainCandidateSetForEachTask();
8: for all Rj ∈ VGain−candidate(Ti) do
9: Calculate GainWeight;

10: end for
11: Select the task with the maximum GainWeight to re-assign;
12: end for
13: end while
14: Calculate total Cost;
15: return TP , Cost;
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to the current schedule but with less increase in cost. To determine such re-map,
GainWeight values for each task Ti scheduled to each of its candidate nodes in
VGain−candidate(Ti) are computed as Eq. 12:

GainWeight(j) = TPNew−TPCur

CostNew−CostCur
(12)

where TPCur and CostCur are the throughput and cost of current schedule,
respectively; TPNew and CostNew are the throughput and cost of Ti re-mapped
to node Rj which is a candidate node in VGain−candidate(Ti) for Ti, respec-
tively. The algorithm keeps re-mapping by considering the greatest values of
GainWeight for all tasks and their candidate nodes. The complexity of this
algorithm is O(mns), where s is the number of swaps.

5 Performance Evaluation

We design and implement our experiments based on the GridSim [29] toolkit.
The four algorithms are implemented as four separate schedulers, which can
generate scheduling results for given workflows and networks. The workflow tasks
are submitted to a Grid resources as advance reservations in GridSim. The cost
and throughput are recorded after simulations are finished in GridSim.

5.1 Experimental Settings

Workflow and Grid Network Configurations Given that different workflow
applications and networks may have different impact on the performance of the
scheduling algorithms, we develop a workflow and network generator which can
randomly create varying parameters of the workflows and networks that follows
a similar experimental approaches used by some previous published articles [6,
20], and within a suitably selected range of values: (i) the number of tasks and
the complexity of each task; (ii) the number of inter-task communications and
the data transfer size between two tasks; (iii) the number of nodes and the
processing power of each node; (iv) the unit execution price of each node and
network link; (v) the number of network links as well as the bandwidth and the
minimum link delay of each link.

In our experiments, the cost that a user needs to pay for a workflow execution
(i.e. user charge) comprises of two parts, namely cost of executing tasks on nodes,
and cost of transfer data of dependency edges over network links.

We represent the problem size in Tab. 2 for workflow scheduling as a four-
tuple (m, |ET |, n, |ER|): m tasks and |ET | dependency edges in the workflow,
and n nodes with |ER| links in the network.

Performance Metrics and Experimental Scenarios We consider the two
performance metrics of throughput and execution cost, and evaluate our algo-
rithm from the following experimental scenarios:

– Impact of budget constraint



14 Fei Cao, Michelle M. Zhu, and Dabin Ding

Table 2. Workflow Configurations

Problem Workflow Network Problem Size
Index ID ID m, |ET |, n, |ER|

1 1 1 10, 20, 5, 19

2 2 2 15, 25, 10, 89

3 3 4 20, 42, 15, 209

4 4 4 25, 52, 20, 379

5 5 5 30, 60, 25, 425

6 6 6 35, 72, 30, 630

7 7 7 40, 79, 35, 855

8 8 8 45, 93, 40, 1250

9 9 9 50, 96, 45, 1600

10 10 10 60, 122, 50, 2200

– Impact of throughput constraint
– Impact of workflow size
– Impact of network size

Incomplete network graphs are simulated due to network connectivity and
facility accessibility. To conduct thorough comparison, we select different budget
constraints and simulate several different sizes of workflows and networks. To
set up baselines for comparison, we also developed some representative workflow
scheduling algorithms for maximizing throughput (due to no existing algorithm
for maximizing throughput under budget constraint) including Streamline [7]
and LDP [6] (which is used to find an initial schedule in B-SWAP).

5.2 Analysis of Results

Budget Constrained Approaches In order to compare the performance of
the two algorithms for maximizing throughput under budget constraint, namely
B-RATE and B-SWAP, we conduct the above-mentioned 10 sets of workflows
and networks with problem sizes from small to large and give part of the results
in Fig. 3. For each set, various budget constraints are considered. Generally, more
budget is provided when problem size becomes larger due to more computation
and communication efforts. We calculate the throughput and cost for compari-
son. The performance of the two proposed algorithms is further compared with
Streamline [7] and LDP [6].

Fig. 3 shows the throughput and cost comparison among the four algorithm-
s, the x axis represents the budget constraints; the y axis on the left and the
various bars denote the throughput value, the y axis on the right and the lines
represent the actual cost of the schedule. The throughput and cost of Stream-
line and LDP remains constant for each budget constraint as a baseline (since
they do not consider budget). We observe that in most cases, B-SWAP results
in higher throughput with larger cost than that of B-RATE. This may be due
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Fig. 3. Throughput and cost comparison under different budget constraints (left: prob-
lem index = 2, right: problem index = 6).

to the fact that B-SWAP starts with a schedule optimized for throughput, then
keep re-mapping for the largest savings in cost with the minimum throughput
loss; While the B-RATE algorithm starts with a rough and un-precise distri-
bution of budget constraint value for each layer. It is noted that under smaller
budget constraints, B-RATE may fail to compute a schedule because the budget
constraints for some layers might not be possible under mapping strategy. With
larger budget constraints, the two algorithms achieve more similar throughput
values due to sufficient budget to play with. In comparison with Streamline and
LDP algorithms, since the two algorithms aim for optimization for throughput,
we observe that LDP produces the highest throughput with the highest cost
though. With the increased budget, B-RATE and B-SWAP are able to achieve
comparable throughputs as those from LDP. When budget constraint is set high
enough, B-SWAP has the same throughput as that of LDP because no swap-
ping procedure is needed. The costs of B-RATE and B-SWAP are much lower
than that of Streamline and LDP even when their throughput values are similar.
From Fig. 3, it can be seen that B-RATE’s cost decreases by 8%-40% in com-
parison with Streamline, and decreases by 18%-45% in comparison with LDP;
B-SWAP’s cost decreases by 7%-35% in comparison with Streamline, and de-
creases by 17%-40% in comparison with LDP. The variation is due to different
problem sizes and budget constraints.

The throughput measurements in Fig. 4(a) shows that B-SWAP consis-
tently achieves higher throughput than B-RATE under the scenario of above-
mentioned 10 workflows from small to large executed in the same network with
budget constraint set to 80% of LDP’s cost. A larger workflow size obviously
results in a smaller throughput, which explains the decreasing trend in each
curve.

In order to evaluate the impact of network size on the performance of B-
RATE and B-SWAP, we compare their throughputs under the scenario of the
same workflow executed in the above-mentioned 10 networks from small to large
with budget constraint set to 80% of LDP’s cost. Fig. 4(b) shows that B-SWAP
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Fig. 4. Impact of workflow size and network size
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Fig. 5. Cost and throughput comparison under different throughput constraints (left:
problem index = 1, right: problem index = 7).

consistently achieves higher throughput than B-RATE. A smaller network size
results in a smaller throughput due to higher resource sharing, and the curves
increases quickly as network becomes larger, but the increasing trend will slow
down after the network is large enough for the workflow.

Throughput Constrained Approaches In order to compare the performance
of the two algorithms for minimizing execution cost under throughput constraint,
namely TP -RATE and TP -SWAP, we conduct the above-mentioned 10 sets of
workflows and networks with problem sizes from small to large and give part of
the results in Fig. 5. For each set, various throughput constraints are considered.
We calculate the throughput and cost for comparison. To our best knowledge,
since no other algorithm considers minimizing execution cost under throughput
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Fig. 6. Impact of workflow size and network size

constraint, we only provide performance comparison between the two proposed
approaches.

Fig. 5 shows the cost and throughput comparison, the x axis represents the
throughput constraints, the y axis on the left and the bars represent the actu-
al cost, the y axis on the right and the lines represent the throughput of the
schedule. We observe straightforwardly that cost gets larger when throughput
constraint becomes higher. In most cases, TP -SWAP produces lower cost than
TP -RATE, but its throughput is relatively smaller. This may be due to the fac-
t that TP -SWAP starts with a greedy schedule optimized for cost, then keep
re-mapping for the maximum gain in throughput for the least increase in cost
whereas the TP -RATE algorithm has a partial-optimized schedule for each layer
that may not be optimal for cost as an entire schedule. Therefore, TP -SWAP
is more likely to produce throughput closer to the throughput constraint than
TP -RATE. The throughput of the two algorithms gets similar when the through-
put constraint becomes higher due to less available resources to produce high-
er throughput. With larger throughput constraints, the two algorithms achieve
more similar costs because higher throughput requirement limits the selection of
nodes. From Fig. 5, it can be seen that compares with TP -RATE, TP -SWAP’s
cost is about 0%-3% lower, and throughput is about 0%-20% smaller. The vari-
ation is due to different problem sizes and throughput constraints.

The throughput measurements in Fig. 6(a) shows that TP -SWAP consistent-
ly achieves lower cost than TP -RATE under the scenario of above-mentioned
10 workflows from small to large executed in the same network with throughput
constraint set to 70% of LDP’s throughput. A larger workflow size obviously
results in a larger cost, which explains the increasing trend in each curve.

In order to evaluate the impact of network size on the performance of TP -
RATE and TP -SWAP, we compare their costs under the scenario of the same
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workflow executed in the above-mentioned 10 networks from small to large with
throughput constraint set to 70% of LDP’s throughput. Fig. 6(b) shows that
TP -SWAP consistently achieves higher throughput than TP -RATE. A smaller
network size results in a relatively smaller cost because higher resource sharing
decreases the data transfer cost (since the data transfer costs of adjacent tasks
scheduled on the same node are negligible).

6 Conclusions

In this paper, we considered a workflow scheduling problem for streaming appli-
cations with budget and throughput requirements for streaming applications in
heterogeneous Grid environment. We proposed two algorithms, namely B-RATE
and B-SWAP for budget constrained objective, and two algorithms, namely
TP -RATE and TP -SWAP for throughput constrained objective. Thorough sim-
ulation experiments under GridSim were conducted with randomly generated
workflow and Grid network cases. From our simulation experiments, it could be
seen that for budget constrained objective, B-SWAP algorithm outperformed
the B-RATE algorithm but with a higher complexity. Compared with through-
put optimized only algorithms such as Streamline and LDP, our two proposed
algorithms achieved much lower execution cost with similar throughput. For
throughput constrained objective, TP -SWAP outperformed TP -RATE in exe-
cution cost, but with disadvantage of a higher complexity and smaller through-
put. In the future, real-life scientific workflows and real Grid networks with more
dynamic scenarios for execution of the workflow will be considered.
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