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Abstract. On-chip resource sharing among sibling cores causes resource con-
tention on Chip Multiprocessors (CMP), considerably degrading program per-
formance and system fairness. Job co-scheduling attempts to alleviate theprob-
lem by assigning jobs to cores intelligently. Despite many heuristics-basedem-
pirical explorations, studies onoptimalco-scheduling and its inherent complex-
ity start only recently, and all have concentrated on the minimization of total
performance degradations. There is another important criterion forscheduling,
makespan, which determines the finish time of a job set. Its importance for job
co-scheduling on CMP is increasingly recognized, especially with the rise of
CMP-based compute cloud, data centers, and server farms. However, optimal co-
scheduling for makespan minimization still remains unexplored.
This work compares makespan minimization problem with previously studied
cost minimization (or degradation minimization) problem, revealing these con-
nections as well as significant differences. It uncovers the computational com-
plexity of the makespan minimization problem, and proposes a series of algo-
rithms to either compute or approximate the optimal schedules. It proves that the
problem is NP-complete in a general setting, but for a special case (dual-core
without job migrations), the problem is solvable inO(n2.5 · log n) time (n is the
number of jobs). In addition, this paper presents a series of algorithmsto compute
or approximate the optimal schedules in the general setting. Experiments on both
real and synthetic problems verify the optimality of the optimal co-scheduling
algorithms, and demonstrate the reasonable accuracy and scalability of the ap-
proximation algorithms. The findings may advance the current understanding of
optimal co-scheduling, facilitate the evaluation of real co-scheduling systems,
and provide insights for the development of practical co-scheduling algorithms.

1 Introduction

In a Chip Multiprocessors (CMP) system, multicores typically share certain resource
(e.g., last-level cache) on a chip. The sharing, although shortening the communication
among cores, causes resource contention among co-running jobs. Many studies have
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reported considerable, and sometimes significant, effectsof the contention on program
performance and system fairness [4, 7, 9, 14, 22]. The urgency for alleviating the con-
tention keeps growing as the processor-level parallelism increases continuously.

Recent years have seen many interests in using job co-scheduling to alleviate the
contention [7,10,19]. The basic strategy of job co-scheduling is to assign jobs to cores
in a way that the overall influence from resource contention is reduced.

The prior explorations fall into two categories. The first includes the research that
aims at constructing practical on-line job scheduling systems. It concentrates on heuristics-
based lightweight scheduling techniques. A typical example is the symbiotic co-scheduling
by Snavely and Tullsen [19]. The co-scheduler in the system samples the performance
of different schedules during runtime and selects a good one. Other examples include
the fair-miss-rate-based co-scheduling by Fedorova et al.[7], thread clustering by Tam
et al. [23], and so on.

The second category includes the studies on optimal co-scheduling. The goal is
to uncover the complexity in finding optimal co-schedules and develop algorithms
to either compute or approximate optimal co-schedules. Optimal co-scheduling typi-
cally happens offline, requiring considerable computation, certain knowledge obtained
through profiling runs of jobs, and other conditions. It is not for direct uses in on-line
job scheduling systems, but for exposing the limit to facilitate the evaluation of practi-
cal schedulers. Without knowing optimal schedules (or a reasonable approximation), it
is hard to precisely determine how good a scheduling algorithm is—how far a solution
given by the scheduling algorithm is from the optimal solution and whether further im-
provement will enhance performance significantly, both of which are important for the
design and deployment of practical co-scheduling systems.

Research in optimal co-scheduling is still in a preliminarystage. Although some
studies are relevant to optimal co-scheduling (e.g., co-run cache performance predic-
tion [2, 4] may simplify the profiling requirement), direct attacks to the problem start
only recently [10,11,24]. The objectives of the previous explorations are all on the min-
imization of co-run cost (i.e., the sum of each job’s co-run performance degradation).

But besides cost, there is another important criterion in job scheduling, makespan.
Makespanrefers to the time between the start of a job set and the finishing of the last
job in the set. Minimizing makespan is important in situations where a simultaneously
received batch of jobs is required to be completed as soon as possible. For example,
a multi-item order submitted by a single customer needs to bedelivered in the min-
imal time. This kind of situation is especially common in server farms, data centers,
and compute cloud (e.g., the Amazon Elastic Compute Cloud).With the rapid rise of
these modern computing forms and their wide adoption of CMP,a good understanding
to makespan minimization in multicore job co-scheduling becomes increasingly impor-
tant. But to the best of our knowledge, this problem has remained unexplored.

Makespan minimization differs from cost minimization. Theoptimal schedules for
the two criteria are typically different. In traditional job scheduling literature, the two
criteria have led to drastically different algorithms and complexity analyses [12]. As
to be shown in this paper, for multicore job co-scheduling, the implication of their
difference is pronounced as well, ranging from complexity analysis to algorithm designs
to the ultimate scheduling results (summarized in Section 7).



Motivated by the contrast of the increasing importance and the preliminary under-
standing of makespan minimization in multicore job co-scheduling, we initiate explo-
rations on four aspects.

– First, we prove that makespan minimization in job co-scheduling is NP-complete
on systems with more than 2 cores per chip. The proof is based on a reduction from
the problem of Exact Cover by 3-Sets. We are not aware of any previous analysis
of the computational complexity.

– Second, by offering anO(n2.5 ·log n) algorithm (n is the number of jobs), we prove
that on dual-core systems with no job migrations, the problem is polynomial-time
solvable. To the best of our knowledge, this algorithm is thefirst polynomial-time
solution for this optimal co-scheduling problem.

– Third, we present a set of A*-search–based algorithms and a greedy algorithm to
tackle optimal co-scheduling for makespan minimization inthe general setting—
with two or more cores per chip and with or without job migrations. A*-search
has been applied for job co-scheduling [24], but not for makespan minimization.
Our description focuses on the issues specific to makespan minimization, including
the formulation of the search process, the design of the heuristic function, and the
empirical exploration of the tradeoff between the scheduling overhead and quality.

– Finally, we evaluate the algorithms on both real and synthetic problems, verifying
the optimality of the co-scheduling algorithms (under certain conditions), mean-
while showing that the algorithms may save orders of magnitude overhead over
the brute-force search. Results of the approximation algorithms demonstrate their
capability to achieve near optimal solutions with reasonable scalability.

The analysis and algorithms contributed in this paper help reveal (or approximate)
the lower bound of makespan in multicore job co-scheduling,essential for the assess-
ment of practical scheduling systems. The algorithms may shed insights to the develop-
ment of effective lightweight co-scheduling systems as well.

We organize the rest of this paper as follows. Section 2 describes the problem setting
and assumptions. Section 3 proves the NP-completeness of the optimal co-scheduling
problem, and presents the polynomial-time algorithm and a set of A*-search algorithms
as optimal solutions. Section 4 describes a set of approximation algorithms. Section 5
reports evaluation results. Section 6 discusses the limitations of this work and future
extensions. After reviewing some related work in Section 7,we conclude the paper
with a short summary in Section 8.

2 Problem Definition

Roughly speaking, the optimal job co-scheduling tackled inthis work is to decide the
placement of a set of jobs on a number of cores so that the makespan of the schedule is
minimized.

Finding optimal co-schedules in a general setting is extremely difficult: A program’s
fine-grained behaviors may change constantly, a program maymigrate to any cores, and
programs may start, terminate, or go through context switchat any time. It is necessary
to define the problem settings first.



2.1 Problem Settings

To make the problem tractable and meanwhile keep the analysis useful, we specify the
following settings. Some of these settings may differ from certain practical scenarios.
However, as we will show (after presenting the settings), they do not prevent the use of
the computed co-schedules from serving for its main goal: facilitating the evaluation of
practical co-schedulers.

Machines. The computing system assumed in this exploration containsm uniform
chips, and each chip hasu uniform cores1. There is a certain amount of cache on each
chip that is shared by theu cores on the chip. Only one job can run on a core at each
time point. The execution speed of a job running on a chip depends on what jobs are
placed on the same chip, but has negligible dependence on howthe rest of the job set
are placed on other chips. The architecture is a generalizedform of CMP architectures
on the market, such as IBM Power5 and the Intel Core2 family.

Jobs. The number and starting time of jobs are set to be as follows. The number of jobs
(denoted asn) is equal to the number of cores,n = m ∗ u. This setting is to help focus
on the placement of jobs on cores. Whenn < m∗u, the problem can be converted to the
defined setting if we consider that there are(m∗u−n) extra dummy jobs that consume
no resources. Ifn > m ∗ u, the problem is more complex, requiring the consideration
of temporal complexity (e.g. context switch) besides the spatial placement of jobs. The
temporal complexity is out of the scope of this paper. But we note that this work will
be still useful for that setting, as spatial placement stillexists as a sub-problem in it.

All the jobs must start at the same time. This is a typical assumption in both tra-
ditional job scheduling [12] and recent job co-scheduling [10]. This setting may differ
from the scenarios in real-time scheduling. However, recall that the main targeted sce-
nario of makespan minimization is batch job processing, in which, all jobs typically
arrive at the system at the same time.

Job Migrations. A job can migrate from one core to another, but the migration only
happens when any of the jobs terminates. This setting comes from the following reason.
As well known, keeping a process on a processor is good for locality. As a result, in
practical systems like Linux, occurrences of job migrations are mostly triggered by
load imbalance [1]. In our setting, as the number of jobs equals the total number of
cores, load changes only when some job finishes. Therefore, allowing job migration
only at those times does not cause large departure from real scenarios.

This work focuses on job co-scheduling inside a multicore machine, which is the
primary component of the scheduling in any large multicore-based systems. So it as-
sumes that all processor chips are in the same machine and themigrations of a job
among different chips have similar overhead. (With certainextensions, the developed
algorithms may be applicable to clusters consisting of multiple nodes. The extensions

1 We use the term “cores” for simplicity of discussion. As shown in Section5, the techniques
can also be applied to thread scheduling in SMT systems.



are mainly on the consideration of the different overhead ofmigration within and across
cluster nodes.)

Performance Data. As assumed in previous work [10], the following performance
information is given: the time for a job to finish if it runs alone (i.e., no other jobs
running on the chip), and the performance degradation (defined as the rate between
the co-run time and the single-run time of the job) of the job when it co-runs withk
(0 < k < u) other jobs in the job set. These performance data can be obtained through
offline profiling runs or predictive models [2, 4]. The overhead in gathering the data is
not an issue for optimal co-scheduling: Finding optimal co-schedules is not for direct
real-time scheduling, but for providing a reference for theevaluation of practical co-
schedulers. For a givenu, the overhead to gather the single run and co-run times is
polynomial in the number of jobs. It is typically negligiblecompared to the overhead
in brute-force search for optimal co-schedules, which is exponential in the number of
jobs.

Because a program execution may vary constantly, the performance degradation of
a program in a co-run may vary across intervals. In our setting, we use the average
degradation through the entire co-run. A future enhancement is to combine with pro-
gram phase analysis [17,18]. As previous studies do [10,19], we currently ignore phase
changes to concentrate on co-scheduling itself.

In our setting, jobs may relate with one another, but all degradations are greater than
1. As co-runs are typically slower than single-runs becauseof cache and bus contention,
this setting holds in most cases.

Short Discussion.
The settings described in this section do not prevent the useof the optimal co-

scheduling for evaluating practical schedulers. For example, the evaluation of a sched-
uler S on a machine withm chips andu cores per chip can proceed as follows. The
developers first findm ∗ u applications that are typical for the target system. They
start the applications at the same time on the machine with the schedulerS running to
get the makespan,T . They then run the applications a number of times to obtain the
single-run times and co-run degradations of those applications. After that, all the infor-
mation needed by the problem setting is ready. By applying the optimal co-scheduling
algorithms (to be described), they will get the minimum makespan,T̂ . The comparison
betweenT andT̂ will indicate the room for improvement of the schedulerS.

2.2 Problem Definition and Terminology

With the problem settings defined, the definition of the optimal co-scheduling problem
to be tackled in this work is straightforward. It is to find a schedule that maps each job
to a core under the settings defined in the previous subsection, so that the makespan of
the schedule is minimized.

For the sake of clarity, we define several terms. The allowance of job migration sug-
gests the opportunities for rescheduling the remaining jobs when some job finishes. In
the following description, we call each scheduling or rescheduling point asa schedul-
ing stage. So, if no job migrations are allowed, there is only one scheduling stage; when



migrations are permitted, there are up ton scheduling stages. We usean assignmentto
refer to a group ofu jobs that are to run on the same chip.A sub-scheduleis a set
of assignments that cover all the unfinished jobs and do not overlap with one another.
A scheduleis a set of all sub-schedules that are used from the start to the end of the
executions of all jobs.

3 Complexities and Solutions of Makespan Minimization

In this section, we analyze the inherent complexity of the makespan minimization in
job co-scheduling. We classify the problem instances into four cases:u ≥ 3 with or
without job migration allowed, oru = 2 with or without job migration allowed. Here,
u is the number of cores per chip. We prove that the first two cases are NP-complete
problems, but the fourth is polynomial solvable by a perfect-matching-based algorithm.
The complexity of the third case is to be studied in the future. In addition, we present
heuristic algorithms for all the four cases.

3.1 Complexity Analysis (u ≥ 3, With or Without Job Migration)

When more than two cores share a cache on a chip (u ≥ 3), the makespan minimization
is an NP-complete problem. We prove this result by reducing aknown NP-complete
problem,Exact Cover by 3-Sets(X3C) [8], to our problem.

First, we formulate our co-scheduling problem as a decisionproblem. Given a sys-
tem withm chips, each withu ≥ 3 cores, there is a setJ containingn = m · u jobs,
which are to be scheduled on the cores. Consider all possiblesubsets ofJ with car-
dinality u, denoted byJ1, · · · , J(nu). For eachJi, which represents a group ofu jobs

that may be co-scheduled on the same chip, letwi be the maximum co-run time of all
theu jobs inJi. The question in the decision problem is whether there arem disjoint
subsetsJp1

, · · · , Jpm
, wherep1, · · · , pm ∈ {1, · · · ,

(

n

u

)

}, to form a partition ofJ such
thatmaxmi=1

{wpi
} ≤ B for any given boundB.

Note that the partition ofJ into m subsets of cardinalityu is actually the construc-
tion of a schedule ofn jobs onm·u cores and thatmaxmi=1

{wpi
} is in fact the makespan

of the schedule.
The problem is clearly in NP. We prove that it is NP-complete via a reduction from

X3C, in which given a setX with |X| = 3m and a setC = {Ci|Ci ⊆ X and |Ci| =
3}, the question to ask is whetherC contains an exact cover forX, i.e., m disjoint
members ofC, sayCp1

, · · · , Cpm
, that makes a partition ofC.

The reduction from X3C to our co-scheduling problem is straightforward. Given
any instance of X3C, namelyX andC, we define an instance for co-scheduling, where
(1) J = X with n = 3m andu = 3, (2) for anyJi ⊆ J with |Ji| = 3, if Ji ∈ C then
letwi = 1, and ifJi 6∈ C then letwi = 2, and (3)B = 1.

The construction of the instance for co-scheduling can be done inO(n3) time. Fur-
thermore, it is easy to show thatC contains an exact cover forX if and only if there is
a schedule of jobs inJ to the3m cores with a makespan no more than1. Therefore, the
co-scheduling problem withu = 3 is NP-complete.



The above proof holds regardless of whether job migration isallowed or not. This is
because in both settings, finding a schedule with makespan nomore than 1 is equivalent
to finding an exact cover.

3.2 Polynomial-Time Solution (u = 2, No Job Migration)

We prove that, whenu = 2 and no job migrations are allowed, the optimal co-schedules
can be found in polynomial time. We describe anO(n2.5 · log n) algorithm as follows.

The algorithm uses a fully-connected graph, namely aco-run makespan graph, to
model the optimal co-scheduling problem. Each vertex represents a job; the weight on
an edge is the longer running time of the two jobs (represented by the two vertices
connected by the edge) when they co-run together.

Before describing the algorithm, we introduce the concept of a perfect matching.
A perfect matchingin a graph is a subset of edges that cover all vertices of the graph,
but no two edges share a common vertex. We define theboundof a perfect matching as
the largest weight of all the edges it covers. It is easy to seethat the perfect matching
of a co-run makespan graph with the minimum bound corresponds to a solution to the
makespan minimization problem: Each edge corresponds to anassignment (i.e., co-run
group) and the makespan equals to the bound of the perfect matching.

There are some algorithms for finding the minimum-weight perfect matching on a
weighted graph [6,8]. However, they cannot apply to our problem directly because their
objective functions are typically the sum of edge weights, rather than the maximum of
edge weights in our problem.

We develop an algorithm to determine a minimum-bound perfect matching as shown
in Figure 1. We first construct a sorted list containing all the edges of a co-run makespan
graph in an ascending order of their weights; the edge with the smallest weight resides
on the top of the list. We then use a binary search to determinethe smallest top portion
of the sorted edge list that contains a perfect matching (regardless of weights) covering
all vertices. The binary search starts with the top half of the edge list and checks whether
a perfect matching can be found in those edges. A negative answer would suggest that
more edges are needed, so the algorithm would try the top three quarters of the edge
list. A positive answer would suggest that a smaller portionof the list may be enough to
contain a perfect matching, so the algorithm would try the top quarter of the edge list.
This binary search continues until it finds the smallest top portion of the edge list that
contains a perfect matching.

We claim that the resulted perfect matching is anoptimalperfect matching on the
original co-run makespan graph—that is, no perfect matchings on the original co-run
makespan graph have bounds smaller than the bound of the resulted perfect matching.
The proof is as follows.

LetM be the perfect matching produced by the algorithm,T be the makespan of the
corresponding schedule, andS be the smallest top portion of the edge list that contains
M . According to the algorithm,S is the smallest among all top portions that contains a
perfect matching.

Assume that there is a perfect matchingM ′ whose makespanT ′ is smaller thanT .
LetE′ be the set of edges included inM ′. LetS′ be a set containing all the edges in the
sorted edge list from the top to the heaviest edge inE′. Because the edge list is sorted



in the ascending order of edge weights,E′ ⊆ S′. So,S′ contains a perfect matching.
BecauseT ′ < T , the weights of all the edges inE′ and thus inS′ must be smaller
thanT . While T is the weight of some edge inS, henceS′ ⊂ S. This contradicts with
the assumption thatS is the smallest top portion of the edge list that contains a perfect
matching, thus the proof completes.

The time complexity of the perfect matching detection subroutine,findPerfMatch(G),
is O(

√
n ·m) [8], wheren andm are the numbers of vertices and edges in the graph.

In the algorithm, the binary search process containsO(log n) invocations of perfect
matching detection. The value ofm can be no greater thann2. The time complexity of
the algorithm isO(n2.5 · log n).

/∗ V : vertex set; E : edge set ∗/
/∗ S : generated perfect matching ∗/
L ← sortEdges(E);
lbound ← 1; ubound ← |L|;
G.vertices ← V ; S ← ∅;
while (1) {

curPos ← ⌊ (ubound+lbound)/2 ⌋;
if (curPos == ubound) return S;
G.edges ← L[1:curPos];
S ← findPerfMatch(G);
if (S 6= NULL)
ubound ← curPos;

else
lbound ← curPos;}

Fig. 1.Algorithm for minimum-bound perfect matching.

3.3 Search-Based Optimal Co-Scheduling

The polynomial-time algorithm described in the previous section works only for dual-
core systems without job migrations. This section presentsa search-based approach,
which is applicable to larger systems and supports job migrations.

Background on A*-Search A*-search, stemming from artificial intelligence, is de-
signed for fast graph search. It is optimally efficient for any given heuristic function—
that is, no other search-tree-based optimal algorithm is guaranteed to expand fewer
nodes than A* search, for a given heuristic function [15]. Its completeness, optimality,
and optimal efficiency lead to the adoption for the search of optimal schedules.

For a tree search, where the goal is to find a path from the root to an arbitrary
leaf with the total cost minimized, A* search defines a function f(v) to estimate the
lowest cost of all the paths passing through the nodev. A* search maintains a priority
list, initially containing only the root node. At each step,A* search removes the top
element—that is, the node with the highest priority—from the priority list, and expands



that node. After the expansion, it computes thef(v) values of all the newly generated
nodes, and put them into the priority list. The priority is proportional to1/f(v). This
expansion process continues until the top of the list is a leaf node, indicating that no
other nodes in the list need to be expanded any more as their lowest cost exceeds the
cost of the path that is already discovered.

The definition of functionf(v) is the key for the solution’s optimality and the algo-
rithm’s efficiency. There are two properties related tof(v):

– A* search is optimal iff(v) never overestimates the cost.
– The closerf(v) is from the real lowest cost, the more effective A*-search isin

pruning the search space.

Application to Minimize Makespan for Job Co-Scheduling Although A*-search has
been used for cost minimization problems [24], some substantial changes are necessary
for applying it to makespan minimization. Specifically, we need redefine the structure
of the search tree and the cost estimation functionf(v). This section presents our re-
spective definitions for the scenarios with and without job migrations.

No Job Migrations When no job migrations are allowed, the scheduling problem is
essentially to partition jobs into a number of co-run groups. Figure 2 illustrates our
definition of the search tree. Each non-root tree node (sayv) corresponds to a set,S(v),
that containsu distinct jobs. The nodes in the tree are arranged as follows.Let R(v)
represent the set of jobs that have never been covered by any node on the path from
root tov. Supposew is a child node ofv. All jobs in S(w) must belong toR(v) (i.e.,
S(w) ⊆ R(v)) andS(w) must contain the job whose index2 is the smallest inR(v).
With such an organization, each path from the root to a leaf offers a schedule. All the
paths in the tree together constitute the schedule space.

{1,2,3,4,5,6}

(1,3)(1,2) (1,4) (1,5) (1,6)

(3,4) (3,5) (3,6) (2,3) (2,4) (2,5)

(5,6) (4,6) (4,5) (4,5) (3,5) (3,4)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 2. An example of the search tree for the cases with no job migrations. There are 6 jobs to be
scheduled to 3 dual-core chips. Each non-root tree node corresponds to a set ofu (hereu = 2)
distinct jobs; the set must contain the job whose index is the smallest amongall the jobs that
are not covered from the root to this node. Each path from the root to a leaf therefore offers a
schedule.

We define the cost estimation functionf(v) as follows. LetA represent the set of all
n jobs, andP ′ be the path from the root to the nodev. It is easy to see that the minimum

2 We assume that each job has a unique index number.



makespan of any schedule (or path) passing nodev must be either the makespan of the
jobsA − R(v) (i.e., the jobs covered by the path from the root to the nodev) or the
minimum makespan of the remaining jobs,R(v). The former can be computed from
the assignments represented byP ′. The latter can be no smaller than the maximum of
the minimal co-run times of the jobs inR(v), which can be computed from the given
co-run degradations. We then definef(v) as the maximum of the two values.

. . .

. . . . . . . . .

. . . . . .. . .. . .

.

.

.

stage 1:   co-sched. n  jobs

stage 2:   co-sched. n-1  jobs

stage n :  co-sched. 1 job

.

.

.

start

Fig. 3. Search tree for the cases with rescheduling allowed at the end of a job. Each level corre-
sponds to a scheduling stage. Each node, except the root, representsa sub-schedule of the jobs
that have not finished yet.

With Job MigrationsSimilar to the previous work [11], we use a search tree to model
the co-scheduling problem when job migrations are allowed,as illustrated by Figure 3.
It differs from Figure 2 in that each non-root node represents a sub-schedule (i.e., a set
of assignments that cover all the unfinished jobs and have no overlap with each other)
rather than a group of co-running jobs.

Forn jobs, there are at mostn scheduling stages; each corresponds to a time point
when one job finishes since the previous stage. The nodes at a stage, say stagei, cor-
respond to all possible sub-schedules for then − i + 1 remaining jobs. There is a cost
associated with each edge. Consider an edge from nodea to nodeb. The number of
unfinished jobs inb is typically one less than ina. The weight on the edge is the time
for that job to finish since the scheduling stage ofa.

The makespan minimization becomes to find a path from the rootto any leaf node
so that the sum of the weights on the path is the minimum. We definef(v) as the sum
of two quantities. One is the total weights from the root to the nodev, the other is the
longest single-run time of the remaining jobs.

Given the NP-completeness of the problem, it is not surprising that A*-search is
subject to scalability issues. Our explorations aim at revealing the extent of its scalabil-
ity, and shedding insights for the design of approximation algorithms.

4 Approximation Algorithms

To achieve good scalability, we develop three approximation algorithms based on the
enlightenment from the optimal co-scheduling algorithms presented in the previous sec-
tion. The first two algorithms are applicable generally, while the third one applies only
to dual-core cases.



4.1 Combination with Clustering

The combination of A*-search and clustering may provide further flexibility for strik-
ing a tradeoff between overhead and quality of co-scheduling. We call such combined
algorithms “A*-cluster” algorithms. We first describe its application to the cases with
job migrations, and then outline its uses when migrations are not allowed.

At each (re)scheduling time, the unfinished jobs are clustered based on the length
of their remaining portions. The algorithm controls the number of rescheduling stages
by rescheduling only when a cluster of jobs finish. It also avoids the generation of sub-
schedules that are similar to one another.

We say that a sub-schedule is substantially different from another one if they are not
equivalent when we regard all jobs in a cluster as the same. For example, four jobs fall
into two clusters as{{1 2}, {3 4}}. We regard the sub-schedule (1 3) (2 4) equivalent
to (1 4) (2 3), but different from (1 2) (3 4). (Each pair of parentheses contains a co-run
group.)

Among various clustering techniques, we use a simple distance-based clustering
approach as the data are one dimensional. Given a sequence ofdata to be clustered, we
first sort them in an ascending order. Then, we compute the differences between every
two adjacent data items in the sorted sequence. Large differences are considered as
indication of cluster boundaries. A difference is regardedas large if its value is greater
thand + δ, whered is the mean value of the differences in the sequence andδ is the
standard deviation of the differences.

The A*-cluster algorithm reduces both the height and the width of the search tree.
The number of children of a node is reduced from factorial,

∏

r

u
−1

i=0

(

r−i∗u−1

u−1

)

, to poly-
nomial,O(rγ), whereC is the number of clusters andr is the number of unfinished
jobs, and(γ = C + (Cu − C)/u!).

For the cases without job migrations, the jobs are clusteredbased on their single-run
time. The algorithm prunes the width of the search tree by removing the nodes that are
not significantly different from their siblings, similar tothe pruning in the case with
migrations. The tree height remains unchanged.

4.2 Greedy Algorithm

The greedy algorithm is simpler than the A*-cluster algorithm. At each (re)scheduling
stage, the algorithm iteratively determines the assignments for the remaining jobs. In
each iteration, it finds the best co-run group for the job whose remaining part has the
longest single-run time among all the unfinished jobs. Its intuition is that the longest
jobs typically determine the makespan of a schedule.

4.3 Local Perfect-Matching Algorithm

This approximation algorithm is a generalized version of the perfect-matching-based al-
gorithm proposed in Section 3.2. The extension makes it applicable to dual-core cases
with job migrations. At each (re)scheduling point, it applies the perfect-matching-based



algorithm to the unfinished jobs to obtain a locally optimal sub-schedule. As the perfect-
matching-based algorithm assumes that the number of remaining jobs equals the num-
ber of cores in the computing system, we treat the jobs that have finished as pseudo-jobs,
which exist but consume no computing resource. This strategy may introduce certain
amount of redundant work, but it offers an easy way to generalize the perfect-matching-
based algorithm. The time complexity of this algorithm isO(n3.5 · log n).

There is a side note on the scheduling algorithms that allow migrations. A migration
of different programs may have different overhead. However, because in our setting,
migrations happen only when some job finishes, the total number of job migrations is
small (less than the number of jobs); the total overhead covers only a negligible por-
tion of the makespan (confirmed in Section 6). In our experiments, we use the average
overhead measured on the experimental platform as the overhead of a migration when
comparing the makespan of different schedules.

Table 1.Benchmarks

Benchmarksingle-run co-run degrad rate
time (s)min % max %mean %

fmm∗ 5.63 0.77 11.28 3.67
ocean∗ 13.52 2.13 58.81 19.73
ammp 21.10 1.66 30.24 12.62
art 2.22 2.31 75.42 27.78
bzip 10.90 0.00 38.95 3.31
crafty 6.75 0.07 12.33 4.95
equake 11.05 6.42 78.00 26.46
gap 2.90 2.09 34.34 11.02
gzip 14.10 0.00 13.06 2.19
mcf 7.86 8.23 125.36 42.37
mesa 15.33 0.65 15.15 5.18
parser 3.74 1.74 37.75 13.51
twolf 5.42 0.00 15.73 5.21
vpr 4.58 3.31 42.52 18.30
∗ : from SPLASH-2. Others from SPEC CPU2000.

5 Evaluation

We evaluate the co-scheduling algorithms on two kinds of architecture. For CMP co-
scheduling, the machines are equipped with quad-core IntelXeon 5150 processors run-
ning at 2.66 GHz. Each chip has two 4MB L2 cache, each shared bytwo cores. Every
core has a 32KB dedicated L1 data cache. For Simultaneous Multithreading (SMT)
co-scheduling, the machines contain Intel Xeon 5080 processors (two 2MB L2 cache
per chip) clocked at 3.73 GHz with Hyper-Threading enabled (two hyperthreads per
computing unit.)



The job suite includes 14 programs: 2 parallel programs fromSPLASH-2 [21] and
12 sequential programs randomly selected from SPEC CPU2000. Each of the two par-
allel program has two threads; so, we have 16 jobs in total. Wedo not use the programs
from the entire benchmark suites because the large problem size would make it in-
feasible to compare the scheduling algorithms, especiallywith the brute-force search
algorithm. We use the two parallel programs to examine the applicability of the co-
scheduling algorithms for parallel (in addition to sequential) applications. Table 1 lists
the programs with the ranges of their co-run degradations onthe Intel Xeon 5150 pro-
cessors. The big ranges suggest the potential for co-scheduling.

In addition, we generate some sets of jobs whose single-run time and co-run degra-
dations are set randomly. The use of these synthetic problems helps overcome the limi-
tations imposed by the particular benchmark set.

For each set of jobs, we test the scheduling in cases both withand without job mi-
grations (denoted as “no rescheduling” and “rescheduling”respectively.) The difference
reflects the benefits of rescheduling.

5.1 Comparison to the Optimal

This section concentrates on the verification of the optimality of the A*-search and
perfect-matching-based algorithms. We stress that the optimality is under the settings
defined in Section 2. We compare the results of those scheduling algorithms with the
best schedules found through brute-force search.

Because of the scalability issue of the brute-force search,we use 8 jobs for the
comparison. We use the top 6 programs (8 jobs considering theparallel threads) in
Table 1, along with a number of synthetic job sets. Table 2 reports the results. For each
synthetic setting, we generate 3 problems in that setting, referred to as the 3 trials in the
table.

The data surrounded by boxes are from the optimal co-scheduling algorithms (the
rest are from the approximation algorithms.) The two halvesof the “matching” row
correspond to the precise algorithm in Section 3.2 and the approximation algorithm in
Section 4.3, respectively. Both algorithms are applicableonly to 2-core cases.

Optimality The data in Table 2 show that the optimal algorithms generateschedules
with the same makespans as the schedules found by the brute-force search. For the 8
real jobs on Xeon 5150 (2-cmp), for instance, the optimal schedule found by the 3 algo-
rithms are all as follows: (fmm-1,ocean-1), (ammp,cafty),(art,bzip), (fmm-2,ocean-2),
where fmm-n and ocean-n are theirnth threads, and each pair of parentheses include a
co-running group. The makespan is 0.5% larger than the makespan when the programs
run in isolation.

The bottom 3 rows in Table 2 reveal the minimum, median, and maximum of the
makespans of 100 randomly generated schedules, corresponding to the scheduling in
many existing systems, which work in a cache-sharing-oblivious manner. The minimum
makespans are close to the optimal in the “no rescheduling” cases, but are mostly over
10% larger than the optimal in the “rescheduling” cases. Themedian and maximum are
significantly larger than the optimal. For the 8 real jobs, although random scheduling is



Table 2.Co-schedule makespan on 8 real jobs and a series of synthetic scheduling problems (each
has 8 jobs). The numbers in the table are the makespan achieved with therespective schedule,
relative to the makespan when each job runs in isolation. The real jobs run on two architectures:
Intel Xeon 5150 (2-cmp) and Intel Xeon 5080 (2-smt). The synthetic scheduling problems use
both dual-core (2-core) and quad-core (4-core) systems.

no rescheduling rescheduling
jobs real synthetic real synthetic
arch. 2-cmp2-smt 2-core 4-core 2-cmp2-smt 2-core 4-core
trial 1 2 3 1 2 3 1 2 3 1 2 3

brute-fc 1.0051.0231.491.491.582.112.161.65 1.0021.0131.331.211.191.991.931.56
A* 1.0051.0231.491.491.582.112.161.65 1.0021.0131.331.211.191.991.931.56
matching 1.0051.0231.491.491.58 - - - 1.0021.0231.371.431.52 - - -
A*-clstr 1.0051.1671.551.751.582.382.301.65 1.0121.0231.551.481.292.192.12 1.63
greedy 1.0051.1701.491.901.802.772.341.85 1.0051.1701.431.901.802.322.08 1.87
rand-min 1.0051.0231.551.491.692.242.161.65 1.0051.0231.491.491.582.112.16 1.65
rand-med 1.0161.2551.812.702.222.552.341.88 1.0161.1961.812.701.922.542.33 1.87
rand-max 1.1611.3292.723.302.663.132.912.68 1.1611.3292.723.302.663.132.91 2.68

likely to produce near optimal makespan in the Xeon 5150 system, it causes over 20%
makespan increase on the SMT systems. These results indicate the risks of neglecting
cache sharing in job scheduling.

The comparison between the “no rescheduling” and “rescheduling” results shows
that when the “no rescheduling” algorithms cause non-negligible makespan increase,
rescheduling is usually able to reduce the makespan considerably.

Table 3.The numbers of nodes visited and the time spent by different co-scheduling algorithms
on 8 jobs on Intel Xeon 5080

no resch. resch.
nodestime (ms) nodestime (ms)

brute-fc 210 41 16643446 419332
matching 1 47 4 179
A* 37 23 4405 718
A*-clstr 8 5 32 35
greedy 1 2 4 6
random - 1 - 1

Overhead Table 3 reports the numbers of search-tree nodes visited andthe millisec-
onds spent by different co-scheduling algorithms on 8 jobs on Intel Xeon 5080. In
the “rescheduling” case, relative to the brute-force search, both of the two optimal co-
scheduling algorithms save the search time by several orders of magnitude.



Comparison with Cost Minimization As mentioned earlier in this paper, the two
scheduling criteria, makespan and total cost, typically lead to different results. It is con-
firmed by the experimental results. For example, Figure 4 shows the optimal schedules
(without rescheduling) for both criteria on the Xeon 5080 (2-smt) machine. The sched-
ule with minimum total cost turns out to have 33% larger makespan than the schedule
from the makespan minimization algorithms. On the other hand, the schedule with min-
imum makespan causes extra cost as well. This difference confirms the need for studies
on each of the criteria and the application of the corresponding algorithms in different
scenarios.

cost minimization:
schedule: (fmm-1, crafty), (fmm-2, ocean-1), (occean-2, art), (ammp, bzip)
cost (ie., total degradation): 12.13
makespan: 58.02 sec

makespan minimization:
schedule: (fmm-1, bzip), (fmm-2, art), (ocean-1, ammp), (ocean-2, crafty)
cost (ie., total degradation): 12.88
makespan: 43.56 sec

Fig. 4. Optimal schedules for cost minimization and makespan minimization on Xeon5080 (2-
smt) with no rescheduling.

Table 4. Co-schedule makespan on 16 real jobs and a series of synthetic scheduling problems
(each has 16 jobs). The numbers in the table are the makespan achievedwith the respective
schedule, relative to the makespan when each job runs in isolation. The real jobs run on two
architectures: Intel Xeon 5150 (2-cmp) and Intel Xeon 5080 (2-smt). The synthetic scheduling
problems use both dual-core (2-core) and quad-core (4-core) systems.

no rescheduling rescheduling
jobs real synthetic real synthetic
arch. 2-cmp2-smt 2-core 4-core 2-cmp2-smt 2-core 4-core
trial 1 2 3 1 2 3 1 2 3 1 2 3
matching 1.0051.0331.261.14 1.2 - - - 1.0021.033 1.2 1.071.11 - - -
A*-clstr 1.0051.0591.421.221.211.971.871.93 1.0051.1071.371.201.221.991.861.91
greedy 1.0051.1581.921.321.372.352.972.42 1.0051.1581.921.321.352.001.951.95
rand-min 1.0051.0621.701.481.382.111.922.05 1.0051.0561.581.321.382.081.952.00
rand-med 1.0291.1972.192.032.172.462.492.42 1.0161.1972.191.962.172.452.392.37
rand-max 1.1611.4683.482.922.753.103.232.99 1.1611.4683.482.922.753.033.462.86



5.2 Approximation Algorithms

Besides reporting the optimal co-scheduling results, Table 2 also lists the performance
of the approximated schedules (outside the boxes.) On real jobs, the matching-based
approximation produces near optimal results, the A*-cluster algorithm works simi-
larly well except in the case of “no rescheduling” on “2-smt”architecture where the
makespan is about 14% larger than the minimum. Because of theimprecision caused
by clustering, both approximation algorithms significantly outperform the greedy and
random scheduling in most real and synthetic cases. On the other hand, their distances
from the optimal reflect the room for improvement.

Table 4 presents the results on 16 jobs. It does not include the brute-force and A* re-
sults because the former takes too much time (up to years withjob migrations) to finish
and the latter requires too much memory to run. The results ofthe approximation al-
gorithms are consistent with the 8-job results. Although the minimum makespans from
the random schedules occasionally get close to the results of the approximation algo-
rithms, most random scheduling results are significantly worse than the matching-based
and A*-cluster-based approximations. The greedy algorithm, although performing not
as well as the other two approximation algorithms, outperforms the median results from
random scheduling considerably.

Tables 3 and 5 report that the approximation algorithms takeless than one second,
in contrast to the up to years of time the brute-force search needs.

Table 5.The numbers of nodes visited and the time spent by different co-scheduling algorithms
on 16 jobs on Intel Xeon 5080

no resch. resch.
nodestime (ms)nodestime (ms)

matching 1 86 8 889
A*-clstr 76 39 122 94
greedy 1 3 8 9
random - 1 - 2

Scalability: Figure 5 shows the scheduling overhead of the three approximation
algorithms on a spectrum of problem sizes (with migrations andu = 2.) The greedy al-
gorithm shows the best efficiency for its simplicity; the local matching-based algorithm
shows less scheduling time than the A*-cluster algorithm.

Short Summary
We summarize the experimental results as follows:

1. The experiments empirically verify the optimality of thescheduling results of the
perfect matching and the A*-search algorithm. The two algorithms are orders of
magnitude more efficient than the brute-force search. They are applicable when the
size of the problem is not large.

2. The local matching-based approximation algorithm is preferable whenu = 2 (with
or without job migrations) for its high scheduling quality and little scheduling time.
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Fig. 5.Scalability of approximation algorithms

3. Whenu > 2, the A*-cluster algorithm offers a reasonable solution that produces
good schedules in a moderate amount of time.

4. When scheduling overhead is the main concern, the greedy algorithm may be favor-
able, which uses slightly more time than random scheduling but offers consistently
better results.

6 Discussion

This section discusses some limitations of this work and theinfluence on practical uses.
The requirement of all co-run degradations may seem to be an obstacle preventing

the direct uses of the proposed algorithms in practical co-scheduling systems. However,
that requirement does not impair the main goals of this work.

This work is a limit study. The primary goal is to offer feasible ways to uncover the
optimal solutions in job co-scheduling, rather than to develop another heuristics-based
runtime co-scheduler. Besides offering theoretical insights into co-scheduling, this work
enables better evaluation of co-scheduling systems than before, offering the facility for
efficiently revealing the potential of a practical co-scheduler in a general setting, which
has been infeasible in the past for even small problems.

Furthermore, the algorithms proposed in this work may provide the insights for the
development of more effective online scheduling algorithms both in operating systems
and during the runtime of parallel applications. There has been some advancement in
predicting co-run performance from program single runs (e.g., [2, 4]). The research
in locality analysis has continuously enhanced the efficiency and accuracy in locality
characterization [3, 16]. These studies make it possible toobtain co-run performance
through lightweight prediction, hence offering the opportunity for the integration of the
proposed scheduling algorithms in runtime scheduling systems.

In our experiments, we conduct a measurement of the migration overhead in the
experimental machines by leveraging the system call, “sched setaffinity”. The system
call binds processes to cores. By invoking the call at some random locations in an



application with different parameters, we can migrate the process among chips in a
machine. (Migrations among machines are typically too expensive to support.) The
results show that a migration may cause 0.1–1.1% changes to the execution times of the
benchmarks used in our experiments, depending on the lengthof the original execution.
Recall that in our experiments, we use the average value of migration overhead as the
cost of a migration. The introduced inaccuracy is hence lessthan 1.1% of the computed
minimum makespan.

7 Related Work

To the best of our knowledge, this work is the first systematicstudy on finding the
optimalschedules that minimize themakespanof jobs running on CMP systems.

7.1 Comparison with Cost Minimization

As mentioned earlier, there have been some studies in optimal co-scheduling for mini-
mum cost [10,11,24]. We have mentioned the connections and differences between that
co-scheduling problem and our makespan minimization problem throughout this paper.
We here give a summary.

ConnectionsThe two problems do have some connections, mainly in two aspects. First,
they have similar dimensions to explore: dual-core or more than two cores per chip,
migration allowed or not. Second, they both model the dual-core problems with a fully
connected graph, and model the general cases as a search problem and derive solutions
based on A*-search.

DifferencesHowever, these two problems are fundamentally different. Their different
co-scheduling goals determine that important differencesexist in almost every aspect
of the explorations to the two problems.

– Complexity Analysis.Despite that the two problems are both proved to be NP-
complete in a general setting, their proofs are substantially different. The previous
work [10, 11] analyzes the computation complexity of cost minimization by for-
mulating the problem as an Multidimensional Assignment problem (MAP). But for
makespan minimization, the MAP formulation cannot be applied because of the
mismatch of the objectives. We have to analyze and formulatethe problem in a dif-
ferent way, proving the NP-Completeness through the reduction from the problem
of Exact Cover by 3-Sets.

– Algorithms on Dual-Core Systems without Migrations.For algorithm design, the
classic Blossom [6] algorithm can be directly used for finding the optimal sched-
ule for dual-core cases for cost minimization [10, 11]. But it cannot be applied to
makespan minimization because the algorithm aims to minimizing the total weights
of a perfect matching on a graph, rather than the largest weight as what makespan
minimization requires. The solution introduced in this work (Section 3.2) turns
out to be even more efficient than the Blossom algorithm, withcomplexity of
O(n2.5 · log n) versusO(n4).



– Algorithms in Other Settings.A* is a classical search algorithm widely used in
many areas. We do not claim the use of it for job co-schedulingin the general set-
tings as a contribution of this work. In fact, previous work [24] has used it for ap-
proximating optimal schedules for cost minimization. However, the key in applying
A* is in the formulation of the search problem and the design of the approximation
functionsf(v) used in every search-tree node. Both are specific to the problem to
be addressed. They are where the extensions are made by the approximation algo-
rithms in this work. In addition, the empirical explorationof the tradeoff between
the approximation efficiency and the quality of resulting schedules is also specific
to the makespan minimization problem.

– Scheduling Results.As Section 5.1 shows, the optimal schedules for the two prob-
lems typically differ from each other, confirming the need for studies on each of
them.

Overall, the previous work on cost minimization [10, 11, 24]has given some in-
sights to this work. But because of the different goals of thetwo problems, this sys-
tematic exploration is imperative for achieving a good understanding of the makespan
minimization problem.

7.2 Comparisons with Other Scheduling Work

Scheduling is a topic with a large body of relevant work. As summarized in theHand-
book of Scheduling[12], previous studies on optimal job scheduling have covered 4
types of machine environments:dedicated, identical parallel, uniform parallel, andun-
related parallelmachines. On all of them, the running time of a job is fixed on a ma-
chine, independent on how other jobs are assigned, a clear contrast to the performance
interplay in the co-scheduling problem tackled in this current work.

Traditional Symmetric Multiprocessing (SMP) systems or NUMA platforms have
certain off-chip resource sharing (e.g., on the main memory), but the influence of the
sharing on program performance has been inconsiderable forscheduling and has not
been the primary concern in previous scheduling studies. Some scheduling work [12]
has considered dependences among jobs. But the dependencesdiffer from the perfor-
mance interplay in co-scheduling in that the dependences constrains the order rather
than performance of the execution of the jobs.

The hierarchical scheduling algorithm [5] in traditional job scheduling also uses a
tree-like hierarchy for job scheduling. However, it is about how to move tasks among
queues along a path to feed an idle processor, considering noperformance influence
caused by co-running jobs.

7.3 Other Work on Shared Cache Management

Due to the importance of shared cache, recent years have seena large number of rel-
evant studies. Some of them try to construct practical on-line job scheduling systems.
They employ different program features, including estimated cache miss ratios, hard-
ware performance counters, and so on [7, 19, 20]. Architecture designs for alleviat-
ing cache contention have focused on cache partitioning [13], cache quota manage-
ment [14], and so forth. But none of them has focused on the optimal co-scheduling to



minimize makespan. In addition, some studies [2, 4] have proposed statistical models
for the prediction of co-run performance. The models may ease the process for getting
the data needed for optimal scheduling.

8 Conclusion

As the processor-level parallelism increases, the urgencyfor alleviating the resource
contention among co-running jobs is continuously growing.This work concentrates on
the theoretical analysis and the design of optimal co-scheduling algorithms for min-
imizing the makespan of co-running jobs. It proves the computational complexity of
the problem, proposes anO(n2.5 · log n) algorithm and A*-search-based algorithms
to solve the makespan minimization problem, and empirically verifies the optimality
of the algorithms and examines the effectiveness and scalability of several approxima-
tion algorithms. The analysis and algorithms contributed in this paper may complement
previous explorations by both revealing the lower bound forevaluation, and offering
insights in the development of lightweight co-scheduling systems.
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