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Abstract. MapReduce and other Data-Intensive Scalable Computing
paradigms have emerged as the most popular solution for processing mas-
sive data sets, a crucial task in surviving the “Data Deluge”. Recent works
have shown that maintaining data locality is paramount to achieve high
performance in such paradigms. To this end, suitable task assignment al-
gorithms are needed. Current solutions use round-robin task assignment
policies, which was shown to yield suboptimal results. In this paper, we
propose and evaluate new algorithms for task assignment on a model of
the Hadoop framework, comparing them with state-of-the-art solutions
proposed in theoretical works as well as with the current Hadoop task
assignment policies.

1 Introduction

The data-intensive computing paradigm has recently received significant atten-
tion in both research and industrial ICT communities due to the exponential in-
crease of data available for analytical processing–the so-called “Data Deluge” [7].
The cloud computing scenario represents the most important arena where the
potential impact and the effectiveness of data-intensive computing are most vis-
ible. The Cloud is an abstraction for the complex infrastructure underlying the
Internet and refers to both the applications delivered as services over the net-
work and the hardware and software resources that provide those services. As a
key concept, the cloud computing paradigm shifts data storage and computing
power away from the user endpoints, across the network, and into large clus-
ters of machines hosted by cloud providers (e.g., Amazon, Google). The research
challenges aimed at exploiting the full potential of data-intensive computing lie
in designing clusters and software frameworks to improve performance of mas-
sive simultaneous computations, energy efficiency, and reliability of the provided
services. In this regard, MapReduce is the leading software framework, composed
of both a programming model and an associated run-time system, introduced
by Google in 2004 to support distributed computing on large data sets, through
splitting the workload over large clusters of commodity PCs [4, 5]. A critical
issue to achieve good performance on large scale MapReduce systems lies in
ensuring that as many data accesses as possible are executed locally. To this



end, a data processing job is parallelized in a set of tasks, which are assigned
to servers which will execute them. However, purely locality-based scheduling
may lead to long latencies, since a specific computation may access data stored
on busy servers. Thus, locality-aware, latency minimizing scheduling algorithms
have been designed [6] to reduce latency while still exploiting locality.
Problem Settings and Contributions We present an algorithm for task as-
signment on a cluster of servers that balances latency and resource usage, while
also taking into account the workload running on the target cluster. The pro-
posed algorithm is able to achieve an efficient tradeoff between latency and re-
source usage through employing a novel heuristic technique. A simulation-based
analysis of the performance of the proposed algorithm against the state-of-the-
art solutions is presented, showing that it is able to obtain lower latencies than
the standard locality aware round-robin strategy [15], as well as lower resource
consumption than the flow-based algorithm reported in [6] together with a better
computational complexity. Moreover, we show that our algorithm and the flow-
based one are Pareto-optimal with respect to latency and resource consumption,
while the round-robin is not. On the other hand, the present work does not deal
with fault tolerance in MapReduce systems. While this is also a critical issue in
achieving performances, it is a different issue from load balancing, which is best
covered with specialized approaches that act during the task execution rather
than at task assignment. We also do not deal with job scheduling, and therefore
with fair-share scheduling among users, as this goal is better achieved at the
level of job scheduling.
Structure of the Paper The remainder of the paper is organized as follows.
Section 2 reports a brief summary of background information about MapRe-
duce systems. Section 3 defines the abstract model on which the proposed task
assignment algorithm is designed. An operative description of the algorithm as
well as the description of its properties are also reported. Section 4 presents the
evaluation of the proposed algorithm, in comparison with existing practices and
theoretical works. Section 5 provides an overview of closely related works, and
Section 6 draws some conclusions and highlights future directions.

2 Background

A MapReduce system is a framework for distributed computation over large data
sets that implements both the MapReduce programming model and an associ-
ated run-time system. It mimics the functional programming constructs map
and reduce and enables the programmer to abstract from common distributed
programming issues such as: load balancing, network performances and fault-
tolerance. In spite of its simplicity, the MapReduce programming model turns
out to effectively fit many problems encountered in the practice of processing
large data sets although a preliminary decomposition of the problem into multi-
ple MapReduce jobs is often needed [2,9]. Typical applications are Web indexing,
report generation, click-log file analysis, financial analysis, data mining, machine
learning, bioinformatics and scientific simulations [4,5]. The programming model



is based on the iteration over data-independent inputs where the required op-
erations are: i) computation of key/value pairs from each piece of input (map
phase); ii) grouping of all intermediate values by the key value; iii) reduction
of each data group to a few computed values (reduce phase). Word counting
is a toy example that considers a set of text documents as input and a list of
the occurrences of each word as output, where the key/value pair is given by
“word”/“counting” instances.

Actual implementations of both proprietary [4, 5] and open-source [15] in-
stances of a MapReduce system employ dedicated clusters of commodity ma-
chines. Each cluster is managed by a master server that is in charge of keeping
track of all jobs while they are queued and processed in the distributed sys-
tem. A job-tracker running on the master server schedules the received jobs and
assigns their tasks on target slave servers. Each slave server runs a task-tracker
that schedules the corresponding tasks, on a first-come/first-served strategy, con-
sistently with the local computational resources and operating system policies.
Due to the simplicity of the MapReduce programming model, a user will seldom
submit a single job, since, the composition of more jobs in complex workloads
(or applications) allows to take better advantage of the system. A MapReduce
application is, in general, a Directed Acyclic Graph (DAG) where the nodes rep-
resent jobs and the arcs represent data dependences [2]. Therefore a job can only
be executed after all of its predecessors have been completed.

Canonical solutions to the scheduling of a DAG solve a constrained opti-
mization problem where the figure of merit is the expected latency of every job
and the constraints are represented by the available resources. A variant of this
setting is to employ the minimization of resources as a figure of merit, and the
maximum latency allowed for each job as a constraint. However, these strategies
cannot be applied in the job-tracker, because they need a precise knowledge of
the foreseen latency of each job as well as the available resources. The latency of
a MapReduce job is not trivial to predict. This is due to both the heterogeneity
of applications submitted by different users, and to the presence of straggled
tasks and execution failures, which can change unpredictably the actual latency
of the executed job [10]. In addition, the submission rate of the jobs in a Data
Intensive Scalable Computing (DISC) cluster is quite low — on average, one job
per 2-3 minutes [3,10] — and thus the time to fill a queue of jobs to schedule is
high. Given the aforementioned considerations, the scheduling strategy for the
job-tracker of a MapReduce system should take into account the cluster workload
variation over time. Therefore, online scheduling algorithms represent the prime
choice. Indeed, proprietary and open-source MapReduce systems adopt online
scheduling strategies. Apache Hadoop [1] is an open-source Java implementa-
tion of MapReduce, originally designed to implement parallel processing in local
networks, whose job-tracker employs a round-robin strategy (over the available
resources) to assign the tasks in each job over the slave servers. A more accurate
task assignment algorithm is proposed in [6], where the authors describe a flow-
based algorithm aimed at minimizing the completion time of the considered job
and show how such solution is near-optimal within an additive constant from the



optimum solution obtained through the fully combinatorial exploration of task
assignments. We extend the abstract system model presented in [6], to effectively
obtain a trade-off between job latency and throughput. Moreover, through tak-
ing into account a pre-existing workload, we better represent the challenges of
an on-line task assignment.

3 A Locality Aware and Bounded Latency Approach

In this section, we introduce the main contribution of this work, a Locality Aware
Bounded Latency (LABL) task assignment algorithm. We will now provide some
preliminary concepts and definitions, followed by a description of the algorithm.
We describe the formal properties of the LABL task assignment algorithm, and
show that its running time complexity is linear w.r.t. the size of the input job.

3.1 Preliminaries

Definition 1. A job is a set of tasks, T={t1, . . . , tm}. The tasks are mutually
independent and do not have any control or data dependencies among them.
Thus, the job can be fully parallelized.

In a MapReduce implementation, the tasks are partitioned between map and
reduce operations. The reduce tasks must be scheduled after the map tasks have
completed [15]. Without loss of generality, it is safe to model jobs as composed
only of reduce tasks or only of map tasks. A job composed of both types of
tasks is split in two homogeneous jobs for the purpose of the model, with the
provision that the reduce job is scheduled only after the corresponding map job
has completed. Note also that, in practice, the distribution of latencies of reduce
tasks is remarkably similar to that of map tasks [10], so it is not necessary to
keep track of map and reduce jobs separately.

Definition 2. A cluster is a set of homogeneous servers, S={s1, . . . , sn}, each
of which is assumed to be able to execute a given task with the same execution
time, provided that a copy of the corresponding data is locally accessible.

The locality of the data processed as the input of each task is crucial for the
performance of the whole system. Indeed, the overall performance in terms of
both job latency and total system workload largely depends on the initial data
placement on the cluster.

Definition 3. Given a job T and a cluster S, a data placement function ρ
specifies the subset of servers where the execution of a task t can be completed
through accessing a local copy of the necessary data.

ρ : T 7→ 2S and ∀ t ∈ T, ρ(t) ⊆ S

The number of data copies available for a given task t∈T is denoted as |ρ(t)|. A
task t is denoted as local to a server s if s ∈ ρ(t), and as remote otherwise.



As previously mentioned, the considered abstract model assumes a set of homo-
geneous tasks and a set of homogeneous servers, in such a way that all the tasks
which data is locally available run in the same amount of time (wloc) and all tasks
running on servers where remote data accesses must be employed also exhibit the
same execution time (wrem). The execution time experienced by the latter type
of tasks depends on the total number of remote data accesses observed in the
system. However, the additional overhead (with respect to the execution time
of a task accessing data in place) does not incur in large variations when the
network traffic of the system is in a steady state [6]. Therefore, the usual con-
servative assumption about the execution time experienced by tasks accessing
remote data (fitting most of the practical environments) considers these execu-
tion times constant (over the entire set of tasks). In particular, the execution
times are three times higher than the ones of tasks accessing data in place [6,11].

Definition 4. Given a job T and a cluster S, an assignment corresponds to
the execution of a number of tasks {t1, . . . , }⊆T on a single server s∈S, and is
denoted as a pair (s, {t1, . . . , }). A Task Assignment, A, is a collection of pairs
(s′, T ′) with s′∈S, T ′⊆T , such that every task in T and every server in S is
present in one and only one assignment.

A =

{
(s′, T ′) : s′ ∈ S, T ′ ⊆ T

∀s′′ ∈ S, T ′′ ⊆ T @(s′′, T ′′) : s′′ = s′ ∨ T ′′ = T ′

The assignment of tasks to servers dynamically influences the subsequent assign-
ment choices, due to the potential change of both network traffic and workload
level of the cluster. The job-tracker, running on the master server, is the system
actor in charge of orchestrating the workload distribution thus, it can dynam-
ically evaluate the load of each server. Assuming wloc and wrem as the unitary
task execution times for processing local and remote data, respectively, the eval-
uation of any server load is abstracted through the definition of the following
function. We call the time wloc a unit of work.

Definition 5. Let T be a job, S be a cluster, and A a given task assignment.
The load of any server s∈S is evaluated through a function, φ, which maps
s to the numerical value of its current workload (measured in units of work).
The workload of s in assignment A includes the set of tasks T̂ ⊆ T , such that
(s, T̂ ) ∈ A. Then,

φ(s) = φs + wloc|T̂loc|+ wrem|T̂rem|

where T̂loc={t∈T̂ : s∈ρ(t)} and T̂rem={t∈T̂ : s6∈ρ(t)} denote the sets of task
that access data to be processed locally or remotely, respectively, while φs is a
constant factor that takes into account the load due to the tasks that are already
running on s before the assignment (s, T̂ ) is put into effect.

Note that, without loss of generality, we consider that at least one server s0 has
an initial workload φs0 = 0, i.e. there is at least one free server. To understand
the rationale of this choice, consider a load φ for a given cluster S, leading to
an assignment A. Now, consider a second load φ′ such that ∀s ∈ S, φ′s = φs + 1.



The same assignment is generated under this second workload, except that the
starting time of each task is increased by one unit of time. Thus, to provide a
uniform scale for latency measurements, we normalize φ so that the condition
∃s0 ∈ S | φs0 = 0 holds.

3.2 Optimization Goals

Given a job T and a cluster S, the proposed task assignment strategy aims at
achieving a tradeoff between the job latency and the total resource accounting
of the target cluster. The figures of merit used to evaluate the effectiveness of a
task assignment algorithm alg and the resulting Task Assignment A are:

(i) The resource accounting is defined as the total number Calg(T ) of units of
work consumed to execute the job:

Calg(T ) =
∑
s∈S

(φ(s)− φs)

(ii) The latency lalg(T ) is defined as the maximum completion time for a task
of the job, normalized to the minimum starting time for a task:

lalg(T ) = max
s∈S

φ(s)

(iii) The throughput is defined as the ratio Ralg(T ) between the number of tasks
in the job and its resource accounting:

Ralg(T ) =
|T |

Calg(T )

3.3 Lower Bounds for the Expected Job Latency

We start from the insight that it is possible to drive the online task assignment
procedure taking as a reference a lower bound on the job latency. Such a reference
allows the assignment procedure to start with a predetermined minimum job
latency limit, discarding unfeasible scenarios a-priori and taking into account
remote assignments that would not be considered under lower latency limits.
Given a job T and a idle cluster S (i.e. ∀ s∈S, φs=0), if each task can access the
data to be processed on every server locally (i.e., ∀ t∈T, ρ(t)=S), then a trivial
lower bound for the job latency is given by dwloc|T |/|S| e. Weakening these
assumptions through removing either the hypothesis that each server is initially
idle or the hypothesis of a uniform placement of data for each task, leads to
solve two simpler problems prior to apply any task assignment operation. These
problems are more formally stated as follows.

Problem 1. Let S be a cluster with initial workload defined as φ(s)=φs, ∀ s∈S,
and T be a set of tasks that can locally access the data to be processed on any
server S: ∀ t∈T ρ(t)=S.



Considering the execution cost of each task as wloc (i.e. ignoring the impact of
the data placement), a lower bound for the job latency is computed a-priori as:

l∗ =

⌈
wloc|T |
|S|

+
1

|S|
∑
s∈S

φ(s)

⌉

The straightforward solution of Problem 1 follows from considering each task as
a local one since the data is assumed to be uniformly replicated on each server.

Problem 2. Let S be a cluster with initial workload defined as φ(s) = φs, ∀ s ∈ S,
and T be a set of tasks whose data is replicated on servers according to a data
placement function ρ : T 7→ 2S . Assuming a limit l for the expected job latency,
the set S can be partitioned as S=Sinf [l] ∪ Ssup[l] ∪ Sbusy[l], where Ssup[l]={s ∈
S|l − φs ≥ wrem} is the set of servers that can only execute local tasks within
the latency limit l, Sbusy[l]={s ∈ S|l−φs≤0} is the set of servers that are busy
with workload from previous jobs. Finally, the set of servers that cannot execute
remote tasks within the latency limit l is Sinf [l]=S \ (Sinf [l] ∪ Sbusy[l]). The set
of tasks T can also be partitioned as T = Tloc[l] ∪ Trem[l], where Trem[l] = {t ∈
T |ρ(t) ⊆ Sbusy[l]} is the set of tasks that can only be executed remotely within
l and Tloc[l] = T \ Trem[l] is the set of tasks that can be run within l on servers
with local access to data.

Considering the execution time of any task in Tloc as wloc and the execution
time of any task in Trem as wrem (> wloc), a lower bound for the expected job
latency is derived as:

l∗∗ = min
l≥0


∑
s∈Ssup

⌊
l − φs
wrem

⌋
≥ |Trem[l]|∑

s∈Ssup∪Sinf

(l − φs) ≥ a[l]

where a[l] is the cost of the execution of the given job following an “ideal” assign-
ment of both local and remote tasks within the latency limit l (in this way, the
data placement function is employed only for partitioning the job in the local
Tloc[l] and remote Trem[l] task sets but not to solve assignment conflicts, if any):

a[l] = wrem|Trem[l]|+ wloc|Tloc[l]|

The first inequality states that the servers in Ssup can provide, as a whole, enough
units of work to manage the execution of all remote tasks within the latency limit
of l, while the second inequality constraints the available number of units of work
on the entire cluster to be greater than the resource allocation needed to schedule
each local task locally and each remote task remotely assuming no resource
conflict. Therefore, the minimum among the aforementioned latency limits gives
a lower bound l∗∗ which guarantee a more accurate estimate with respect to the
previous bound l∗, thus allowing to initialize our on-line assignment algorithm
with a threshold that guarantee a faster convergence.



Algorithm: TaskAssignment

Input: S = {s1, . . . , sm}, set of servers
T = {t1, . . . , tn}, set of tasks
l, initial server load limit

Output: A = {(s, T̂ ) : s ∈ S, T̂ ∈ ℘(T );

∀(s′, T̂ ′), (s′′, T̂ ′′), s′ 6= s′′ ∧ T̂ ′ ∩ T̂ ′′ = ∅},
set of assignments

// Place tasks on servers through trading off the job latency and data movement
1 A � ∅
2 while T 6= ∅ do
3 Sinf � {s ∈ S, l− wrem < φ(s) < l}
4 Ssup � {s ∈ S, 0 ≤ φ(s) ≤ l− wrem}
5 Tloc � {t ∈ T, ρ(t) ∩ {Sinf ∪ Ssup} 6= ∅}
6 Trem � {t ∈ T, ρ(t) ∩ (S \ {Sinf ∪ Ssup}) = ∅}

// Phase I
// Place most constrained tasks in Tloc on most loaded servers
// unable to execute a remote task while limiting their load
// under l (i.e. servers in Sinf )
// Tloc ∪ Trem = T

7 while Sinf 6= ∅ do
8 s � ExtractMostLoadedSrv (Sinf ) // Get s∈S s.t. φ(s)>φ(si), ∀si∈S, si 6=s
9 T̃ � ρ−1(s) // Set containing tasks working on s local data

10 T̂ � ∅ // Set of tasks foreseen to be assigned to s
11 while T̃ 6= ∅ and φ(s) ≤ l do
12 t � ExtractMostConstrainedTask (T̃ ) // Get t∈T̃ s.t. |ρ(t)|<|ρ(ti)|, ∀ti∈T̃ , ti 6=t
13 T̂ � T̂ ∪ {t}
14 A � A ∪ {(s, T̂ )}
15 Tloc � Tloc \ T̂

// Phase II
// Place remote tasks on servers s having a load
// such that l− φ(s) ≥ wrem

16 if ConsiderRemoteAssignments (l) = true then
17 S′sup � ∅
18 Â � ∅
19 while Trem 6= ∅ ∧ Ssup 6= ∅ do
20 t � ExtractTask (Trem)
21 s � ExtractSrv (Ssup)
22 T̂ � ExtractAssignment (Â, s)
23 T̂ � T̂ ∪ {t}
24 Â � Â ∪ {(s, T̂ )}
25 if φ(s) ≤ l− (wrem) then
26 S′sup � S′sup ∪ {s}
27 if Ssup = ∅ then
28 Ssup � S′sup; S

′
sup � ∅

29 A � A ∪ Â

// Phase III
// Place tasks on less loaded servers storing the corresponding data

30 T � Tloc ∪ Trem

31 T̃ � ∅
32 while T 6= ∅ do
33 t � ExtractTask (T )
34 s � ExtractLeastLoadedSrv (ρ(t))
35 if φ(s) + wloc ≤ l then
36 T̂ � ExtractAssignment (A, s)
37 T̂ � T̂ ∪ {t}; A � A ∪ {(s, T̂ )}
38 else
39 T̃ � T̃ ∪ {t}

40 T � T̃
41 l � l + 1

42 return A

Fig. 1. Locality Aware & Bounded Latency (LABL) Task Assignment Algorithm



3.4 Task Assignment Algorithm
The LABL Task Assignment algorithm, reported in Figure 1, takes as input a
job T , a cluster S and a lower bound l for the expected job latency that will
be employed to drive the assignments computed as output. The initial value of
the job latency limit l is equal to the lower bound l∗∗, computed as shown in
the previous section. The main loop of the algorithm iterates until all tasks are
assigned to a server and is structured in three phases each of which acts on a
different partition of the set of slave servers. At the beginning, the following
subsets of servers and tasks are considered. Sinf includes all servers that can
execute at least one local task within the limit l but not a remote one, while
Ssup includes those servers that can execute at least one remote task within the
limit l (lines 3–4). Servers in the complementary set Sbusy = S \(Sinf ∪Ssup) will
not be considered until the limit l for the job latency is increased, thus leading
to consider them in Sinf or Ssup in subsequent iterations of the main loop. The
job T is partitioned in two subsets: Tloc and Trem, where Tloc includes any task
that can be executed on at least one server in Sinf∪Ssup and Trem includes any
task that can only be executed remotely before the limit l (lines 5–6).

The body of the main loop is divided in three phases. In the first phase (lines
7–15), we assign as many tasks as possible from Tloc to servers in Sinf , without
exceeding the limit l. The tasks from Tloc are selected in ascending order of
|ρ(t)| (i.e., ranked by the number of servers where they can access data locally),
so as to assign first those tasks that can only be executed on few servers, and
are therefore more likely to cause violations of the target latency l. This is due
to the fact that the initial value of l is l∗∗, which has been computed without
taking into account the effect of many tasks having data on a small group of
servers. In the second phase (lines 16–30), we assign tasks from Trem to servers
in Ssup, without exceeding the limit l. During the first iteration of the main
loop, all tasks from Trem might be assigned, because the limit l is initially set to
l∗∗, which guarantees that all tasks that need to be executed remotely can be
completed within l∗∗. In the third phase (lines 31–41), we assign as many tasks
as possible from Tloc to servers in Ssup, without exceeding the limit l. Finally, if
some tasks are still unassigned, the algorithm increases the limit l by one unit,
recomputes the four subsets (Tloc, Trem, Sinf , Ssup) and iterates the three phases.
Note that the second phase forces the assignment of as many remote tasks as
possible, employing time that could be usefully exploited by other jobs in return
for a potentially very low latency gain. Thus, the algorithm triggers the execution
of the second phase through a threshold function (ConsiderRemoteAssignments
at line 16) that is true until a given latency limit is reached, and false thereafter.

3.5 Example
To understand the behavior of the LABL algorithm, we compare it to the
locality-aware round-robin [15] and flow-based algorithms [6], using a limited
number of servers, |S|=10, and tasks, |T |=20. The task execution times are
set at wloc=1, wrem=3. Figure 2 reports the considered data placement, with a
maximum data replication factor of 2. Figure 3 reports assignments generated by



t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19

s3

s9

s4

s7

s10

s1

s8

s6
s5

s2

Tasks
Se

rv
er
s

Fig. 2. Data Placement

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

0

2

4

6

8

1

3

5

7

Servers

T
im

e
[u
n
it
s
o
f
w
o
rk
]

Initial load Assigned tasks

t5

t7

t7

t7 t15

t8

t8

t8

t0

t9 t2

t13

t11

t12

t12

t12 t10

t14

t14

t14

t3

t16

t6

t19

t1

t17

t17

t17

t4

t18

t18

t18

(a) Round-robin: Crr(T )=32 units of work

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

0

2

4

6

8

1

3

5

7

Servers

T
im

e
[u
n
it
s
o
f
w
o
rk
]

Initial load Assigned tasks

t5

t8

t8

t8 t15

t4

t18

t0

t7

t17

t11

t2

t2

t2 t10

t16

t3

t9 t19

t6

t1

t13

t13

t13

t14

t12

(b) Flow-based: Cflow(T )=26 units of work

Fig. 3. Round-robin (3a) and Flow-based (3b) Assignments

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

0

2

4

6

8

1

3

5

7

Servers

T
im

e
[u
n
it
s
o
f
w
o
rk
]

Initial load Assignment l = 4

Assignment l = 5

t5

t0

t4

t18

t2

t7

t8

t13

t17

t11

t10

t3

t9

t15

t16

t6

t1

t12

t14

t19

(a) CLABL(T )=20 units of work. Remote assign-
ment performed with load threshold l=4

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

0

2

4

6

8

1

3

5

7

Servers

T
im

e
[u
n
it
s
o
f
w
o
rk
]

Initial load Assignment l = 4

Assignment l = 5 Assignment l = 6

t5

t13

t13

t13

t0

t4

t18

t2

t7

t17

t11

t8

t8

t8 t10

t3

t9

t15

t16

t6

t1

t12

t14

t19

(b) CLABL(T )=24 units of work. Remote assign-
ments performed with load threshold l∈{4, 5}

Fig. 4. Locality Aware & Bounded Latency Task Assignments



the round-robin algorithm [15] and the flow-based algorithm [6], while Figure 4
shows assignments generated by the LABL algorithm, when the execution of
the second phase is stopped after the first iteration. The round-robin algorithm
cycles through the list of servers in a pre-determined arbitrary order until all
tasks have been assigned (in the example, starting from s1, then s2, s3, etc.). At
each step, a task is assigned to a server. The algorithm tries to exploit the data
placement by assigning a local task to the current server. If this is not possible, a
remote task is assigned. The greedy choices of the round-robin algorithm results
in a final assignment (see Figure 3a) with high job latency and high resource
consumption (lrr = 8, Crr(T ) = 32). The approach reported in [6] improves
the round-robin strategy and describes an algorithm that allows to choose the
minimum latency assignment among a list of |T | possibilities. Each assignment
is computed through a flow-based approach to maximize the assignment of local
tasks (while limiting the load of the corresponding servers under a temporary
threshold) followed by a greedy strategy necessary to complete the assignment
of remote tasks. Figure 3b shows the assignment resulting from the aforemen-
tioned strategy (lflow = 6). We note that the greedy choice, applied to assign the
remote tasks, can often lead to resource consumption higher than the minimal
one: Cflow(T ) = 26 > 20.

Figure 4 depicts the assignments computed by the LABL algorithm when
taking as input an initial job latency limit l=4. The algorithm exhibits different
behaviors in terms of total job latency and minimization of resource allocation
depending on the configuration of the threshold function (see Figure 1, line 16:
ConsiderRemoteAssignments) that stops the execution of the second phase of
the algorithm from a specified iteration on. Figure 4a, shows the assignments
obtained when the second phase is executed only at the first iteration.

Note that this has no effect on the final assignment since, at the first iter-
ation, there is no tasks that needs to access data remotely. Indeed, the initial
servers load specified in Figure 4a suggests that only tasks local to server s2 may
be considered for remote assignment. The data placement function specifies that
t15 is the only task that can be assigned on s2, however t15 is also local to server
s7. Thus, t15 has to be assigned on s7. The final assignment in Figure 4a uses
resources sparingly (CLABL(T ) = 20, equal to the minimum), at the cost of an
increased latency (lLABL = 8). To decrease latencies, it is necessary to consider
the explicit handling of remote tasks up to the second iteration (Figure 4b). This
allows to assign tasks t8 and t13 remotely, contributing to lower the overall la-
tency, at the cost of an increased resource usage. With respect to the assignment
found by the flow-based algorithm, we achieve the best possible combination of
job latency lLABL = 6 and resource usage CLABL(T ) = 24.

3.6 Formal Properties of LABL Task Assignment Algorithm
In this section, we analyze the properties the LABL Task Assignment algorithm.
We first prove that the algorithm can be configured by manipulating the Con-
siderRemoteAssignments threshold function to achieve strong properties on
load balance and resource usage. Subsequently, we analyze the computational
complexity of the LABL algorithm.



Theorem 1. Under the condition that ConsiderRemoteAssignments is true
for all iterations of the main loop, the LABL Task Assignment algorithm pro-
duces an assignment ALABL with

max
s∈S

φ(s) ≤ min
s∈S

φ(s) + wrem

Proof. Let smax be one of the servers such that the latency of the computed
assignment is lLALB = φ(smax) and smin be another server such that the execution
of the tasks on it makes its final completion time φ(smin) equal to the minimum
latency among the servers in S. The proof will be developed through a reductio
ad absurdum. Assume that φ(smax) > φ(smin) + wrem holds at the end of the
LABL algorithm execution, and that the latency of the computed assignment is
lLABL = lout. Such an hypothesis implies that in the last-but-one iteration of the
outer loop of the LABL algorithm, there was a number n of tasks that could
not be assigned within the latency limit l = lout− 1. In the case n = 1, this task
would have been assigned to the server smin in the phase II of the algorithm, as
the hypothesis guarantees enough resources for the remote execution of it. This
contradicts the initial assumption as the aforementioned last iteration would not
have occurred, and therefore the latency of the computed assignment would have
been lLABL = lout − 1.

In case n > 1, each task can be sequentially assigned for remote execu-
tion to a server, starting from the one having workload equal to φ(smin), as
long as the number of tasks and the number of servers satisfying the condition
φ(s) + wrem ≤ lout − 1 allows the assignments. If all tasks are assigned, then
the last iteration would not have occurred, thus having the same conditions of
the former case. Otherwise, the remaining tasks must be assigned at the next
iteration when l = lout as the servers in the last-but-one iteration could have
included only tasks requesting an execution time in [wloc, wrem − 1] which is
not obviously the case. In the last iteration there would have been only servers
that could satisfy assignments of tasks with an execution time ranging from
wloc to wrem. Therefore the difference between the maximum and the minimum
workload would be φ(smax)− φ(smin) ≤ wrem, that contradicts the hypothesis.

Corollary 1. If Theorem 1 holds and the server smin ∈ S with minimum work-
load satisfies the condition φ(smin)≤l∗∗, then the optimal latency lopt for the
given assignment problem is bounded as: lLABL − wrem ≤ lopt ≤ lLABL.
Proof. The lower bound given by l∗∗ is lesser than or equal to lopt by definition,
while lopt is, in turn, lesser than or equal to the latency limit computed by the
LABL algorithm: l∗∗ ≤ lopt ≤ lLABL. Now, if Theorem 1 holds, then lLABL =
φ(smax) and φ(smin) ≥ lLABL − wrem. Therefore, noting that l∗∗ must be greater
than or equal to φ(smin), leads to the thesis.

Theorem 2. The LABL Task Assignment algorithm, under the condition that
ConsiderRemoteAssignments is false for all values of l > l∗∗, produces an
assignment ALABL with a total resource usage

CLABL(T ) ≤ l∗∗ × |S| −
∑
s∈S

φs



Proof. If ConsiderRemoteAssignments is false for all l except l∗∗, the second
phase of the LABL algorithm is executed only once, that is the assignment of
remote tasks is performed only in the first iteration (i.e., when l = l∗∗).

If all the tasks are assigned in the first iteration (that is, the algorithm
computes a final latency lout = l∗∗) then the resource allocation in terms of
units of work is due to the servers in Ssup ∪ Sinf=S\Sbusy, as in Sbusy there
are only servers with a workload that doesn’t allow to cope with either local or
remote tasks. Therefore the following relation holds:∑

s∈Ssup∪Sinf

(l∗∗ − φs) ≥
∑
s∈S

(l∗∗ − φs)

The term in the right side of the previous inequality (CLABL ≤
∑
s∈S (l

∗∗ − φs) =
l∗∗×|S|−

∑
s∈S φs) is always smaller than the left one, as the workload of servers

in Sbusy is by definition greater than or equal l∗∗.
If the LABL assignment algorithm terminates with lout > l∗∗, then through

remembering that the latency limit given by l∗∗ guarantees (by definition) that
the whole cluster S can allocate all the remote tasks (see the first condition in
the definition of l∗∗ in Section 3.3), and following the theorem hypothesis the
assignment of tasks in the first and third phase of the algorithm will proceed
through allocating the tasks locally, it is easy to infer that the whole number of
units of work actually spent by the cluster (CLABL), at the end of the computation,
will not be greater than l∗∗ × |S| −

∑
s∈S φs.

Theorem 3. The LABL Task Assignment algorithm operates in time

O
(
log |T | × |T | ×max

t∈T
|ρ(t)|

)
where |T | is the number of tasks and maxt∈T (|ρ(t)|) is the maximum number of
data copies available for a task.

Proof. We represent ρ(t) as adjacency lists sorted by server load and ρ−1(s) as
adjacency lists sorted by |ρ(t)|. The sorting of subsets of T can be performed
employing a counting sort algorithm, and has therefore O (|T |+maxt∈T |ρ(t)|)
complexity, since there are at most maxt∈T (|ρ(t)|) keys. The sorting of subsets
of S can also be performed employing a counting sort algorithm, and has there-
fore O (|S|+maxs∈S φ(s)) complexity, since there are at most maxs∈S φ(s) keys.
Note that the maximum values of |ρ(t)| and φ(s) are two orders of magnitude
smaller than |T | and |S| in real world cases, so using counting sort or other distri-
bution sort algorithms is a reasonable choice. In particular, φ(s) ≤ max{φs, l∗∗}
initially, and φ(s) ≤ max{φs, l} in successive iterations.

Computing the four sets Sinf , Ssup, Tloc and Trem amounts to a single scan of
S and T . Since in general |S| < |T |, the construction is overall O (|T |). The first
phase scans the entire Sinf . At most wrem tasks are assigned for each s ∈ Sinf ,
since doing otherwise would lead to violating the latency bound. The complexity
of this phase is therefore O (|S|). The second phase scans the entire Trem, and



assigns all tasks to the least loaded servers in a round robin way. The complexity
of this phase is straightforward, as it performs O (|Trem|) operations, which is
also O (|T |). While the complexity of the third phase, as explained in Figure 1
is O (|T |), it is possible to implement it by iterating on the servers in Ssup and
assigning as many task to each server as it can handle within the latency bound.
This leads to a complexity of O (|S|).

Overall, we have a complexity that is bounded by O (|T |+maxt∈T |ρ(t)|) +
O (|S|+maxs∈S φ(s)) for each iteration of the main loop. Since we increase l
by one at each iteration, the number of iterations of the main loop is given by
lLABL − l∗∗, where lLABL is the latency of the assignment. Note that, even if we
allocated every task remotely, lLABL would be limited by

lLABL ≤
(
wrem|T |+

∑
s∈S

φs

)
/|S|

Considering that l∗∗ ≤ (wloc|T | +
∑
s∈S φs)/|S|, it follows that lLABL − l∗∗ ≤

(wrem −wloc)|T |/|S|. In general, it can be assumed that |T | ' c|S|, where c is a
small factor typically ranging in {2 . . . 10}, therefore the outer loop is executed
only a fixed number of times [4, 10]. However, we ensure this by means of the
threshold limit of l imposed by ConsiderRemoteAssignments. Thereafter, we
perform a reduced loop including only the first and third phases. This reduced
loop, per se, has a complexity O

(
|T |2

)
, but it can be usefully restructured w.r.t.

the general presentation to reduce the complexity. Specifically, since we are now
only assigning tasks t to servers in ρ(t), we can simply work as follows: for each
s ∈ S, compute a set Rs = {t ∈ ρ−1(s) if t ∈ T}, and sort each set by |ρ(t)|.

We now iterate over the servers s ∈ S in a round-robin way, removing one
element of Rs at each iteration and assigning it to s if it has not been already
assigned. This guarantees completion in:

O
(
log |T | ×

∑
s∈S
|Rs|

)
= O

(
log |T | × |T | ×max

t∈T
|ρ(t)|

)

4 Simulation Results

We conducted an experimental campaign to compare the behavior of the LABL
Task Assignment with the round-robin and flow-based algorithms. We employed
as a starting point a real-world configuration from [4], which provides statistical
data on the execution of MapReduce jobs at Google during an entire month.

The experiments are conducted in a simulation environment, scheduling one
job on a set of servers having an existing workload. This is done to simulate
the online scheduling process: given the mean inter-arrival time of 2-3 minutes
reported in [3, 10], the job tracker will have completed the scheduling process
of the job before a second one arrives. On the other hand, due to the long
computation times, previously scheduled jobs will still be active while the new
one is being scheduled. The simulation assumes tasks to require the same time
wloc to be executed on any server storing the necessary data. Since the time
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Fig. 5. Performance of Analyzed Algorithms

wloc also represents a unit of work, we will consider wloc=1 in all experiments.
Whenever a task is assigned to a server that does not have the required data,
the data must be fetched, leading the execution time to increase to wrem. We
set wrem=3 in all experiments, following the same approach as [6]. We explore a
configuration space considering a number of servers |S|={1600, . . . , 2000} and a
number of tasks |T |={3200, . . . , 3500}, though we will only show subsets of the
overall configuration space in some experiments for the sake of clarity. The data
placement is randomly determined such that |ρ(t)| is in the range [1, ρmax] for
all tasks, where ρmax is a parameter fixed at 4 in all experiments, except when
evaluating the sensitivity of the algorithms to the replication factor. In all the
experiments, the initial load is randomly assigned, within the range [0, 5]. In all
cases, the reported data has been obtained as the average of the results gathered
from 30 runs of the same experiment.

4.1 Performance Overview

The experiment reported in Figure 5 compares the effectiveness of the LABL
Task Assignment with both the round-robin and flow-based algorithms, in terms
of throughput, resource accounting and latency. We explore a configuration space
with |S|=2000, |T |={3200, . . . , 3500}. Data for the LABL algorithm are reported
for configurations with threshold latency l set to l∗∗ and l∗∗ + 1.

Figure 5a shows the throughput achieved by the three algorithms. The LABL
algorithm, in both versions, yields a better throughput, i.e. the task assignment
is able to consistently save resources, leaving more server time for other jobs.

Figure 5b reports in a scatter-plot the latency and resource consumption ob-
tained by the three algorithms on the 2000 servers cluster, showing increasing
number of tasks in the job by lighter shades. Figure 5b shows that the flow-based
algorithm consistently obtains optimal latencies, while the LABL algorithm re-
duces resource usage. The LABL algorithm and the flow-based algorithm pro-
duce solutions that are Pareto-optimal, while the round-robin algorithm pro-
duces solutions that are Pareto-dominated by all the others.
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On the overall, the flow-based and LABL algorithms produce solutions of
interest respectively to optimize latency and resource usage. However, the flow-
based algorithm has a higher computational complexity, O(|T |2×|S|) [6], making
the LABL solution more attractive.

4.2 Scalability
The experiment reported in Figure 6 evaluates the robustness of the four algo-
rithms to changes in the availability of servers. Given a set of tasks T , |T |=3450,
a data placement, and an initial workload, we progressively increase the number
of servers that are available for scheduling from a minimum of |S|=1600 to a
maximum |S|=2000. A desirable property for the scheduling algorithm is that the
number of available servers has only limited impact on the latency — assuming
there are enough servers to actually execute the job. Figure 6a shows that only
the round-robin algorithm is significantly impacted by the change in server avail-
ability. This is because the round-robin algorithm makes greedy choices, which
easily prove suboptimal. The other three algorithms behave in a more graceful
way, as their greedy choices are less aggressive — all four algorithms have greedy
components within their heuristics, to limit the complexity, but the greedy com-
ponent is dominant only in the round-robin algorithm. The LABL algorithm
produces Task Assignments with higher latencies than the flow-based algorithm.
This is expected since, as shown in Section 4.1, the LABL algorithm trades off
latency to save resources. Figure 6b shows the impact of server availability on
the resource usage. The impact is minimal on the round-robin algorithm, while
the other three algorithms all tend to consume more resources when these are
available, by placing remote tasks on free servers in an attempt to reduce la-
tency. However, the LABL algorithm, in both versions, always outperforms the
flow-based algorithm, thanks to its greater focus on reducing resource usage.

4.3 Sensitivity Analysis
The experiments reported in Figure 7 and Figure ?? evaluate the sensitivity of
resource usage to, on one hand, the number of tasks to execute and the number of
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available servers, and, on the other hand, the replication factor, i.e. the average
number of copies of the data accessed by a task.

In the first case, only the resource accounting for the flow-based (Figure 7a)
and LABL algorithm with l = l∗∗+1 (Figure 7b) are shown, as these algorithms
have proven to be the most effective ones (see Figure 6). Figure 7 depicts a family
of curves representing resource accounting as a function of the number of servers
(|S|={1600, . . . , 2000}), considering the number of tasks |T |={3200, . . . , 3500}
as a parameter. As expected, the LABL algorithm consumes less resources. The
results also show that the behavior of the LABL algorithm is much more stable.
Moreover, the flow-based algorithm is characterized by a higher resource usage
when scheduling more tasks. Focusing on the replication factor, Figure ?? shows
only the resource accounting employed by the flow-based and LABL algorithm
(with l = l∗∗ + 1), as a function of the cluster size. The round-robin strategy is
not considered since it consistently employs a higher number of resources (see
Figure 6b). We vary the maximum replication factor ρmax from 2 to 7, so that the
average replication factor ranges in [1.5, 4]. Thus, the generated data placements
have |ρ(t)| uniformly distributed in the range [1, ρmax] for all tasks. The results
show that the LABL algorithm is less sensitive to the replication factor than
the flow-based one. The flow-based algorithm takes greater advantage from the
increased locality given by the presence of more replicas of each data item,
but the LABL algorithm is still able to achieve a lower resource usage. Note
that a higher replication factor does impact on the overall costs — keeping up
to date copies of the data across the network is bound to have a significant
communication cost, so the ability to achieve good resource utilization with a
low replication factor is a strong asset of the LABL algorithm.

4.4 Discussion
We will now discuss the interactions of the LABL algorithm with other schedul-
ing goals such as fairness and adaptivity, as well as potential optimizations.
Scheduling for Fairness The fairness property is often desirable in large-scale
clusters that are accessed by multiple users. That is, the applications submitted



by any user should not be delayed indefinitely. Online scheduling strategies, such
as the LABL algorithm, can be integrated into higher level policies aimed at
providing such fairness guarantees, that is, at user-application scheduling level
rather than at task-scheduling. Indeed, the LABL algorithm could effectively
replace the round-robin algorithm that is used as the task assignment component
of the Hadoop fair scheduler [6, 15].
Scheduling Jobs from Multiple Applications It is possible that, for a given
job, some servers of the cluster have no copies of the required data for any of its
tasks — or a set of servers S′ ⊂ S has only copies of data needed for a set of tasks
T ′ ⊂ T , but |T ′| < |S′|, leaving |S′|−|T ′| servers idle. In this case, the servers
cannot be used to run a local task, either leading to execution delays, if they
are used to run a remote task, or to an under-utilization of resources. To further
improve resource utilization and throughput, it is possible to schedule jobs from
multiple applications at the same time, as these are likely to use different data
sets. It is worth noting, however, that scheduling multiple jobs increases the
throughput at a cost in latency. The LABL scheduling algorithm, however, can
easily handle the schedule of sets of tasks belonging to different jobs coming from
independent applications, through simply merging the two sets. The key issue is
selecting jobs that map on data held in different servers, so as to allow servers
that cannot run tasks locally for one job to be used for another job.
Adaptive Scheduling A latency-aware scheduling is more attractive when the
cluster is under-utilized, as it allows to minimize application latency, providing a
better response time to the user. On the other hand, a resource-aware scheduling
becomes increasingly important as the cluster utilization grows. Indeed, in a clus-
ter under a heavy workload, a scheduling policy that favors latency may easily
lead to low availability for other jobs. A common solution is to artificially limit
the amount of resources that a single job can take. The LABL algorithm does
that, by construction, optimizing the resource accounting of the scheduled job,
while still providing a strong latency limit. Thus, it adapts better to workload
variations, as shown in Section 4.3.

5 Related Work

The MapReduce programming model has been formalized in a number of ways.
In [9] MapReduce computations have been compared to the PRAM model, fo-
cusing on analyzing how PRAM algorithms can be expressed using MapReduce.
Among the studies on task assignment, in [11] the authors focus on allocating
tasks of multiple jobs in both on-line and off-line scenarios, providing a gener-
alization of the Flexible-Flow Shop problem. However, the authors do not take
into account the impact of data placement, which is critical due to the size of
the exchanged data. In [6] the Hadoop round-robin based task allocator is com-
pared with a flow-based task allocator, showing that careful consideration of data
placement allows to limit job latency. An in-depth comparison with both algo-
rithms is provided in Section 4. Job latency reduction has been tackled in [19]
considering a production-quality scenario, showing how careful job speculation



helps on limiting the latency penalty introduced by straggled tasks (i.e., re-
motely executed tasks on the critical path), at the cost of an increased resource
consumption. This technique, while applicable to all tasks, is more effective on
reduce tasks, since map tasks are much less likely to be straggled. In a typical
MapReduce implementation, the set of available resources is equally exposed to
all jobs. In [14], on the other hand, a different processing resources are exposed
to each job depending on its workload profile in terms of CPU, disk and memory
usage. Thus, a task tracker can maximize the use of its resources through execut-
ing tasks from jobs with different profiles. This scheme can be easily combined
with our own, since in our approach the set of resources is an input parameter,
whilst the key aspect of [14] is the definition of the resource set for each job
profile. In [16], a framework to estimate the latency of a MapReduce job as a
function of the employed resources is introduced. The scheme is based on a job
profile obtained through the execution of the same job on a smaller data set.
This work, while not directly related to our own, could be adapted to provide
stronger latency bounds for task assignment. This solution, however, would incur
in the cost of job profiling. In [17], flex, a scheduler for MapReduce systems,
is proposed as a replacement for the Hadoop fair scheduling algorithm. With
respect to our work, flex does not take into account data locality, and works
on multiple jobs at the same time in an epoch-based scheme. Similarly, in [18]
multiple jobs are managed, aiming at fairness and data locality, but with no la-
tency guarantees. The task assignment problem is common to all Data-Intensive
Scalable Computing schemes. However, the solutions need to be tailored to the
specific setup: e.g., [12, 13] deal with cloud -based MapReduce services, which
rely on a heavy use of virtualization techniques. Virtualization is not attractive
for every Data-Intensive Scalable Computing scenario, due to the need to spawn
new virtual machines at high frequency — job completion times follow a long
tailed distribution, with 80% of the successful jobs completing within 6 minutes,
as shown in [10] for a 10-month timeframe on a production Yahoo! Hadoop clus-
ter. In [8], on the other hand, a typical cluster of commodity machines is used
to run tasks with dependencies, leading to different problems, such as the need
to keep dependent tasks on near machines to minimize communications.

6 Concluding Remarks

We presented an algorithm for assigning the tasks of a job to servers in a MapRe-
duce cluster. The proposed algorithm balances the tradeoff between latency and
resource consumption. Simulation results support the insight that a practical
implementation would benefit from the proposed approach. Future works in-
clude integrating the LABL task assignment algorithm within a higher level job
scheduling framework, which would also manage fault tolerance issues. In addi-
tion, as a further refinement of the proposed technique, the cluster interconnect
topology will be taken into account to model the remote execution time.
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