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Abstract. The Resource and Job Management System (RJMS) is the middleware in charge of de-
livering computing power to applications in HPC systems. The increasing number of computational
resources in modern supercomputers brings new levels of parallelism and complexity. To maxi-
mize the global throughput while ensuring good efficiency of applications, RJMS must deal with
issues like manageability, scalability and network topology awareness. This paper is focused on the
evaluation of the so-called RJMS SLURM regarding these issues. It presents studies performed in
order to evaluate, adapt and prepare the configuration of the RJMS to efficiently manage two Bull
petaflop supercomputers installed at CEA, Tera-100 and Curie. The studies evaluate the capability
of SLURM to manage large numbers of compute resources and jobs as well as to provide an opti-
mal placement of jobs on clusters using a tree interconnect topology. Experiments presented in this
paper are conducted using both real-scale and emulated supercomputers using synthetic workloads.
The synthetic workloads are derived from the ESP benchmark and adapted to the evaluation of the
RJMS internals. Emulations of larger supercomputers are performed to assess the scalability and
the direct eligibility of SLURM to manage larger systems.

1 Introduction

The advent of multicore architectures and the evolution of multi-level/multi-topology interconnect net-
works has introduced new complexities in the architecture as well as extra levels of hierarchies. The
continuous growth of cluster’s sizes and computing power still follows Moore’s law and we witness
the deployment of larger petascale supercomputing clusters [1]. Furthermore, the continuous increasing
needs for computing power by applications along with their parallel intensive nature (MPI, OpenMP,
hybrid,...) made them more sensitive to communication efficiency, demanding an optimal placement
upon the network and certain quality of services.

The work of a Resource and Job Management System (RJMS) is to distribute computing power to
user jobs within a parallel computing infrastructure. Its goal is to satisfy users demands for computation
and achieve a good performance in overall system’s utilization by efficiently assigning jobs to resources.
This assignment involves three principal abstraction layers: the declaration of a job where the demand
of resources and job characteristics take place, the scheduling of the jobs upon the resources given their
organization and the launching of job instances upon the computation resources along with the job’s
control of execution.

The efficient assignment of large number of resources to an evenly large number of users jobs arises
issues like job launchers and scheduling scalability. The increase of network diameter and the network
contention problem that can be observed in such large network sharing scenarios demand a certain
consideration so as to favor the placement of jobs upon groups of nodes which could provide optimal
communication characteristics. Since the RJMS has a constant knowledge of both workloads and com-
putational resources, it is responsible to provide techniques for the efficient placement of jobs upon the
network.



BULL and CEA-DAM have been collaborating for the design, construction or installation of 2 petas-
cale cluster systems deployed in Europe. The first one, “Tera100” 1, with a theoretical computing power
of 1.25 petaflops, is in production since November 2010 and represents Europe’s most powerful system
and 9Th more powerful in the world, according to November’s 2011 top500 list [1]. The second, the
French PRACE Tier0 system, “Curie” 2, with a theoretical computing power of 1.6 petaflops is currently
under deployment and planned to be in production on March 2012. The Resource and Job Management
System installed on both systems is SLURM [2] which is an open-source RJMS specifically designed
for the scalability requirements of state-of-the-art supercomputers.

The goal of this paper is to evaluate SLURM’s scalability and jobs placement efficiency in terms of
network topology upon large HPC clusters. This study was initially motivated by the need to confirm that
SLURM could guarantee the efficient assignment of resources upon user jobs, under various realistic
scenarios, before the real deployment of the above petascale systems. We wanted to reveal possible
weaknesses of the software before we come up with them into real life. Once the desired performance
goals were attained, the studies continued beyond the existing scales to foresee the efficiency of SLURM
on even larger clusters.

Inevitably the research on those systems implicate various procedures and internal mechanisms mak-
ing their behavior complicated and difficult to model and study. Every different mechanism depends on
a large number of parameters that may present inter-dependencies. Thus, it is important to be able to
study the system as a whole under real life conditions. Even if simulation can provide important initial
insights, the need for real-scale experimentation seems necessary for the study and evaluation of all
internal functions as one complete system. On the other hand, real production systems are continuously
overbooked for scientific applications execution and are not easily available for this type of experiments
in full scale. Hence, emulation seems to be the best solution for large-scale experimentations.

In this paper we present a real-scale and emulated scale experimental methodology based upon con-
trolled submission of synthetic workloads. The synthetic workloads are derived from the ESP model [3,
4] which is a known benchmark used for the evaluation of launching and scheduling parameters of Re-
source and Job Management Systems. In this study the default ESP workload was modified in order
to adapt to the characteristics of real large cluster usage. Hence, the experimental methodology makes
use of two derived variations of ESP which are introduced in this paper: the Light-ESP and the Parallel
Light-ESP. The experiments took place upon a subset of Tera-100 cluster during maintenance periods
and upon an internal BULL cluster dedicated for research and development.

The remainder of this article is presented as follows: The next section provides the Background and
Related Work upon RJMS and performance evaluation for these type of systems. Section 3 describes
the experimental methodology that has been adopted and used for the evaluation of the RJMS. Section
4 provides the main part of this study where we present and discuss our evaluation results upon the
scalability and efficiency of SLURM RJMS. Finally the last section presents the conclusions along with
current work and perspectives.

2 Background and Related Work

Since the beginning of the first Resource and Job Management Systems back in the 80s, different soft-
ware packages have been proposed in the area to serve the needs of the first HPC Clusters. Nowadays,
various software exist either as evolutions of some older software (like PBSPro or LSF) or with new
designs (like OAR and SLURM). Commercial systems like LSF [5], LoadLeveler [6], PBSPro [7] and
Moab [8] generally support a large number of architecture platforms and operating systems, provide

1 http://www.hpcwire.com/hpcwire/2010-05-27/tera_100_europes_most_powerful_
supercomputer_powers_up.html

2 http://www.prace-ri.eu/CURIE-Grand-Opening-on-March-1st-2012?lang=en



highly developed graphic interface for visualization, monitoring and transparency of usage along with
a good support for interfacing standards like parallel libraries, Grids and Clouds. On the other hand
their open-source alternatives like Condor [9], OAR [10], SLURM [2], GridEngine [11], Torque [12]
and Maui [13] provide more innovation and a certain flexibility when compared to the commercial
solutions.

2.1 Evaluating the internals of Resource and Job Management Systems

Numerous studies have been made to evaluate and compare different Resource and Job Management
Systems [14], [15].

One of the first studies of performance evaluations for RJMS was presented in [16]. In this study
Tarek et al. have constructed a suite of tests consisted by a set of 36 benchmarks belonging to known
classes of benchmarks (NSA HPC, NAS Parallel, UPC and Cryptographic). They have divided the
benchmarks into four sets comprising short/medium/long and I/O job lists and have measured aver-
age throughput, average turn-around time, average response time and utilization for 4 known Resource
and Job Management Systems: LSF, Codine, PBS and Condor.

Another empirical study [10] measured throughput with submission of large number of jobs and
efficiency of the launcher and scheduler by using a specific ESP benchmark. The study compared the
performance of 4 known RJMS: OAR, Torque, Torque+Maui and SGE. ESP benchmark has similarities
with the previously described suite of tests [16]. However one of its advantages is that it can result in a
specific metric that reflects the performance of the RJMS under the specific workload and the selected
scheduling parameters. The approach used in this work is an extension of the methodology used for
the performance evaluation in [10], since we propose a similar method using variations of the ESP
benchmark workload model.

Performance evaluation is effectuated by having the system’s scheduler schedule a sequence of jobs.
This sequence is the actual workload that will be injected to the system. Different researches [17], [18],
[19], [20] has been effectuated upon workload characterization and modeling of parallel computing
systems. In order to model and log a workload of a parallel system, Chapin et al. [19] have defined the
standard workload format (swf) which provides a standardized format for describing an execution of a
sequence of jobs. In the internals of our experimentation methodology we are based on the swf format
for the workload collection mechanisms and make use of particularly developed tools for swf workload
treatment and graphic representations.

Based on previous work [20], [21] it seems that to give precise, complete and valuable results the
studies should include the replay of both modeled and real workload traces. In our studies we have
considered only the usage of synthetic workloads for the moment but once the deployment of “Curie”
platform has been made we will collect the real workload traces of the petaflop system and either replay
directly parts of them or try to extract the most interesting information out of them to construct new
models which will be closer to the real usage of this system. Nevertheless, we believe that in those cases
the reproduction of experiments and the variations of different factors results into reliable observations.

2.2 Network Topology aware Placement

Depending on the communication pattern of the application, and the way processes are mapped onto
the network, severe delays may appear due to network contention, delays that result in longer execution
times. Nodes that are connected upon the same switch will result in better parallel computing perfor-
mance than nodes that are connected on different switches. Mapping of tasks in a parallel application to
the physical processors on a machine, based on the communication topology can lead to performance
improvements [22]. Different solutions exist to deal with those issues on the resource management level.

We are especially interested on fat-tree network topologies which are structures with processing
nodes at the leaves and switches at the intermediate nodes [23]. As we go up the tree from the leaves, the



available bandwidth on the links increases, making the links ”fatter”. Network topology characteristics
can be taken into account by the scheduler [24] so as to favor the choice of group of nodes that are placed
on the same network level, connected under the same network switch or even placed close to each other
so as to avoid long distance communications.

This kind of feature becomes indispensable in the case of platforms which are constructed upon
pruned fat-tree networks [25] where no direct communication exist between all the nodes. This reduces
the number of fast communication group of nodes to only those connected under the same switch.
Hence, the efficient network placement is an important capability of a Resource and Job Management
System that may improve the application performance, decrease their execution time which may even-
tually result into smaller waiting times for the other jobs in the queue and an overall amelioration of the
system utilization. SLURM provides topology aware placement techniques, treated as an extra schedul-
ing parameter and based upon best-fit algorithms of resources selection. As far as our knowledge, even
if other RJMS provide techniques for topology aware placement, SLURM is the only RJMS that pro-
poses best-fit selection of resources according to the network design. In this study we make an in-depth
performance evaluation of the topology aware scheduling efficiency of SLURM.

2.3 Scalability

Scalability is one of the major challenges of large HPC systems. It is related with different issues on
various levels of the software stack. In the context of Resource and Job Management Systems we are
mainly interested into scalability in terms of job launching, scheduling and system responsiveness and
efficiency when increasing the number of submitted jobs and the systems scale. Previous related work
in the field [26, 27] have produced a flexible, lightweight Resource Management called STORM which
provided very good scalability in terms of job launching and process scheduling and produced experi-
ments showed very good results in comparison with SLURM or other RJMS. However, on the one hand
the particular software was more a research tool and not a production RJMS and it did not provide any
backfilling or more elaborate scheduling techniques like network topology consideration.

Another scalable lightweight software used for fast deployment of jobs is Falkon [28]. This system
is used as a meta-scheduler by connecting directly upon the RJMS and taking control over the resources
by simplifying the procedure of jobs deployment. Hence again in this case the focus is centered just
on the fast deployment of jobs without any concern about optimized task placement or prioritization
between jobs. A group of computer scientists in CERN have performed scalability experiments of LSF
scheduler3 where they experiment with large scale deployment of LSF scheduler (up to 16000 nodes)
using virtual machines. They resulted into good scaling performance of the LSF scheduler but there was
no reported analysis of the experiments in order to be able to reproduce them.

In our context of large scale HPC systems we are interested into scalability but also keeping the elab-
orate scheduling capabilities of the RJMS in order to guarantee a certain quality of service to the users.
Hence in this study we are trying to explore the scalability of SLURM by keeping into consideration
that efficiency and user quality of services should not be disregarded while we increase in larger scales.
As far as our knowledge no other studies have been found in the literature that evaluate the scalability
and topology aware scheduling efficiency of Resource and Job Management Systems upon large HPC
clusters.

3 http://indico.cern.ch/contributionDisplay.py?contribId=7&sessionId=
7&confId=92498



3 Experimentation Methodology for RJMS scalability and efficiency

3.1 Evaluation based upon Synthetic Workloads

To evaluate the scheduling performance of Resource and Job Management Systems, we have adopted
the Effective System Performance (ESP) model [3, 4]. The initial version of this benchmark not only
provides a synthetic workload but proposes a specific type of parallel application that can be executed
to occupy resources as simply as possible. In our case we just make use of the ESP synthetic workload
model and execute simple sleep jobs in place of the proposed parallel application. Indeed, in the context
of our experiments which is to evaluate the efficiency of the scheduler and not the behavior of the
clusters’ runtime environment, the choice of simple sleep jobs is enough.

The ESP [4] test was designed to provide a quantitative evaluation of launching and scheduling
parameters of a Resource and Job Management System. It is a composite measure that can evaluate the
system via a single metric, which is the smallest elapsed execution time of a representative workload.
In ESP, there are 230 jobs derived from a list of 14 job types, as shown in detail in table 1, which can
be adjusted in a different proportional job mix . The test is stabilized to the number of cores by scaling
the size of each job with the entire system size. Table 1 shows the fraction of each class’s job size along
with the the number of jobs and the respective duration.

Benchmarks Normal-ESP Light-ESP Parallel Light-ESP

Job Type Fraction of job size relative to system size
(job size for cluster of 80640 cores)

Number of Jobs / Run Time (sec)

A 0.03125 (2520) / 75 / 267s 0.03125 (2520) / 75 / 22s 0.003125 (252) / 750 / 22s
B 0.06250 (5040) / 9 / 322s 0.06250 (5040) / 9 / 27s 0.00625 (504) / 90 / 27s
C 0.50000 (40320) / 3 / 534s 0.50000 (40320) / 3 / 45s 0.05000 (4032) / 30 / 45s
D 0.25000 (20160) / 3 / 616s 0.25000 (20160) / 3 / 51s 0.02500 (2016) / 30 / 51s
E 0.50000 (40320) / 3 / 315s 0.50000 (40320) / 3 / 26s 0.05000 (4032) / 30 / 26s
F 0.06250 (5040) / 9 / 1846s 0.06250 (5040) / 9 / 154s 0.00625 (504) / 90 / 154s
G 0.12500 (10080) / 6 / 1334s 0.12500 (10080) / 6 / 111s 0.01250 (1008) / 60 / 111s
H 0.15820 (12757) / 6 / 1067s 0.15820 (12757) / 6 / 89s 0.01582 (1276) / 60 / 89s
I 0.03125 (2520) / 24 / 1432s 0.03125 (2520) / 24 / 119s 0.003125 (252) / 240 / 119s
J 0.06250 (5040) / 24 / 725s 0.06250 (5040) / 24 / 60s 0.00625 (504) / 240 / 60s
K 0.09570 (7717) / 15 / 487s 0.09570 (7717) / 15 / 41s 0.00957 (772) / 150 / 41s
L 0.12500 (10080) / 36 / 366s 0.12500 (10080) / 36 / 30s 0.01250 (1008)/ 360 / 30s
M 0.25000 (20160) / 15 / 187s 0.25000 (20160) / 15 / 15s 0.02500 (2016) / 150 / 15s
Z 1.00000 (80640) / 2 / 100s 1.00000 (80640) / 2 / 20s 1.00000 (80640) 2 / 20s

Total Jobs /
Theoretic Run Time 230 / 10773s 230 / 935s 2282 / 935s

Table 1. Synthetic workload characteristics of ESP benchmark [3, 4] and its two variations Light ESP and Parallel Light ESP x10

The typical turnaround time of normal ESP benchmark is about 3 hours, but in case of real produc-
tion systems, experiments may take place only during maintenance periods and the duration of them are
limited. Hence this typical problem, enabled us to define a variation of ESP called Light-ESP, where we
propose a diminution of the execution time of each different class with a scope of decreasing the total
execution time from 3 hours to about 15 minutes.

Table 1 provides the various jobs characteristics of ESP and Light-ESP. Each job class has the same
number of jobs and the same fraction of job size as ESP but has a decreased execution time which results
in a decrease of the total execution time. The execution time of each class was decreased by a factor of
0.08 except class Z which was decreased by a factor of 0.5 so that it can give a reasonable duration. The
diminution of the total execution time allowed us to perform multiple repetitions of our measurements,
during a relatively small duration, in order to increase our certitude about our observations.



In the case of a large cluster size like Curie (80640 cores), Light-ESP will have the 230 jobs adapted
to the large system size as we can see in table 1. In order to cover different cases of workloads for the
usage of such large clusters, another variation of Light-ESP seemed to be needed with a bigger number
of jobs. Hence, a new variation, named Parallel Light-ESP is defined by increasing the number of all
the job classes (except the Z) with a factor of 10. However, since we still want to have the same total
execution time of the whole benchmark like in Light-ESP, the fraction of job size relative to system
size is devided by the same factor 10. This will also allow the system to have a more adapted system
utilization and probably similar fragmentation like in ESP and Light-ESP cases. Another particularity
of Parallel Light-ESP is that each job class is launched by a different host allowing a simultaneous
parallel submission of all type of jobs in contrast with the sequential submission of the Light-ESP. This
characteristic allow us to be more closer to reality where the jobs do not arrive sequentially from one
host but in parallel from multiple hosts.

The jobs in all the ESP cases are submitted to the RJMS in a pseudo-random order following a
Gaussian model of submission which may be also parametrized. The tuning of the various parameters
impact the inter-arrival times of the workload so various experiments allowed us to select the best fitted
parameters in order to have a fully occupied system as soon as possible. In more detail, Light-ESP
variation launches 50 jobs in a row (22% of total jobs) and the rest 180 jobs are launched with inter-
arrival times chosen randomly between 1 and 3 seconds. In Parallel Light-ESP case each class of jobs is
launched independently with similarly adapted parameters like in Light-ESP case.

Even if better alternatives than the Gaussian model of submission exist in the litterature [29, 20], we
decided to keep the basis of ESP benchmark intact in this first phase of experiments. Nevertheless, our
goal is to continue our studies and explore the real workload traces of “Curie” platform (when those
become available). Detailed analysis of the real workload traces of the production site will allow us to
perform more adapted parametrization of our proposed workloads, so that they can be as closer to reality
as possible.

3.2 Experiment by Combining Real-Scale and Emulation Techniques

In order to measure the various internal mechanisms of the RJMS as one complete system we are based
on real-scale experiment upon a production supercomputer and an emulation technique to validate,
reproduce and extend our measurements as performed upon the real machine. Hence, at the one side
we have been using subsets of “Tera-100” system during its maintenance phase to perform scalability
and efficiency experiments using the described workloads; and in the same time we have been studying,
analyzing and reproducing the different observations using emulation upon a much smaller fraction of
physical machines.

Emulation is the experiment methodology composed by a tool or technique capable for executing the
actual software of the distributed system, in its whole complexity, using only a model of the environment.
The challenge here is to build a model of a system, realistic enough to minimize abstraction, but simple
enough to be easily managed. Various tools currently exist for network [30] or system [31] emulation
but in our case we are using simply a SLURM internal emulation technique called multiple-slurmd.
The normal function of SLURM consists of a central controller/server daemon (slurmctld) executed
upon one machine, where all the scheduling, launching and resource and management decisions take
place and a compute daemon (slurmd), executed upon each computing node of the cluster. The multiple-
slurmd technique bypasses this typical functioning model and allows the execution of multiple compute
daemons slurmd upon the same physical machine (same IP address) but on different communication
ports.

Hence, the number of different deployed daemon on different port will actually determine the num-
ber of nodes of the emulated cluster. Therefore the central controller will indeed have to deal with
different daemons slurmd and as far as the controller’s internal functions concern this emulation tech-
nique allows to experiment with them in various scales regardless the real number of physical machines.



Nevertheless, this technique has various drawbacks such us the fact that we cannot evaluate most of the
functions related to the computational daemon since there may be system limitations due to the multiple
number of them upon the same physical host. Furthermore, the number of internal computing resources
(sockets, cores, etc) may be also emulated through the configuration files which means that task place-
ment and binding upon the resources will not have the same performances as upon the real system and
there may be limitations depending on the physical machines and file systems characteristics. In addi-
tion, we may not execute any kind of parallel application, which forces us to be limited on simple sleep
jobs in order to provide the necessary time and space illusion to the controller that a real job is actually
under execution. In some cases particular simple commands execution with some print into file are used
in the end of the sleep period in order to be sure that the job has indeed been executed.

In order to use this type of emulation with big number of multiple-slurmd daemons upon each host
some particular tuning was needed upon the physical machines especially concerning the various limits,
like increasing the maximum number of user processes and the open files, using the ulimit command.

System scale 2012 nodes (32 cpus/node)
Experiment method Real NO Emulation Emulation upon 30 nodes
Total ESP Execution time (sec) 1197 1201

System scale 4096 nodes (16 cpus/node)
Experiment method Emulation upon 200 nodes Emulation upon 400 nodes
Total ESP Execution time (sec) 1283 1259

Fig. 1. Real-scale and Emulation Measurements comparisons

Finally, an important issue that had to be verified is the similarities of the experiment results between
real and emulation as long as the dependence of the results into the scale of emulation (in terms of num-
ber of emulated hosts per physical machine). Theoretically speaking, concerning the RJMS scalability in
terms of job launching and scheduling efficiency, these functions take place as internal algorithms of the
controller daemon (slurmctld). Hence the differences between real and emulated results were expected
to be trivial. Figure 1 shows the results obtained when executing Light-ESP benchmark upon real and
emulated platforms of various nodes. In these experiments we obtained similar Total execution times
for the same workloads which confirmed our assumptions. In addition multiple experiment repetitions
made us more confident about the validity of these results.

Our experiments have been deployed upon different systems: a BULL testing cluster for internal
usage and a subset of “Tera-100” system during its maintenance periods. The systems have the following
hardware characteristics:

– Cuzco Cluster (BULL internal) in Clayes/France site Intel Xeon bi-CPU/quad-CORE with 20 GB
memory and network structured by 1Gigabit Ethernet + Infiniband 20G.

– Subset of CEA-DAM “Tera 100” Cluster in Bruyeres-le-Chatel/France with Intel Xeon series 7500
processors (quad-CPU/octo-CORE) with 32GB of Memory and Ethernet + Infiniband networks.

4 Performance Evaluation Results

In this section we present and analyze the results of the conducted experiments in three different sub-
sections. The results concerning the scalability of the RJMS in term of jobs number are presented first.



Then, the results and feedback of the topology aware scheduling experiments are detailed. The last sub-
section explains the results and the experiments realized to evaluate the scalability of SLURM in term
of compute resources.

All the experiments are conducted with the consumable resources algorithm of SLURM. This algo-
rithm enables to allocate resources at the core level and thus to share nodes among multiple jobs as long
as no more than one job use a same core at the same time.

4.1 Scalability in terms of number of submitted jobs

The goal of the experiments presented in this section is to evaluate the effect of a large number of jobs
on SLURM’s behavior. Having a good knowledge of the system behavior in that scenario is necessary
to properly configure the related limits and protect the system in its day-to-day usage.

The first set of experiments aims to stress the launch mechanism of SLURM. It enables to define the
maximum submission throughput that characterizes the ability to perform a sustained rate of requests.
The second set of experiments stresses the cancellation mechanism of SLURM and evaluate the level of
control that can be kept on the system in borderline situations when a large amount of events has to be
managed by the RJMS. The simulation of a sudden termination of the production is the exercise used
for that purpose.

The experiments of the first set are realized using submission bursts of small batch jobs with a global
utilization that fit in the available resources. The experiments are conducted at real-scale (no emulation)
with a subset of 2020 Tera-100 nodes. The scheduler allocates resources to the jobs and starts them
while receiving new requests. According to the documentation, a SLURM parameter called defer can
be used to improve the management of this kind of workloads. The impact of this parameter is thus
compared to the default behavior.

The execution time of each submitted job has to be set to a value large enough to prevent the termi-
nation of jobs before the end of the submission stage. The value used in the experiments is 500 seconds.

The results are presented in Figure 2.
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Fig. 2. Instant Throughput for 10000 simple sleep jobs (random 1 to 8 cores each) in submission upon a real cluster
of 2020 nodes (32 cpus/node) with and without the usage of defer scheduling parameter

We see that the average submission throughput is greatly improved using the defer parameter.
This parameter ensures that resources allocations are processed in batch by the scheduler and not se-
quentially at submission time. We observe an average throughput of 100 jobs per second in the standard
configuration and more than 200 jobs per second when defer mode is activated.



We witness a gain of about 50sec for the complete submission of all the 10,000 jobs between the
two cases. The main drawback of the defer mode is that individual jobs are slightly delayed to start.
Clusters that do not have high submission bursts into their real-life workloads should not activate this
parameter to provide better responsiveness.

When increasing the size of the jobs involved in these experiments, we discovered a unexpected im-
pact on the submission throughput. As available resources were not enough to execute all the submitted
jobs, the submitted jobs were put in queue in a pending state resulting in a slower pace of submis-
sion. During the slowdown, the scheduler was overloaded by the processing of the incoming submission
requests. A modification of the SLURM controller was performed in order to eliminate a call to the
scheduler logic while processing in parallel the incoming requests in defer mode.

The result of Figure 3 presents the instant throughput with and without this modification. In both
cases, the defer parameter is used.
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Fig. 3. Instant Throughput for 10000 simple sleep jobs (random 1 to 8 cores each) in submission in Waiting State
upon a real cluster of 2020nodes (32 cpus/node) with and without an important optimization in the algorithm of
defer scheduling parameter

We see that the modification helps to reach a constant throughput. It guarantees that only one instance
of the scheduler is called regardless of the number of incoming requests. The number of jobs is thus no
longer a factor of the submission rate. It can be noted that the results for waiting jobs are below the
throughput of eligible jobs as evaluated above. This low limit has no link with the evaluated aspect and
was corrected in a version of SLURM superior to the one used during these tests.

The experiments concerning the termination of a large workload are then performed. The initial goal
is to guarantee that a large system is manageable even in the worst cases scenarios. Stopping a large
number of jobs on the 2020 nodes cluster outlines a total loss of responsiveness of the system. Looking at
the system during the slowdown, it is noted that the induced load is located in the consumable resources
selection algorithm when dealing with the removal of previously allocated cores from the SLURM
internal map of used cores. The same observation was made by a SLURM community member that
proposed a patch to reduce the complexity of the algorithm used for that purpose. This patch is now part
of the core version of SLURM.

The results of the termination of 10,000 jobs on the real clusters with and without this patch are
presented in Figure 4.

As with the previous experiment, the patch helps to provide a constant termination throughput, no
longer dependent of the number of jobs nor resources involved at the time of execution. The responsive-
ness of the system is now sufficient during the global termination of all the jobs.
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Fig. 4. Instant Throughput for 10000 simple sleep jobs (random 1 to 8 cores each) in termination upon a real cluster
of 2020 nodes (32 cpus/node) before and after an important optimization upon the algorithms of backfill scheduler

Increasing number of both resources and jobs exhibits the scalability thresholds of the RJMS. The
results of our experiments concerning scalability in term of jobs enable to safely consider the execution
of 10,000 jobs on a production cluster using SLURM. It illustrates different issues that outline the
interest of algorithms adapted to the management of high numbers of elements.

4.2 Scheduling Efficiency in terms of Network Topology aware placement

The goal of the second series of experiments is to evaluate SLURM’s internal mechanism to deal with
efficient placement of jobs regarding network topology characteristics, and more specifically regarding
a tree network topology. SLURM provides a specific plugin to support tree topology awareness of jobs
placement. The advantage of this plugin is its best-fit approach. That means that the plugin not only
favors the placement of jobs upon the number of switches that are really required, it also considers
a best-fit approach to pack the jobs on the minimal number of switches maximizing the amount of
remaining free switches.

The experiments are focused on the evaluation of different tree topology configurations in order to
select the most appropriate for “Curie” before its availability for production purposes.

The network topology used on “Curie” is a 3 levels fat-tree topology using QDR Infiniband technol-
ogy. Current Infiniband technology is based on a 36 ports ASIC that made fat-tree topologies constructed
around a pattern of 18 entities. The leaf level of the corresponding Clos-Network is thus made of groups
of 18 nodes, the intermediate level is made of groups of 324 nodes (18*18) and the last level can aggre-
gate up to 11664 nodes (18*18*36). The “Curie” machine is physically made of 280 Infiniband leaves
switches aggregated by 18 324 ports physical switches grouping the 5040 nodes in 16 virtual interme-
diate switches.

The experiments are conducted using the emulation mode of SLURM on a few hundreds of Tera-100
physical nodes. These nodes were used to host the 5,040 fat-tree connected SLURM compute daemons
of “Curie’. A topology description has to be provided to SLURM in order to inform the scheduler of
the layout of the nodes in the topology. In emulation mode, this description is exactly the same as the
description of the associated supercomputer. The real topology of the emulated cluster is different as it
corresponds to the physical nodes topology. However, as the goal is to evaluate the behavior of SLURM
scheduling and not the behavior of the workload execution, it is not at all an issue.

Four different topology descriptions are compared in order to evaluate the impact of the topology
primitives of SLURM on the execution of a synthetic workload. The default scheduler is thus compared
to the tree topology scheduler with no topology information, a medium topology information, and a fine



topology configuration. The medium description only provides information down to the intermediate
level of 324 ports virtual switches. The fine description provides information down to the leaf level of
ASIC of the Infiniband topology, including the intermediate level. The leaf level of ASIC is also defined
here by the term “lineboards”,

Global execution time as well as placement effectiveness are then compared. The placement ef-
fectiveness is calculated based on a complete description of the fat-tree topology (fine topology). This
enables to measure the side effect of a non-optimal selection logic to provide optimal results.

When evaluating placement results, a job, depending on its size, can have an optimal number of
lineboards, an optimal number of intermediate switches or both. For example, a job running on a single
lineboard will automatically have an optimal number of lineboards and an optimal number of interme-
diate switches. A job running on three different lineboards of the same intermediate switch could have
an optimal number of intermediate switches but a sub-optimal number of lineboards if the requested
number of cores could be served by only two lineboards. A job requiring n lineboards could have a sub-
optimal number of intermediate switches if the allocated lineboards are spread among the intermediate
switches without minimizing the associated amount.

Fragmentation of the available resources over the time is one of the biggest issue of topology place-
ment and prevents from having the theoretical placement effectiveness in practice.

The results of the topology experiments are presented in Table 2 and in Figure 5.

SLURM NB cores-TOPO Cons / Topo-ESP-Results Theoretic- Ideal values No Topo Basic Topo Medium Topo Fine Topo
Total Execution time(sec) 925 1369 1323 1370 1315
# Optimal Jobs switches 228 53 13 180 113

# Optimal Jobs on switches + lineboards 228 21 6 120 106
# Optimal Jobs on lineboards 228 64 31 120 209

Table 2. Light-ESP benchmark results upon the emulated cluster of “Curie” with 5040 nodes (16 cpus/node), for
different types of topology configuration

Ten runs of each configuration are executed and show stable results. The global execution time of
the different runs are similar, having even the most detailed flavor of the tree topology strategy finishing
a little bit sooner. CDF on execution times and submission times follow the same trend and show a little
gain for fine topology and a little loss for the medium topology. This first result is really interesting as it
validates the stability of the global throughput of the simulated clusters in regard to the different topology
configurations evaluated. No trade-off between global throughput and independent jobs performances
is thus required. Improvements in the jobs performances due to a better placement should directly and
positively impact the system utilization.

The difference in term of placement effectiveness between the experiments without detailed topology
information and the experiments with the details are huge.

In its standard behavior, the SLURM scheduler surprisingly acts better than a tree topology having
all the nodes at the same level with our synthetic workload. We expected to have a same poor level of
effectiveness but the best-fit logic of both schedulers treats the row of nodes differently. The original
consecutive nodes allocation of the default SLURM scheduler may be at the origin of the difference.

The best placement results of the default scheduler are about 20% to 25% of right placement when
only considering one of the two levels of significant topology information of the tree, and less than 10%
with both simultaneously.

The medium topology configuration provides better results with about 80% of right placement for
its targeted medium level and about 50% for the lineboard level and both simultaneously.

The fine topology configuration provides even better results for the lineboard level with more than
90% of right placement. The results for optimal placement at the intermediate level and for both levels
simultaneously are below the previous configuration, standing between 45% and 50%.
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Fig. 5. System Utilization and Cumulative Distribution Functions of jobs submission and waiting times, for different
cluster sizes and Light-ESPx10 with 2282 jobs



At first sight, the fine topology results are surprising as one could expect the fine strategy to be
a refined version of the medium configuration only increasing the chance of having the right amount
of lineboards when possible. Code inspection was necessary to understand that difference. The tree
topology logic of SLURM is a two steps logic. First, it looks for the lowest level switch that satisfies the
request. Then it identifies the associated leaves and do a best-fit selection among them to allocate the
requested resources. Intermediate tree levels are thus only significant in the first step. The differences
between the medium and the fine configuration are explained by to that logic.

When the system is fragmented and no single intermediate switch is available to run a job, the top
switch is the lowest level that satisfies the request. In medium configuration, all the intermediate switches
are seen as the leaves and the best-fit logic is applied against them. Chances to have the optimal number
of intermediate switches are high. In fine configuration, all the lineboards are seen as the leaves and
the best-fit logic is applied against them without any consideration of the way they are aggregated at
intermediate levels. Chances to have the optimal number of lineboards are high but chances to have the
optimal number of intermediate switches are quite low.

SLURM aims to satisfy the leaves affinity better than the intermediate levels affinity when the system
is fragmented. As a result, multiple level trees are subject to larger fragmentation issues than standard
2-levels tree. Indeed, the leaves being equally treated when fragmentation occurs, jobs are spread among
the intermediate level switches without any packing strategy to increase the chance of recreating idle
intermediate switches. Considering that fact, the choice between using a medium versus a fine topology
configuration is driven by both the hardware topology and the workload characteristics.

Pruned fat-tree topologies, like the one used in Tera-100, have smaller bandwidths between switches
located at the intermediate level. Using a fine configuration with these topologies could result in the
incapacity to provide enough bandwidth to jobs requiring more than one switch because of too much
fragmentation. A medium configuration, only focusing on detailed information about the pruned level
is certainly the best approach.

For systems where the workload characteristics let foresee idle periods or large job executions, then
the fine configuration is interesting. Indeed, it will favor the optimal number of lineboards and even
switches when the system is not highly fragmented. If the workload characteristics let foresee jobs
having the size of the intermediate switches or if a high 24/24 and 7/7 usage would inevitably conduct
to a large fragmentation, using the medium configuration appears to be a better approach.

The results of the topology experiments are really interesting to help configuring the most adapted
topology configuration for tree based network topology. A same approach, using a synthetic workload
tuned to reflect a site typical workload should be used in addition to confirm the choice before produc-
tion usage. It could also be used on a regular basis to adapt the configuration to the evolution of jobs
characteristics.

SLURM behavior with multiple-level trees needs to be studied deeper in order to determine if a
balanced solution between medium and fine configuration could bring most of the benefits of each
method and enable to have better effectiveness with a fine description. A best-fit selection of intermediate
switches in the first step of SLURM tree topology algorithm will have to be evaluated for that purpose.

4.3 Scalability in terms of number of resources

The light-ESP benchmark [32], described in section 3, is used in these experiments. This synthetic
workload of 230 jobs with different sizes and target run times is run on different emulated clusters from
1,024 nodes to 16,384 nodes. In this benchmark, the size of the jobs automatically grows with the size
of the targeted cluster. As a result, a job size always represent the same share of the targeted system.

To evaluate the job size effect on the proper execution of the workload, a modified version of the
Light-ESP benchmark having 10 times the number of 10x smaller jobs is used. This benchmark results
in the same amount of required resources and total execution time as with the previous workload.
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In all cases, a single encapsulated SLURM client call is used in every job in order to evaluate the
responsiveness of the system. The more the central controller is loaded, the more the execution time is
increased by the delay of the associated reply reception. The results gathered during the executions of
the Light-ESP for different cluster sizes are detailed in Figure 6.

We see an increase in jobs execution times as well as a stretching of CDF on submission time for
clusters of 8k nodes and more. The results suggest a contention proportional to the number of compute
nodes in the central controller process. Looking closer at the system during a slowdown, the central
SLURM controller is overloaded by a large amount of messages to process. The messages are mostly
internal messages that are transmitted by the compute nodes at the end of each job.

Current design in SLURM protocol (at least up to version 2.3.x) introduces the concept of epilogue
completion message. Epilogue completion messages are used on each node involved in a job execution
to notify that the previously allocated resources are no longer used by a job and can be safely added to
the pool of available resources.

This type of message is used in a direct compute node to controller node communication and result
in the execution of the SLURM scheduler in order to evaluate if the newly returned resources can be
used to satisfy pending jobs. In order to avoid denial of service at the end of large jobs, SLURM uses
a dedicated strategy to smooth the messages throughput over a certain amount of time. The amount of
time is capped by the number of nodes involved in the job multiplied by a configuration variable defining
the estimated process time of a single message by the controller. This strategy induces latencies at the
end of the jobs before the global availability of all the associated resources for new executions.

In SLURM vocabulary, these latencies correspond to the time the previously allocated nodes remain
in the completing state. The decreasing system utilization densities of the workloads when cluster
size increases, as displayed in Figure 6, outline these latencies.

Each Light-ESP workload is finished when two jobs using all the resources are processed. As a
result, the end of each workload enables to have a direct picture of the effect of the completing latency.
While the number of nodes increases on the emulated clusters, the idle time between the last two runs
increases proportionally. EpilogMsgTime, the parameter used to define the amount of time of a single
epilogue complete message processing, has a default value of 2ms. This result in a completing window
of at least 32s when a 16,384 nodes job is finishing. Looking at the results of our experiments, it sounds
that the delay between the last two jobs is even greater than the expected completing time. In order to
understand that behavior, a new set of experiments are conducted. The associated results are shown in
Figure 7.

The idea was to first reduce the EpilogMsgTime in order to see if the completing time would be pro-
portionally reduced and in a second phase to reduce the epilogue message processing complexity to see
if the time to treat each message would be reduced too. For the second target, a patch was added in order
to remove the scheduling attempt when processing an epilogue complete message on the controller. The
epilogue message time was kept smaller for this run too in order to have a better idea of the additional
effect of the two propositions. As shown by Figure 7, the two strategies enable to reduce the global
computation time consecutively and provide reduced execution time in comparison with the standard
run. However, the results are still no longer as effective as for small clusters. The CDF on submission
times on the same figure still shows the stretching of the curves that reflects delay of submissions of the
ESP launcher. The CDF on execution time shows an increase of execution times that suggests an unre-
sponsive controller during the jobs execution for large clusters. The epilogue completion mechanism in
SLURM, and more specifically its processing time and its peer-to-peer communication design appears
to be the main bottlenecks at scale.

Further investigations must be done in order to evaluate the feasibility of a modification of this
protocol in order to achieve better performances. Reversed-Tree communications, like the one used for
the aggregation of jobs statistics of each node right before the epilogue stage could be a good candidate.
This would result in spreading the overhead of messages aggregation to the compute nodes and let the
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central controller only manage one single message informing of the completion of the epilogue at the
end of each job. Side effects, like compute nodes taking too much time in processing the epilogue stage
will have to be taken into account. This issue may be one of the origins of the peer-to-peer design choice
that is made for current version of SLURM. However, the previous results outline the fact that large
clusters require a new balance between epilogue completion aggregation and quick return to service of
previously allocated nodes.

Large jobs induce long completing periods and a high load of the controller because of large number
of epilogue completion message to process. It is interesting to evaluate the behavior of SLURM with
the same different cluster sizes but with a larger workload composed of smaller jobs to determine if this
behavior is still observed. The results of the experiments are presented in Figure 8.

For small clusters, up to about 4,096 nodes, the global throughput of such a workload is really great
and even close to the theoretical value of 935 seconds. An interesting result is that the responsiveness of
the controller is also greater. Indeed, there is no longer a large variation on the CDF on execution times
for the different cluster sizes. This has to be related to the smoothing of the job endings induced by
the larger workload of smaller jobs. However, large clusters, having the ability to run a larger numbers
of jobs simultaneously, are subject to the same kind of stretching of system utilization than with the
original Light-ESP workload. The effect is even worst as the system utilization is not only stretched but
collapses over the time.

Based on the feedback of the previous studies on large number of job submissions and the effect of
removing the scheduler call in the epilogue complete processing of the controller, a potential candidate
to explain the effect would be the impact of SLURM internal scheduler when called at submission and
completing time. Indeed, the CDF on submission time shows that the submissions on the larger clusters
are delayed during the execution of the workloads on the large supercomputers. As the responsiveness
stays similar across the different sizes, the collapses should be due to the scheduling complexity at
submission time that decrease the submission rate.

Further experiments are required to identify the reasons of this issue. The usage of the defer
parameter, as well as the patches made to remove the various useless scheduler call when this mode is
activated, will have to be tested to validate this assumption.

To sum up, the results on the scalability in terms of number of resources show that good efficiency
and responsiveness can be obtained for clusters up to 4,096 nodes. The scalability threshold is placed
between 4,096 and 8,192 nodes in the evaluated configuration with the consumable resources selection
algorithm of SLURM. A first way of enhancement has been identified and should help to provide better
result in term of scalability for small workload (in number of jobs). A second issue has been identified
and could prevent from extending the positive effect of the first one to larger workload (in number of
jobs).

Improvements and new experiments are required to prepare SLURM to manage larger clusters.
Current production clusters should not suffer of the outlined issues but must be monitored.
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5 Conclusions and future works

In this paper we have presented an evaluation methodology for the Resource and Job Management
System SLURM based upon combined real-scale and emulation experiments using synthetic workloads.

We have validated our methodology by observing similar results for identical workloads on both
the real-scale and emulated systems. Using emulated clusters is a real alternative to cost-effective real-
scale experiments that are not only hard to be approved but also suffers from the inherent hardware
faults that make evaluating a system in its complete availability a pretty hard task. The validation of this
methodology enabled us to conduct experiments on emulated clusters with a strong confidence on their
correctness in real situation.

The choice of using synthetic workloads was initially performed to ease the modification of their
characteristics and address a broader spectrum of scenarios. Furthermore, the PRACE targeted machine,
“Curie”, not being in production at the petaflop scale at the time of the study, no real workload traces
were available as an input for a similar approach.

The conducted experiments helped to guarantee the capabilities and the efficiency of the open source
RJMS compared to the requirements of the targeted petaflop machines, “Tera-100” and “Curie”. In a
second time, experiments at larger scales were realized to not only have a precise idea of the behavior
of the product on current machines but also evaluate the capability of SLURM to manage clusters up to
16,384 nodes.

The conclusions raised during the evaluations are significant for the day-to-day usage of the installed
machines and let us have a better view of the work that will be required in the following months and
years to prepare a valid RJMS candidate for the next generation of supercomputers. Our plans are now
to extend our methodology with real workload traces replay to confirm our first assumptions concerning
the configuration parameters to use on our system. In addition, we will work on the correction of the
identified topology awareness and scalability limitations in order to enhance SLURM for the proper
management of clusters up to 16,384 nodes.

The emulation experience acquired during this study let us consider that an emulated cluster of up
to 65,536 nodes, the theoretical limit of SLURM, could be correctly emulated on the currently available
petaflop machines. We will certainly face new issues and thresholds associated to such a new scale of
experiments.
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