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Abstract. The recent advent of multi-core computing environments in-
creases the heterogeneity of grid resources and the complexity of manag-
ing them, making efficient load balancing challenging. In an environment
where jobs are submitted regularly into a grid which is already execut-
ing several jobs, it becomes important to provide low job turn-around
times and high throughput for the users. Typically, the grids employ
a First Come First Serve (FCFS) method of executing the jobs in the
queue which results in suboptimal turn-around times and wait times for
most jobs. Hence a conventional FCFS scheduling strategy does not suf-
fice to reduce the average wait times across all jobs. In this paper, we
propose new decentralized preemptive scheduling strategies that back-
fill jobs locally and dynamically migrate waiting jobs across nodes to
leverage residual resources, while guaranteeing (on a best effort basis)
bounded turn-around and waiting times for all jobs. The methods at-
tempt to maximize total throughput and minimize average waiting time
while balancing load across available grid resources. Experimental re-
sults for both intra-node and internode scheduling via simulation show
that our scheduling schemes perform considerably better than the con-
ventional FCFS approach of a distributed or a centralized scheduler.

Keywords: Distributed systems, Scheduling, Preemptive scheduling, Per-
formance, Load balancing, Heterogeneous processors, Grid computing

1 Introduction

Modern machines use multi-core CPUs to enable improved performance. In a
multi-core environment, it has been a challenging problem to schedule multiple
jobs that can run simultaneously without oversubscribing resources (including
cores). Contention or shared resources can make it hard to exploit multiple com-
puting resources efficiently and so, achieving high performance on multi-core
machines without optimized software support is still difficult [15]. Moreover,
grids that contain multi-core machines are becoming increasingly diverse and
heterogeneous [10], so that efficient load balancing and scheduling for the overall
system is becoming a very challenging problem [5][4] even with global status



information and a centralized scheduler [21].

Previous research [9] on decentralized dynamic scheduling improves the perfor-
mance of distributed scheduling by starting jobs capable of running immediately
(backfilling), through use of residual resources on other nodes (when the job is
moved) or on the same node. However, the scheduling strategy is non-preemptive
and follows a first come first serve approach to schedule the jobs. This results in
suboptimal wait times and turnaround times for most jobs in the queue. It also
results in suboptimal overall job throughput rate in the grid.

The performance of distributed scheduling and overall job throughput in such
multicore environments can be improved by following a preemptive scheduling
strategy where jobs that have lower estimated running times in the queue are
scheduled to run immediately. The techniques of migrating jobs to use residual
resources on neighboring nodes can also be used to increase the overall CPU
utilization. However, because of limited and/or stale global state information,
efficient decentralized job migration can be difficult to achieve. Moreover, a job
profile often has multiple resource requirements; a simple job migration mech-
anism considering only CPU usage cannot be applied to in such situations. In
addition, guarantee of progress for all jobs is also desired, i.e., no job starvation.

The contribution of this paper is a novel dynamic preemptive scheduling scheme
for multi-core grids. The scheme includes (1) local preemptive scheduling, with
backfilling on a single node, (2) internode scheduling, for backfilling across mul-
tiple nodes, and (3) queue balancing, which proactively balances wait queue
lengths. The approach is inspired by ideas from the preemptive schedulers in the
context of operating systems, and schedules jobs at regular intervals based on its
priorities. The priorities of the jobs are determined according to their remaining
time for completion and the amount of time the job has spent waiting in the
queue. It is a completely decentralized scheme that balances load and improves
throughput when scheduling jobs with multiple constraints across a distributed
system. We demonstrate the effectiveness of these algorithms via simulations
that show that the decentralized preemptive scheduling approach outperforms
the non-preemptive scheduler that follows a first-come-first-serve strategy.

The rest of this paper is organized as follows. Section 2 discusses the related
work on various preemptive scheduling strategies in literature. Section 3 discusses
the distributed scheduling strategies and describes the basic architecture of the
peer-to-peer grid systems and the resource management schemes for multi-core
machines. The term definitions related to the scheduling algorithm are presented
in section 4. The preemptive scheduling approach is discussed in Section 5. The
simulation results are presented in Section 6. Conclusions and future work are
presented in Section 7 and Section 8, respectively.



2 Related Work

Various scheduling algorithms (both preemptive and non-preemptive) have been
described in the literature, especially in the contexts of Operating Systems,
Batch Processing and Real time scheduling environments. First-come first serve
(also termed as FCFS), Round-Robin, shortest-remaining time, fixed priority
preemptive scheduling are some of the scheduling algorithms that are widely
in use. In classical UNIX systems [20] [2], if a higher priority process became
runnable, the current process was preempted even if the process did not finish
its time quantum. This resulted in higher priority processes starving low-priority
ones. To avoid this, a ’usage’ factor was introduced to calculate process priority.
This factor allowed the kernel to vary processes priorities dynamically. When a
process was not running, the kernel periodically increased its priority. When a
process received some CPU time, the kernel reduced its priority. This scheme
could potentially prevent the starvation of any process, since eventually the pri-
ority of any waiting process would rise high enough to be scheduled. While op-
erating system schedulers usually act on the basis of information obtained from
the processes executed so far and the priority of processes, batch processing and
real time schedulers have added information, such as estimated job completion
times and job deadlines, respectively. Our environment closely resembles that of
the Batch Processing scenario since it is reasonable to obtain estimates of the
job completion times.

Previous research [9] on distributed scheduling scheduled jobs in a FCFS fash-
ion. Although this approach had minimal scheduling overhead, the turnaround
times, waiting times and response times were high for many jobs since the long
running jobs hogged the CPU. Also, no prioritization resulted in the system
having trouble meeting the process deadlines. The work done by Quinn et al.
[16] on preemption based backfill addresses the problem of inefficient resource
utilization by backfilling lower priority jobs. The preemptive backfill technique
used in the paper allows the scheduler to schedule lower priority jobs even if
they cannot finish execution before the next higher priority job is scheduled.
We use a similar technique for our strategies. The work on checkpoint based
preemption [13] discusses employing checkpoints for preemption and improves
the job scheduling performance in waiting time by addressing the inaccuracies
in user-provided runtime estimates.

Shortest remaining time [6] is a scheduling method that is a preemptive ver-
sion of shortest job next [18] scheduling. In this algorithm, the process with the
smallest amount of time remaining until completion is selected to execute. Since
the executing process is the one with the shortest amount of time remaining (by
definition), processes always run until they complete or a new process is added
that requires a smaller amount of time. This leads to higher wait times for long
running jobs. Highest Response Ratio Next (HRRN) [19] scheduling is a preemp-
tive discipline, in which the priority of each job is dependent on its estimated
run time, and also the amount of time it has spent waiting. Jobs gain higher



priority the longer they wait, which prevents indefinite postponement (process
starvation). i.e. the jobs that have spent a long time waiting compete against
those estimated to have short run times. In this paper, we use the idea of ’Higher
Response Ratio Next’ in a distributed environment to ensure that long running
jobs are not starved of CPU usage while at the same time guaranteeing that
shorter jobs finish early. This contributes to the overall high throughput in the
system.

3 BACKGROUND

Several scheduling strategies have been studied in the context of distributed
computing ranging from cluster computing to the now-prevalent heterogeneous
computing grids. Most of the distributed scheduling strategies in the hetero-
geneous environments are focused on application level scheduling [3] (i.e. they
focus on how to efficiently break down and schedule the sub-tasks of the appli-
cation) so as to maximize the use of the heterogeneous components like GPUs,
CPUs and memory. Some research has also been done to address the issue of
dynamically scheduling each incoming job by learning through past performance
histories [7] and migrating jobs [9]. However, they all schedule the incoming jobs
in a non-preemptive or FCFS order. Though some studies have been done(as
discussed in Related Work), a comprehensive study still remains to be done on
the preemptive strategies for scheduling the jobs submitted onto the grid.

Issam et al. [1] proposes a scheduling strategy which consists of policies that
utilizes the solution to a linear programming problem which maximizes system
capacity. This however is a centralized approach and hence has the limitations of
a centralized scheduler. The paper on computational models and heuristic meth-
ods on grid scheduling by Fatos Xhafa at al. [23] exceptionally summarizes the
scheduling problems involved in grid computing. It also gives good insight on the
different scheduling strategies that can be used and presents heuristic methods
for scheduling in grids. However, they fail to discuss in detail the benefits of the
opportunities presented by a preemptive scheduling model. We then date back
as early as Condor [12]; a system that employs a preemptive strategy. Although
Condor does not have a preemptive centralized scheduler, the local scheduler
enforces preemption of the job whenever the user resumes activity. Our scenario
can be compared to this in the sense that a higher priority job (a user process
in case of Condor) may be ready to run at any given instant.

A pivotal aspect to be considered before scheduling is finding the right node
to run the job. Various resource discovery techniques exist in the literature that
assign the incoming jobs to chosen nodes. The Classified Advertisement (Clas-
sAd) [14] and the CAN [17] approaches are examples of distributed matchmak-
ing algorithms that match incoming jobs to lightly loaded nodes. Matchmaking
is the initial job assignment to a node that satisfies all the resource require-
ments of the job, and also does load balancing to find a (relatively) lightly



loaded node. A good matchmaking algorithm has several desirable properties:
expressiveness, load balance, parsimony, completeness, and low overhead. The
matchmaking framework should be expressive enough to specify the essential re-
source requirements of the job as well as the capabilities of the nodes. It should
balance load across nodes to maximize total throughput and to obtain the low-
est job turnaround time. However, over-provisioning can decrease total system
throughput, therefore the matchmaking should be parsimonious so as not to
waste resources. Completeness means that as long as the system contains a node
that satisfies a job’s requirements, the matchmaker should find that node to run
the job. Finally, the overall matchmaking process should not incur significant
costs, to minimize overhead.

The ClassAd matchmaking framework is a flexible and general method of re-
source management in pools of resources which exhibit physical and ownership
distribution. Aspects of the framework include a semi-structured data model
to represent entities, folding the query language into the data model, allow-
ing entities (resource providers and requestors) to publish queries as attributes.
The paradigm also distinguishes between matching and claiming as two distinct
operations in resource management: A match is an introduction between two
compatible entities, whereas a claim is the establishment of a working relation-
ship between the entities. The representation and protocols facilitate both static
and dynamic heterogeneity of resources, which results in a robust and scalable
framework that can evolve with changing resources.

The Content Addressable Network (CAN) is a distributed, decentralized P2P
infrastructure that provides hash table functionality. The architectural design is
a virtual multi-dimensional Cartesian coordinate space, a type of overlay net-
work, on a multi-torus. Points within the space are identified with coordinates.
The entire coordinate space is dynamically partitioned among all the nodes in
the system such that every node possesses at least one distinct zone within the
overall space.

A job in our system is the data and associated profile that describes a com-
putation to be performed. The grid system may contain heterogeneous nodes
with different resource types and capabilities, e.g. CPU speed, memory size,
disk space, number of cores. Jobs submitted to the grid also can have multiple
resource requirements, limiting the set of nodes on which they can be run. We
assume that every job is independent, meaning that there is no communication
between jobs. To build the P2P grid system, a variant of the CAN [17] distributed
hash table (DHT) is employed, which represents a nodes resource capabilities
(and a jobs resource requirements) as coordinates in the d-dimensional space.
Each dimension of the CAN represents the amount of that resource, so that
nodes can be sorted according to the values for each resource. A node occupies a
hyper-rectangular zone that does not overlap with any other nodes zone, and the
zone contains the nodes coordinates within the d-dimensional space. Nodes ex-



change load and other information with nodes whose zones abut its own (called
neighbors). The following steps describe how jobs are submitted and executed
in the grid system.

1) A client (user) inserts a job into the system through an arbitrary node called
the injection node.
2) The injection node initiates CAN routing of the job to the owner node.
3) The owner node initiates the process to find a lightly loaded node (runnode)
that meets all of the job’s resource requirements (called matchmaking). (For
more details on the owner node and matchmaking, refer to Kim et al. [8])
4) The run node inserts the job into an internal FIFO queue for job execution.
Periodic heartbeat messages between the run node and the owner node ensure
that both are still alive. Missing multiple consecutive heartbeats invokes a (dis-
tributed) failure recovery procedure.
5) After the job completes, the run node delivers the results to the client and
informs the owner node that the job has completed.

The owner node monitors a job’s execution status until the job finishes and
the result is delivered to the client. To enable failure recovery, the owner node
and the run node periodically exchange soft-state heartbeat messages to detect
node failures (or a graceful exit from the system). More details about the basic
system architecture can be found in Kim et al. [8]. The studies conducted in this
paper can be used in any of the contexts discussed above or even any arbitrary
network. Also, the waiting time is calculated as the non-executing time spent
by the jobs after the job has migrated to the node where it would be sched-
uled for execution i.e. we do not account for the time spent by the job between
the job submission and job migration in the network. This is in contrast to the
waiting times usually computed in a distributed environment where it is the
non-executing time spent by the job from the time it was submitted in the net-
work until it completes execution. More on this is discussed in the ’Experiment
and Results’ section. The neighbors of the node are arbitrarily generated. We
produce results for nodes with neighbors having similar resource constraints and
nodes with larger number of neighbors in order to show the effectiveness of our
algorithms in the CAN-like and other highly interconnected networks.

4 Term Representations

1) Ja = An arbitrary job in queue (Non executing job)
2) J ′a = Currently Running (or executing) Job
3) Jh = Job at head of queue
4) J ′Pmin = Minimum Priority Job running currently in a given set
5) J ′Rmin = Minimum Resource consuming Job running currently in a given set
6) Jcovered = Jobs covered so far for analysis
7) Jrunning = Jobs currently running
8) Jrem = The remaining jobs (those yet to be examined for preemption)



9) Pja = Priority of Job Ja
10) Pj′a

= Priority of currently running job
11) Pjh = Priority of Job at head of queue JH
12) Pmax(Jcovered) = Priority of the Highest priority job that is covered so far
13) Pmin(Jcovered) = Priority of the Lowest priority job that is covered so far
14) Pmax(Jrem) = Priority of the Highest priority job from the remaining jobs
(those yet to be examined for preemption)
15) Pmin(Jrem) = Priority of the Lowest priority job from the remaining jobs
(those yet to be examined for preemption)
16) Rja = Resource requirements for Job Ja. The algorithm treats all resource
types (CPU’s, GPU’s, memory and disk space) as a set R.
17) Rf = Current free residual resources
18) Rf (temp) = Residual resources that would be available when some current
running jobs are preempted
19) Rjh = Resource requirements of Job at head of queue
20) Rj′

i
= Resource requirements of Job currently running

21) Rj′
Pmin

= Resource requirements of J ′Pmin

22) Rj′
Rmin

= Resource requirements of J ′Rmin

23) Trem(Ja) = Remaining Time for Job Ja
24) WJa = Waiting time of Job Ja defined as the non-executing time spent by the
job after it has migrated to the node where it would be scheduled for execution.

5 PREEMPTIVE SCHEDULING

5.1 Local Scheduling

This section deals with the scheduling criteria for a single node. As mentioned
in section 2, we combine the ideas of ’shortest remaining time next’ and the
’higher response ratio next’ to come up with a preemptive scheduling algorithm
for the grids. The ’shortest remaining time next’ ensures that jobs that have the
smaller remaining time are run, so they end sooner. However, this could lead to
starvation for long running jobs and hence we increase the priority for jobs that
wait longer in the queue. Thus, the jobs waiting in the node’s queue have their
priorities calculated as

Pja = ((α ∗WJa
) − (β ∗ Trem(Ja))

i.e. the priority for a job is directly proportional to its wait time WJa
and neg-

atively proportional to its estimated time for completion Trem(Ja). α is the
weight factor associated with the wait time. β is the weight associated with the
remaining time for completion. Typically, the β value is set to 1. The section on
’Experimental Results’ provides more details on the values of α.

The job queue is sorted according to the order of their priorities calculated as
above. Initially, the jobs in the head of the queue are scheduled until the avail-
able resources are insufficient for the next job to run. Next, those jobs that can



run in the available residual resources are scheduled to run (Backfilling). Since
the backfilled jobs have priorities associated with them, they are also prone to
preemption and therefore do not starve jobs waiting in the queue. The scheduler
is invoked at the following 3 phases in the system:
1) After every periodic scheduling interval δ.
2) As a new job enters the queue.
3) A job completes its execution.

The periodic interval δ is much higher when compared to the scheduling in-
tervals for schedulers in the OS. This is because in a heterogeneous environment
we expect the time taken for context switches to be more expensive. And so, fre-
quent context switches would result in low overall CPU utilization. More details
regarding the values of δ are discussed in the Results section.

The scheduler is invoked when a new job enters the queue because the newly
arrived job could be backfilled. And, when a job completes execution, it frees
up some resources which allows new jobs to run. At every scheduling turn, the
priority of the job in the head of queue is compared with that of the least pri-
ority job that is currently running. This is done because the queued job cannot
run currently if its priority is lower than the lowest priority job that is currently
running. This also addresses the backfilled jobs immediately since backfilled jobs
have the lowest priority among the running jobs. Figure 1 demonstrates the sce-
nario where the scheduler preempts a lower priority job with a higher priority
job and backfills another job in its residual resources.

If the priority of the job at head of queue (Pjh) is greater, the scheduler checks if
the current running job J ′Pmin frees up enough resources for the new job to run.
If yes, the job J ′Pmin is preempted and Jh is scheduled. Otherwise, the sched-
uler compares the priority of the second lowest priority job (J ′a) with Jh. This
is carried out until the scheduler appropriately preempts jobs that free up just
the right amount of resources for the job Jh to run. If the scheduler is unable
to free up sufficient resources for the job to run, the job Jh is not scheduled in
this interval and has to wait until the next scheduling turn. The scheduling (at
every scheduling turn) is carried out for all jobs in the queue that have a higher
priority than the lowest priority job that is currently running. The details are
described in the ’Preemptive scheduling algorithm’ below.

5.2 Context Switching and its impact

The cost of a context switch is well quantified in [11] and in
(http://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html).
Although the paper talks about context switching time of up to 1.5ms for large
working sets, the article in the blog gives a good worst case approximation for
context switches (about 40 µs) for current Intel processors. Even if we assume a
worst case value of 1ms for each context switch, that results in less than 0.02%
error for scheduling interval δ = 5s in our calculations of wait times. In fact, we



Fig. 1: Local Preemptive scheduling

only have context switches when there is preemption and so not every scheduling
interval would have a context switch. The time taken for context switches can
be further reduced if jobs are pinned to a particular core since this would avoid
cache pollution (i.e. reduce the effect of thrashing). Due to the above reasons we
believe it is safe to ignore the time taken for context switches in our experiments.

5.3 Internode Scheduling

Internode scheduling is an extended version of local scheduling; the target node
for backfilling can be the neighboring nodes in the network. Local scheduling
deals only with the changes to the job execution order within the queue on a
node. Internode scheduling however, must decide the following:
1) Which node initiates job migration,
2) Which node should be the sender of a job,
3) and which job should be migrated.
Internode scheduling takes place periodically at every scheduling interval after
the local scheduling process to see if the job at the top of the queue in the node
can be run on any of its neighbors and also to see if the node can run the job of
any of its neighbors in its currently free residual resources.



Algorithm 1
Preemptive Scheduling Algorithm

procedure
CalculatePriority(Job ja)

1: Pja = ((α ∗WJa)− (β ∗ Trem(Ja))

end procedure
procedure
ScheduleJobs(JobQueue)

1: Sort(JobQueue)
2: while Rf 6= 0 do
3: Jh = nextJobInQueue()
4: If Rjh < Rf .
5: Rf = Rf −Rja

6: end while
7: Jh = nextJobInQueue()
8: while (Pjh > Pmin(Jrunning)||Pjh 6= 0) do
9: Jcovered = 0

10: Jrem = 0
11: Rf (temp) = Rf

12: Jcovered = J ′
Pmin

13: if Rjh <= (Rj′
Pmin

+Rf (temp)) then

14: Preempt(J ′
Pmin)

15: Run(Jh)
16: else
17: Rf (temp) = Rf (temp) +Rj′

Pmin

18: FindJobstoPreempt()
19: end if
20: Jh = nextJobInQueue()
21: end while

end procedure
procedure
FindJobstoPreempt( )

1: while (Jrem 6= 0) do
2: Select J ′

a such that Pj′a
> Pmax(Jcovered) and Pj′a

= Pmin(Jrem)
3: Jcovered+ = J ′

a

4: Jrem = Jrunning − Jcovered
5: if Pj′a

> Pj′
h

then

6: break {cannot preempt jobs}
7: else
8: if Rjh <= Rj′a

then
9: Preempt(J ′

a)
10: Run(Jh)
11: break
12: else
13: FindOptimal(Jcovered, Jh)
14: end if
15: end if
16: end while

end procedure



procedure
FindOptimal(Jcovered, Jh)

1: if Rjh <= (Rja′ +Rf (temp)) then
2: for each J ′[i] in J ′

covered with Pj′
i
< Pj′a

and Rj′[i] = RJ′
Rmin

3: if Rj′a
+Rj′[i] >= Rjh then

4: Preempt J ′[i] ,J ′
a

5: Run Jh
6: break
7: else
8: searchCombinationsforOptimalPreemption(J ′[i], J ′

covered)
9: end if

10: end for
11: else
12: Rf (temp) = Rf (temp) +Rj′a
13: end if

end procedure

In the PUSH scheduling model the job sender initiates the migration process.
First, the sender node tries to match priority of the job at the head of the queue
with the neighboring node’s queue. If the priority of the job at head of the queue
in its neighbor node is less than the job at the sender node, a PUSH message
for the job is sent to its neighbor containing the job’s priority (of sender node)
and the resource requirements. If the job can be backfilled at the neighbor node,
the PUSH message is accepted. Otherwise, a PUSH-reject message is sent back
to the sender node. If a job can be run on multiple neighbors, the sender sends
it to the node that has minimum objective function value as follows. Figure 2
shows the case where a job at the head of queue on one node is pushed to run
on the neighboring node.

fInter−PUSH = BM ∗ FM ∗ (1/CPUspeed)

where BM and FM are defined as follows:

BM =
maxk(S

k+Rk
j )

(
∑K

k=1
(Sk+Rk

j
)

K

= MaximumUtilization
AverageUtilization

FM = 1 −
(
∑K

k=1
(Sk+Rk

j )

K = 1 −AverageUtilization

where K is the number of resources (or requirements), Sk is normalized uti-
lization for resource k(1 < k < K, 0 < Sk < 1), and Rk

j is job j’s normalized

requirement for resource k(0 < Rk
j < 1). BM measures unevenness across uti-

lization of multiple resources, and FM measures how much resources are under-
utilized on average. Therefore, lower BM and FM imply better balanced resource
utilization and better average utilization, respectively.



Fig. 2: Internode scheduling

To prefer the fastest node among neighbors, the objective function also includes
an inverse term for CPU speed. Before sending a job profile, there is a simple
confirming handshake process between a sender and a potential receiver to avoid
inappropriate job migration because the potential receiver information may not
be up-to-date at the sender.

In the PULL model, a receiver node tries to obtain a job from its CAN neighbors
so as not to waste its available resources. However, the node does not have all in-
formation on the queued jobs resource requirements in its neighbors to minimize
neighbor update message sizes, so the node invokes a PULL-Request message
to the node having the closest priority job at the head of queue that is higher
than the priority of job at the head of the queue in the current node. If there are
multiple such nodes, the request is sent to the node with maximum queue size
among its neighbors. If there are multiple candidate jobs in the waiting queue,
then the job that has minimum objective function value (BM * FM, as above),
is selected. If there is no candidate job, then the requesting node gets a PULL-
Reject message and continues to look for another potential sender having the
appropriate priority along with maximum queue length not contacted recently.

6 Experiment and Results

6.1 Experimental Setup

A synthetic workload was generated to model the grid resource configuration
containing heterogeneous nodes capable of executing a heterogeneous set of jobs.



The simulation scenario consists of 1000 multi-core nodes (having 1, 2, 4 or 8
cores), and 5000 jobs submitted to run on those nodes. Each node has multiple
resource capabilities such as CPU speed, memory size, disk space and the number
of cores. The jobs are also modeled similarly having the heterogeneous resource
configuration as their requirements. A high percentage of the nodes (and jobs)
have relatively low resource capabilities (requirements), and a low percentage of
nodes (and jobs) have high resource capabilities (requirements).

The interval between job submissions follow a Poisson distribution, with varying
average job inter arrival times in the experiments. Each job has an estimated
running time associated with it. The estimated times are uniformly distributed
between 0.5T and 1.5T, with T= 3600 seconds, running on a canonical node with
a normalized CPU speed of 1. The simulated job running time is then scaled up
or down by the CPU speed relative to the canonical node.

We compare our schemes to the FCFS scheduler with backfilling which sched-
ules jobs in the order they arrive and also performs backfilling of jobs on residual
resources. To measure the performance of the long running grid system, we run
the simulations in a steady state environment. By steady state, its implied that
the job arrival and departure rates are similar, so that the system achieves a
dynamic equilibrium state during the simulation period, with the system nei-
ther highly overloaded nor underutilized. Hence, the average total system load
is determined by the inter-job arrival rate. However, very lightly loaded systems
were not tested, because they are not very interesting for measuring dynamic
scheduling performance.

The total waiting time for a job is usually calculated as the non-executing time
spent by the job from the time it was submitted in the network till it completes
execution. However, in this paper we do not account for the time spent by the
job between the job submission and job migration process in the network. In-
stead we consider the job arrival time as the time at which the job arrives at
the node where it can be executed. Thus, the wait times are redefined as the
non-executing time spent by the jobs after the job has migrated to the node
where it would be scheduled for execution.

The neighbors of the node are arbitrarily generated. We produce results for
nodes with neighbors having similar resource constraints and nodes with vary-
ing neighbors in order to show the effectiveness of our algorithms in the CAN
and other interconnected networks. Specifically, we produce results for a network
where each node is connected to exactly two other nodes (abbreviated as 2-NN)
and a CAN-like network with 3-4 neighbors. We say CAN-like because the net-
work constructed does not strictly adhere to CAN specifications though each
node is connected to 4 other nodes that have similar resource capabilities. For
simplicity we refer to the CAN-like network as CAN’ in the following sections.



6.2 Experimental Results

Figure 3 lists and compares the median wait times across all jobs for each job
inter-arrival time. The median wait times are plotted for the four scenarios FCFS
with Backfilling, Local preemptive scheduling with Backfilling and Internode
scheduling (in both CAN’ and 2-NN). We experimented with different values for
α. However, setting α = 0 yielded the lowest median wait times across all jobs
and so, we use this value to plot our graphs. This is essentially a Shortest Job
First preemptive strategy i.e. at any time, the job with the smallest remaining
executing time is chosen to run irrespective of its waiting time in the queue.

Fig. 3: Median wait times for different Job inter-arrival times

(a) Median waittimes in long waiting jobs (b) Overall median waittimes

Fig. 4: Median wait time comparisons in CAN’

When the jobs have low inter-arrival times, jobs arrive quickly onto the node



and spend more time waiting in the queue. In contrast, when jobs have higher
inter-arrival times, they arrive considerably later than its previous job and end
up with comparatively lower wait times. It is clear from Figure 3 that local
preemptive scheduling algorithm results in significantly lower wait times when
compared to the FCFS strategy for all cases of job inter-arrival times. Significant
differences can also be observed between waiting times of local preemptive and
internode scheduling proving the effectiveness of the internode scheduling algo-
rithm. The differences in wait times for CAN’ and 2-NN internode scheduling
algorithms is low for low job inter-arrival times (1.5 and 2.0) and increases with
increase in job inter-arrival times. This shows that the internode scheduling is
more effective for more neighbors especially when the job inter-arrival time is
high. This is because for low job inter-arrival times, job migrations to neighbor-
ing nodes are rare since those nodes are already executing many jobs.

(a) Inter-arrival rate 1.5 (b) Inter-arrival rate 2.5

(c) Inter-arrival rate 4.0

Fig. 5: Fraction of jobs completed in the four schedulers

We also conducted experiments for values α = 0.5 and β = 1 so that jobs
that have been waiting in the queue for a while get a chance to run. In this
scenario, the jobs that have waited in the queue for a long time compete against
the shorter running jobs. The intuition behind this experiment was to prevent



the long waiting jobs from being starved of CPU and to reduce their total wait-
ing time. Figure 4a shows the gain achieved in the wait times for the top 10%
of long waiting jobs in CAN’. We also observed similar results for the 2-NN
and local preemptive scheduling scenarios. Fig 4b shows the median wait time
comparisons of the two approaches. The choice of picking the appropriate value
of alpha depends on what type of service we intend to provide the end-users
(i.e. bounded wait times for all jobs vs. highest throughput for most jobs). We
believe the values of the wait times to be dependent on the type of load (jobs)
being submitted to the nodes and the network environment.

Figures 5a to 5c illustrates the distribution of the wait times for jobs in all
the environments, i.e. preemptive scheduling (both local and internode schedul-
ing) and non-preemptive FCFS scheduling. The first 2000 jobs having the lowest
wait times have been omitted in plotting the graphs. We did this because so
many jobs wait for very little time and so cutting off the part where all the lines
completely overlap doesn’t lose any information. The plots show that the waiting
times of jobs decreases with increasing job inter-arrival times in the FCFS envi-
ronment. The curves in Figure 5a show improvement in the percentage of jobs
completed with low wait times for local and internode scheduling as compared to
the FCFS scheduling. We can also observe that the curves for local preemptive
scheduling and internode scheduling (for 2-NN) are almost overlapping. How-
ever, the distinction between these curves becomes more apparent with higher
job inter-arrival times. We can see a marked improvement (in Figure 5c) on the
percentage of jobs completed with low wait times for our preemptive scheduling
strategies over the non-preemptive FCFS approach when the job inter-arrival
rate is 4.0. The internode scheduling in CAN’ performs significantly better than
the non-preemptive FCFS strategy.

We also repeated the same experiment for a smaller scheduling interval of 2.5
sec to observe any significant variances in the wait times. However, the im-
provements in the median and average wait times were almost negligible except
for Internode-scheduling for inter-arrival rate of 4 seconds in CAN’. The CAN’
(for inter arrival time=4s) responded very well (almost 50% decrease in median
wait time) with the change in the scheduling interval. We think this is because
the CAN’ has more neighboring nodes with similar resource requirements that
are capable of running the job and thus succeeds with a higher probability of
scheduling the job when compared to the 2-NN topology. Also, due to high job
inter-arrival time the scheduler is able to find more such nodes because the neigh-
boring nodes have more likelihood of having empty cores. We believe that factors
such as the order in which the jobs are submitted, their execution times and the
resource requirements for these jobs, all play a critical role in determining the
optimal scheduling interval. More on this is discussed in the Future Work section.

Another important scheduling criterion is reducing the maximum wait time,
so that no (or fewer) jobs wait a very long time to run. Figures 6a to 6c focuses



on the tails of the job distributions of Figures 5a to 5c (the last 100-200 jobs
having the highest wait times). Figure 6a shows that the local preemptive sched-
uler does better than internode scheduler when the job inter-arrival rate is 1.5.
We believe this is because since a large number of jobs arrive in a short span of
time, the jobs migrated to neighboring nodes would result in longer job queues
for some nodes; thus increasing the wait times for jobs further down the queue.
In other words, there is a load imbalance. We can see a similar trend in Figure
6b though there are fewer such jobs. As the job inter-arrival time increases, this
effect is reduced. In Figure 6c we observe an interesting trend where Internode-
2NN does better than both local preemptive and Internode CAN’ schedulers.

(a) Inter-arrival rate 1.5 (b) Inter-arrival rate 2.5

(c) Inter-arrival rate 4.0

Fig. 6: Fraction of jobs completed in the four schedulers (towards the end)

The total number of preemptions for shortest-job first strategy in the Local pre-
emptive scheduling (for scheduling interval of 5 secs) scenario varied from 556
(for Inter-arrival times=1.5 secs) to 471 (for IAT = 4 secs) while that for In-
ternode scheduling varied between 570 to 480. This was approximately equal to
1/8th the total number of jobs submitted in the system. As mentioned before,
we believe that factors such as the order in which the jobs are submitted, their
execution times, resource requirements and load balancing of these jobs all play
a critical role in determining these numbers. For scheduling interval (δ) of 2.5



secs, we didnt notice any significant differences in these values. The number of
preemptions started to increase considerably only when the value of alpha was
set to 1 or higher. But this resulted in high median and average wait times across
the network.

7 Conclusion

A preemptive scheduling algorithm (with backfilling) for multi-core grid re-
sources was designed and implemented. As part of local scheduling, jobs that
are estimated to complete sooner were given higher priority compared to long
running jobs while at the same time ensuring that the long running jobs get
their fair share of the CPU. The results show that our algorithm yields lower
average and median wait times when compared to the FCFS approach. In par-
ticular, the shortest-job first algorithm yields the lowest median wait-times for
the system compared to cases where long running jobs compete for the CPU.
The Internode scheduling ensures that those jobs that cannot be immediately
scheduled are PUSHED to a neighboring node if it can run in their residual re-
sources. It also allows a node to PULL jobs from neighboring nodes to utilize its
local residual resources. An appropriate value for α, the weight for the waiting
time for a job, ensures to lower the wait times for long waiting jobs. In addition,
the median wait times for CAN-like systems can be further lowered by choosing
the appropriate value for the scheduling interval δ.

8 Future Work

The local scheduling and internode scheduling algorithms find and execute a
job using residual free resources in a node. This means that only jobs that can
start running immediately will be moved. However, if the load across nodes is
skewed, the job queue lengths vary greatly, and hence a more pro-active queue
balancing scheme would improve load distribution and overall throughput across
heterogeneous nodes. To address this, we illustrate the same technique used in
[9] here. Firstly, the maximally loaded resource among the K available resources
is set as the Load of a node, and the algorithm minimizes the total sum of the
Loads among neighbors, and also balances Load across the nodes[22]. The term
W k

i is defined, normalized load for Resource k of Node i by:

W k
i =

∑
Jj∈Queuei

(Rk
j ), 1 ≤ k ≤ K

where Jj is Job j, Rk
j is the kth normalized resource requirement for Jj , and

Queuei is the job queue for node i. The normalized load of Node i, Li is given
by

Li = Max(W i
k), 1 ≤ k ≤ K

The PUSH and PULL job migration models can be used for queue balancing,



as they were for internode scheduling. For PUSH, a node i computes normalized
load (Li) for itself and for its neighbors. If Li is the locally maximum value
among all its neighbors, then node i checks its queue to find candidate jobs for
migration that reduce Li if the (candidate) job is moved. Among these jobs,
those jobs that satisfy the priority constraints in the neighboring node are con-
sidered. When there are multiple candidate jobs, the algorithm selects the job
and the receiver node that minimize an objective function if the job is moved to
the neighbor.
The PULL model is similar to the PUSH model, except that the node with a lo-
cally non-zero minimum normalized load among equal or less capable neighbors
will initiate the PULL process from the most loaded node among its neighbors.
The Queue Balancing technique may further improve the performance of the
desktop grid system.
Further research can be done by experimenting with different sets of workloads
for different types of networks. We could then observe what values of δ and α
give optimal values for the median wait times across the nodes.
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