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Abstract. On-chip resource sharing among sibling cores causes resouree con
tention on Chip Multiprocessors (CMP), considerably degrading pnogrer-
formance and system fairness. Job co-scheduling attempts to allevigmthe
lem by assigning jobs to cores intelligently. Despite many heuristics-based
pirical explorations, studies amptimal co-scheduling and its inherent complex-
ity start only recently, and all have concentrated on the minimization of total
performance degradations. There is another important criterioacfeeduling,
makespan, which determines the finish time of a job set. Its importancelfor jo
co-scheduling on CMP is increasingly recognized, especially with tleedafis
CMP-based compute cloud, data centers, and server farms. Howptimal co-
scheduling for makespan minimization still remains unexplored.

This work compares makespan minimization problem with previously studied
cost minimization (or degradation minimization) problem, revealing these c
nections as well as significant differences. It uncovers the cortipoigh com-
plexity of the makespan minimization problem, and proposes a seridgmf a
rithms to either compute or approximate the optimal schedules. It progethth
problem is NP-complete in a general setting, but for a special caséddsa
without job migrations), the problem is solvable@{n?- - log n) time (n is the
number of jobs). In addition, this paper presents a series of algorithomsnpute

or approximate the optimal schedules in the general setting. Experimehtiio

real and synthetic problems verify the optimality of the optimal co-scliveglu
algorithms, and demonstrate the reasonable accuracy and scalabiliy &b-th
proximation algorithms. The findings may advance the current unadelisa of
optimal co-scheduling, facilitate the evaluation of real co-schedulintesys
and provide insights for the development of practical co-schedulirayittigns.

1 Introduction

In a Chip Multiprocessors (CMP) system, multicores tygicahare certain resource
(e.g., last-level cache) on a chip. The sharing, althoughtshing the communication
among cores, causes resource contention among co-rurgbagfany studies have
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reported considerable, and sometimes significant, eftédte contention on program
performance and system fairness [4, 7,9, 14, 22]. The uygiEmalleviating the con-
tention keeps growing as the processor-level parallelismrenses continuously.

Recent years have seen many interests in using job co-deigetiu alleviate the
contention [7,10,19]. The basic strategy of job co-schiedut to assign jobs to cores
in a way that the overall influence from resource contentareduced.

The prior explorations fall into two categories. The firstlirdes the research that
aims at constructing practical on-line job schedulingesyst. It concentrates on heuristics-
based lightweight scheduling techniques. A typical exagplhe symbiotic co-scheduling
by Snavely and Tullsen [19]. The co-scheduler in the systampdes the performance
of different schedules during runtime and selects a good Otteer examples include
the fair-miss-rate-based co-scheduling by Fedorova §fjathread clustering by Tam
etal. [23], and so on.

The second category includes the studies on optimal cadstihg. The goal is
to uncover the complexity in finding optimal co-schedules aevelop algorithms
to either compute or approximate optimal co-schedulesin@ptco-scheduling typi-
cally happens offline, requiring considerable computatientain knowledge obtained
through profiling runs of jobs, and other conditions. It ig far direct uses in on-line
job scheduling systems, but for exposing the limit to féaié the evaluation of practi-
cal schedulers. Without knowing optimal schedules (or ageable approximation), it
is hard to precisely determine how good a scheduling alyoris—how far a solution
given by the scheduling algorithm is from the optimal salatand whether further im-
provement will enhance performance significantly, both bfcl are important for the
design and deployment of practical co-scheduling systems.

Research in optimal co-scheduling is still in a preliminatgge. Although some
studies are relevant to optimal co-scheduling (e.g., coeache performance predic-
tion [2, 4] may simplify the profiling requirement), diredtacks to the problem start
only recently [10,11,24]. The objectives of the previouplerations are all on the min-
imization of co-run cost (i.e., the sum of each job’s co-renfprmance degradation).

But besides cost, there is another important criterion lingoheduling, makespan.
Makesparrefers to the time between the start of a job set and the fimgsbi the last
job in the set. Minimizing makespan is important in situaiavhere a simultaneously
received batch of jobs is required to be completed as soomssle. For example,
a multi-item order submitted by a single customer needs tddbeered in the min-
imal time. This kind of situation is especially common insarfarms, data centers,
and compute cloud (e.g., the Amazon Elastic Compute Cldfh the rapid rise of
these modern computing forms and their wide adoption of GMi®od understanding
to makespan minimization in multicore job co-schedulingdyaes increasingly impor-
tant. But to the best of our knowledge, this problem has reethunexplored.

Makespan minimization differs from cost minimization. Ttyatimal schedules for
the two criteria are typically different. In traditionaljcscheduling literature, the two
criteria have led to drastically different algorithms arahnplexity analyses [12]. As
to be shown in this paper, for multicore job co-scheduliigg implication of their
difference is pronounced as well, ranging from complexitglgsis to algorithm designs
to the ultimate scheduling results (summarized in Sectjon 7



Motivated by the contrast of the increasing importance &edoreliminary under-
standing of makespan minimization in multicore job co-stiimg, we initiate explo-
rations on four aspects.

— First, we prove that makespan minimization in job co-scliadus NP-complete
on systems with more than 2 cores per chip. The proof is based@duction from
the problem of Exact Cover by 3-Sets. We are not aware of aewiqus analysis
of the computational complexity.

— Second, by offering a®(n?° -log n) algorithm ¢ is the number of jobs), we prove
that on dual-core systems with no job migrations, the prolikepolynomial-time
solvable. To the best of our knowledge, this algorithm isftte polynomial-time
solution for this optimal co-scheduling problem.

— Third, we present a set of A*-search—based algorithms anmeedyg algorithm to
tackle optimal co-scheduling for makespan minimizatiorthie general setting—
with two or more cores per chip and with or without job migoats. A*-search
has been applied for job co-scheduling [24], but not for nsalked minimization.
Our description focuses on the issues specific to makespamination, including
the formulation of the search process, the design of thasteufunction, and the
empirical exploration of the tradeoff between the schedudiverhead and quality.

— Finally, we evaluate the algorithms on both real and syithgbblems, verifying
the optimality of the co-scheduling algorithms (under a®rtconditions), mean-
while showing that the algorithms may save orders of mageitoverhead over
the brute-force search. Results of the approximation dlgons demonstrate their
capability to achieve near optimal solutions with reasdmabalability.

The analysis and algorithms contributed in this paper haelpal (or approximate)
the lower bound of makespan in multicore job co-schedulksgential for the assess-
ment of practical scheduling systems. The algorithms mayl gtsights to the develop-
ment of effective lightweight co-scheduling systems ad.wel

We organize the rest of this paper as follows. Section 2 desscthe problem setting
and assumptions. Section 3 proves the NP-completenese optimal co-scheduling
problem, and presents the polynomial-time algorithm aret afsA*-search algorithms
as optimal solutions. Section 4 describes a set of apprdidmalgorithms. Section 5
reports evaluation results. Section 6 discusses the timita of this work and future
extensions. After reviewing some related work in Sectionvé,conclude the paper
with a short summary in Section 8.

2 Problem Definition

Roughly speaking, the optimal job co-scheduling tacklethia work is to decide the
placement of a set of jobs on a number of cores so that the pakeds the schedule is
minimized.

Finding optimal co-schedules in a general setting is exgétgwifficult: A program’s
fine-grained behaviors may change constantly, a progranmmgnate to any cores, and
programs may start, terminate, or go through context svéit@ny time. It is necessary
to define the problem settings first.



2.1 Problem Settings

To make the problem tractable and meanwhile keep the aralgsiul, we specify the
following settings. Some of these settings may differ froent@in practical scenarios.
However, as we will show (after presenting the setting®y tifio not prevent the use of
the computed co-schedules from serving for its main goeltitating the evaluation of

practical co-schedulers.

Machines. The computing system assumed in this exploration containsiform
chips, and each chip hasuniform cores. There is a certain amount of cache on each
chip that is shared by the cores on the chip. Only one job can run on a core at each
time point. The execution speed of a job running on a chip dépe®n what jobs are
placed on the same chip, but has negligible dependence onHeorest of the job set
are placed on other chips. The architecture is a generdlizedof CMP architectures

on the market, such as IBM Power5 and the Intel Core2 family.

Jobs. The number and starting time of jobs are set to be as follotws nimber of jobs
(denoted a) is equal to the number of cores,= m * u. This setting is to help focus
on the placement of jobs on cores. Wher: mx*u, the problem can be converted to the
defined setting if we consider that there &rex v —n) extra dummy jobs that consume
no resources. b > m *x u, the problem is more complex, requiring the consideration
of temporal complexity (e.g. context switch) besides tratigpplacement of jobs. The
temporal complexity is out of the scope of this paper. But wterthat this work will

be still useful for that setting, as spatial placement ekikts as a sub-problem in it.

All the jobs must start at the same time. This is a typical aggion in both tra-
ditional job scheduling [12] and recent job co-schedulib@][ This setting may differ
from the scenarios in real-time scheduling. However, ftgbat the main targeted sce-
nario of makespan minimization is batch job processing, limcty all jobs typically
arrive at the system at the same time.

Job Migrations. A job can migrate from one core to another, but the migratioly o
happens when any of the jobs terminates. This setting cammesthe following reason.
As well known, keeping a process on a processor is good falitpcAs a result, in
practical systems like Linux, occurrences of job migrasi@re mostly triggered by
load imbalance [1]. In our setting, as the number of jobs Eqtiee total number of
cores, load changes only when some job finishes. Thereflbogjireg job migration
only at those times does not cause large departure fromaeaasos.

This work focuses on job co-scheduling inside a multicoremrae, which is the
primary component of the scheduling in any large multidoased systems. So it as-
sumes that all processor chips are in the same machine amdiginations of a job
among different chips have similar overhead. (With certaitensions, the developed
algorithms may be applicable to clusters consisting of iplelnodes. The extensions

1 We use the term “cores” for simplicity of discussion. As shown in Sedfioihe techniques
can also be applied to thread scheduling in SMT systems.



are mainly on the consideration of the different overheauigfation within and across
cluster nodes.)

Performance Data. As assumed in previous work [10], the following performance
information is given: the time for a job to finish if it runs ale (i.e., no other jobs
running on the chip), and the performance degradation (@efas the rate between
the co-run time and the single-run time of the job) of the jdiiew it co-runs withk
(0 < k < u) other jobs in the job set. These performance data can baéebtthrough
offline profiling runs or predictive models [2, 4]. The ovealdan gathering the data is
not an issue for optimal co-scheduling: Finding optimalschedules is not for direct
real-time scheduling, but for providing a reference for évaluation of practical co-
schedulers. For a given, the overhead to gather the single run and co-run times i
polynomial in the number of jobs. It is typically negligibt®mpared to the overhead
in brute-force search for optimal co-schedules, which {gogential in the number of
jobs.

Because a program execution may vary constantly, the peafoce degradation of
a program in a co-run may vary across intervals. In our ggttive use the average
degradation through the entire co-run. A future enhanceiseilo combine with pro-
gram phase analysis [17,18]. As previous studies do [1Qyi®turrently ignore phase
changes to concentrate on co-scheduling itself.

In our setting, jobs may relate with one another, but all ddgtions are greater than
1. As co-runs are typically slower than single-runs becafisache and bus contention,
this setting holds in most cases.

o

Short Discussion.

The settings described in this section do not prevent theofiske optimal co-
scheduling for evaluating practical schedulers. For exantpe evaluation of a sched-
uler S on a machine withn chips andu cores per chip can proceed as follows. The
developers first findn * u applications that are typical for the target system. They
start the applications at the same time on the machine wétls¢hedulelS running to
get the makespan,. They then run the applications a number of times to obtain th
single-run times and co-run degradations of those apmitsitAfter that, all the infor-
mation needed by the problem setting is ready. By applyiegtitimal co-scheduling
algorithms (to be described), they will get the minimum nsdan, 7. The comparison
betweeri” and7" will indicate the room for improvement of the scheduter

2.2 Problem Definition and Terminology

With the problem settings defined, the definition of the optino-scheduling problem
to be tackled in this work is straightforward. It is to find dedule that maps each job
to a core under the settings defined in the previous subsestiahat the makespan of
the schedule is minimized.

For the sake of clarity, we define several terms. The allo@afob migration sug-
gests the opportunities for rescheduling the remaining jsben some job finishes. In
the following description, we call each scheduling or resktiing point as schedul-
ing stage So, if no job migrations are allowed, there is only one sciiad stage; when



migrations are permitted, there are uptscheduling stages. We uaa assignmenb
refer to a group ofu jobs that are to run on the same chipsub-schedulés a set
of assignments that cover all the unfinished jobs and do reiagy with one another.
A schedulds a set of all sub-schedules that are used from the staretent of the
executions of all jobs.

3 Complexities and Solutions of Makespan Minimization

In this section, we analyze the inherent complexity of th&@&span minimization in
job co-scheduling. We classify the problem instances ioto tasesu > 3 with or
without job migration allowed, ot. = 2 with or without job migration allowed. Here,
u is the number of cores per chip. We prove that the first twoscase NP-complete
problems, but the fourth is polynomial solvable by a perfeetching-based algorithm.
The complexity of the third case is to be studied in the futimeaddition, we present
heuristic algorithms for all the four cases.

3.1 Complexity Analysis @ > 3, With or Without Job Migration)

When more than two cores share a cache on a ehip §), the makespan minimization
is an NP-complete problem. We prove this result by reducikga@vn NP-complete
problem,Exact Cover by 3-Se{X3C) [8], to our problem.

First, we formulate our co-scheduling problem as a decigioblem. Given a sys-
tem withm chips, each with, > 3 cores, there is a set containingn = m - u jobs,
which are to be scheduled on the cores. Consider all possiflisets of/ with car-
dinality u, denoted by/y, - - -, J/»\. For eachJ;, which represents a group ofjobs

that may be co-scheduled on the same chipwlebe the maximum co-run time of all
thew jobs inJ;. The question in the decision problem is whether thereradisjoint
subsets/y, , - -+, Jp,,., wherepy, - -+, py, € {1,---, (1)}, to form a partition of/ such
thatmax]”, {wp, } < B for any given bound3.

Note that the partition off into m subsets of cardinality is actually the construc-
tion of a schedule of jobs onm-u cores and thahax" , {w,, } is in fact the makespan
of the schedule.

The problem is clearly in NP. We prove that it is NP-complagearreduction from
X3C, in which given a seK with | X| = 3m and a seC = {C;|C; C X and |C;| =
3}, the question to ask is whethéf contains an exact cover foX, i.e., m disjoint
members o, sayC,, , - - -, Cp,,., that makes a partition af'.

The reduction from X3C to our co-scheduling problem is gtitforward. Given
any instance of X3C, namel{f andC, we define an instance for co-scheduling, where
(1) J = X with n = 3m andu = 3, (2) for anyJ; C J with |J;| = 3, if J; € C then
letw; = 1, and if J; ¢ C then letw; = 2, and (3)B = 1.

The construction of the instance for co-scheduling can e dioO (n?) time. Fur-
thermore, it is easy to show th&tcontains an exact cover fof if and only if there is
a schedule of jobs id to the3m cores with a makespan no more thaTherefore, the
co-scheduling problem with = 3 is NP-complete.



The above proof holds regardless of whether job migratiati@gsved or not. This is
because in both settings, finding a schedule with makesparmon®than 1 is equivalent
to finding an exact cover.

3.2 Polynomial-Time Solution & = 2, No Job Migration)

We prove that, when = 2 and no job migrations are allowed, the optimal co-schedules
can be found in polynomial time. We describe@Mm?5 - log n) algorithm as follows.

The algorithm uses a fully-connected graph, nametp-aun makespan graptio
model the optimal co-scheduling problem. Each vertex mmts a job; the weight on
an edge is the longer running time of the two jobs (represehtethe two vertices
connected by the edge) when they co-run together.

Before describing the algorithm, we introduce the concépt perfect matching.
A perfect matchingn a graph is a subset of edges that cover all vertices of tehgr
but no two edges share a common vertex. We definbdliedof a perfect matching as
the largest weight of all the edges it covers. It is easy totlsaethe perfect matching
of a co-run makespan graph with the minimum bound corresptmd solution to the
makespan minimization problem: Each edge correspondsdssignment (i.e., co-run
group) and the makespan equals to the bound of the perfechimgt

There are some algorithms for finding the minimum-weighfgmrmatching on a
weighted graph [6, 8]. However, they cannot apply to our [meidirectly because their
objective functions are typically the sum of edge weighather than the maximum of
edge weights in our problem.

We develop an algorithm to determine a minimum-bound penfie¢ching as shown
in Figure 1. We first construct a sorted list containing adl galges of a co-run makespan
graph in an ascending order of their weights; the edge walsthallest weight resides
on the top of the list. We then use a binary search to deterthnemallest top portion
of the sorted edge list that contains a perfect matching(tdgss of weights) covering
all vertices. The binary search starts with the top half efdtge list and checks whether
a perfect matching can be found in those edges. A negatiwveesivgould suggest that
more edges are needed, so the algorithm would try the top tjwarters of the edge
list. A positive answer would suggest that a smaller portibtine list may be enough to
contain a perfect matching, so the algorithm would try tieedaarter of the edge list.
This binary search continues until it finds the smallest togiipn of the edge list that
contains a perfect matching.

We claim that the resulted perfect matching isogmimal perfect matching on the
original co-run makespan graph—that is, no perfect matchaormgthe original co-run
makespan graph have bounds smaller than the bound of tHeeteparfect matching.
The proof is as follows.

Let M be the perfect matching produced by the algorittinbe the makespan of the
corresponding schedule, afcbe the smallest top portion of the edge list that contains
M. According to the algorithm$' is the smallest among all top portions that contains a
perfect matching.

Assume that there is a perfect matchinff whose makespan’ is smaller thart".
Let E’ be the set of edges includedi’. Let S’ be a set containing all the edges in the
sorted edge list from the top to the heaviest edg€’inBecause the edge list is sorted



in the ascending order of edge weights, C S’. So,5’ contains a perfect matching.
Becausel” < T, the weights of all the edges iR’ and thus inS’ must be smaller
thanT. While T is the weight of some edge i, henceS’ C S. This contradicts with
the assumption thé&ff is the smallest top portion of the edge list that containsréepe
matching, thus the proof completes.

The time complexity of the perfect matching detection subire,findPerfMatch(G)
is O(y/n - m) [8], wheren andm are the numbers of vertices and edges in the graph.
In the algorithm, the binary search process conté@hilkgn) invocations of perfect
matching detection. The value of can be no greater thar?. The time complexity of
the algorithm iO(n??® - logn).

/% V. vertex set; FE: edge set x/
/% S: generated perfect natching */
L + sortEdges(FE);

| bound «+ 1; ubound « | L|;
G.vertices «+— V; S + 0;

while (1) {
curPos « | (ubound+l bound)/2 |;
if (curPos == ubound) return S;

G.edges « L[1:curPos];
S « findPerfMatch(Q;
if (S# NULL)

ubound < cur Pos;
el se

| bound « curPos; }

Fig. 1. Algorithm for minimum-bound perfect matching.

3.3 Search-Based Optimal Co-Scheduling

The polynomial-time algorithm described in the previoustise works only for dual-
core systems without job migrations. This section presargsarch-based approach,
which is applicable to larger systems and supports job mars.

Background on A*-Search A*-search, stemming from artificial intelligence, is de-
signed for fast graph search. It is optimally efficient foy given heuristic function—
that is, no other search-tree-based optimal algorithm &ajueed to expand fewer
nodes than A* search, for a given heuristic function [15.dbmpleteness, optimality,
and optimal efficiency lead to the adoption for the searchptifical schedules.

For a tree search, where the goal is to find a path from the mantarbitrary
leaf with the total cost minimized, A* search defines a fumetf (v) to estimate the
lowest cost of all the paths passing through the nad&* search maintains a priority
list, initially containing only the root node. At each steft search removes the top
element—that is, the node with the highest priority—from thenity list, and expands



that node. After the expansion, it computes ff{e) values of all the newly generated
nodes, and put them into the priority list. The priority i®portional tol/ f(v). This
expansion process continues until the top of the list is inede, indicating that no
other nodes in the list need to be expanded any more as thaslaost exceeds the
cost of the path that is already discovered.

The definition of functionf(v) is the key for the solution’s optimality and the algo-
rithm'’s efficiency. There are two properties related {o):

— A* search is optimal iff (v) never overestimates the cost.
— The closerf(v) is from the real lowest cost, the more effective A*-searclnis
pruning the search space.

Application to Minimize Makespan for Job Co-Scheduling Although A*-search has
been used for cost minimization problems [24], some sulistaimanges are necessary
for applying it to makespan minimization. Specifically, weed redefine the structure
of the search tree and the cost estimation funcfiom. This section presents our re-
spective definitions for the scenarios with and without jagnations.

No Job Migrations When no job migrations are allowed, the scheduling problem is
essentially to partition jobs into a number of co-run groupigure 2 illustrates our
definition of the search tree. Each non-root tree node«{¥sagrresponds to a sef(v),

that contains: distinct jobs. The nodes in the tree are arranged as follbeisR(v)
represent the set of jobs that have never been covered byaaleyan the path from
root tov. Supposew is a child node ob. All jobs in S(w) must belong taRk(v) (i.e.,
S(w) € R(v)) andS(w) must contain the job whose indeis the smallest inR(v).
With such an organization, each path from the root to a Idai®f schedule. All the
paths in the tree together constitute the schedule space.

{1,2,3,4,5,6}

(1,2) (1,3) (14 (1,5 (1,6)
- a : . . T S—
34 (35 @B - . 23 24 25
¥ v oo . . ¥ ¥ ¥
(5.6) (46) 45 : S@5 BG5S G4

Fig. 2. An example of the search tree for the cases with no job migrations. Thefejabs to be
scheduled to 3 dual-core chips. Each non-root tree node corespom set of: (hereu = 2)
distinct jobs; the set must contain the job whose index is the smallest aaflotigg jobs that
are not covered from the root to this node. Each path from the root taf dHerefore offers a
schedule.

We define the cost estimation functigfw) as follows. LetA represent the set of all
n jobs, andP’ be the path from the root to the noddt is easy to see that the minimum

2 We assume that each job has a unique index number.



makespan of any schedule (or path) passing noaeist be either the makespan of the
jobs A — R(v) (i.e., the jobs covered by the path from the root to the neder the
minimum makespan of the remaining jold®(v). The former can be computed from
the assignments represented®y The latter can be no smaller than the maximum of
the minimal co-run times of the jobs iR(v), which can be computed from the given
co-run degradations. We then defifip)) as the maximum of the two values.

start
stage 1: co-sched. n jobs L
stage 2: co-sched. n-1 jobs ,d/%
stag.en: co-sched. 1 job &Y g...g' B R

Fig. 3. Search tree for the cases with rescheduling allowed at the end of agob.|&el corre-
sponds to a scheduling stage. Each node, except the root, repr@seitsschedule of the jobs
that have not finished yet.

With Job Migrations Similar to the previous work [11], we use a search tree to hode
the co-scheduling problem when job migrations are allovaedllustrated by Figure 3.

It differs from Figure 2 in that each non-root node represengub-schedule (i.e., a set
of assignments that cover all the unfinished jobs and havevexdap with each other)
rather than a group of co-running jobs.

Forn jobs, there are at moatscheduling stages; each corresponds to a time point
when one job finishes since the previous stage. The nodesag@ say stage cor-
respond to all possible sub-schedules forithe ¢ + 1 remaining jobs. There is a cost
associated with each edge. Consider an edge from addenodeb. The number of
unfinished jobs irb is typically one less than in. The weight on the edge is the time
for that job to finish since the scheduling stage: of

The makespan minimization becomes to find a path from thetooany leaf node
so that the sum of the weights on the path is the minimum. Wael¢fiv) as the sum
of two quantities. One is the total weights from the root te tiodev, the other is the
longest single-run time of the remaining jobs.

Given the NP-completeness of the problem, it is not sumgishat A*-search is
subject to scalability issues. Our explorations aim ataibrg the extent of its scalabil-
ity, and shedding insights for the design of approximatigoathms.

4  Approximation Algorithms

To achieve good scalability, we develop three approxinmagilgorithms based on the
enlightenment from the optimal co-scheduling algorithmespnted in the previous sec-
tion. The first two algorithms are applicable generally, lelthe third one applies only

to dual-core cases.



4.1 Combination with Clustering

The combination of A*-search and clustering may providetfer flexibility for strik-
ing a tradeoff between overhead and quality of co-schedulive call such combined
algorithms “A*-cluster” algorithms. We first describe itppication to the cases with
job migrations, and then outline its uses when migratioesat allowed.

At each (re)scheduling time, the unfinished jobs are clagtbiased on the length
of their remaining portions. The algorithm controls the fn@mof rescheduling stages
by rescheduling only when a cluster of jobs finish. It alsoids¢he generation of sub-
schedules that are similar to one another.

We say that a sub-schedule is substantially different frootteer one if they are not
equivalent when we regard all jobs in a cluster as the sameeXample, four jobs fall
into two clusters a${1 2}, {3 4}}. We regard the sub-schedule (1 3) (2 4) equivalent
to (1 4) (2 3), but different from (1 2) (3 4). (Each pair of patteeses contains a co-run
group.)

Among various clustering techniques, we use a simple distédased clustering
approach as the data are one dimensional. Given a sequetiagadb be clustered, we
first sort them in an ascending order. Then, we compute tffierelifces between every
two adjacent data items in the sorted sequence. Large dfiffes are considered as
indication of cluster boundaries. A difference is regardsdarge if its value is greater
thand + §, whered is the mean value of the differences in the sequencejaadhe
standard deviation of the differences.

The A*-cluster algorithm reduces both the height and thettwal the search tree.

The number of children of a node is reduced from factoﬁﬁ@}l (”‘;’*j‘l‘l), to poly-
nomial, O(r7), whereC' is the number of clusters andis the number of unfinished
jobs, andy = C + (C* — C)/u!).

For the cases without job migrations, the jobs are clusteasdd on their single-run
time. The algorithm prunes the width of the search tree byokang the nodes that are
not significantly different from their siblings, similar the pruning in the case with

migrations. The tree height remains unchanged.

4.2 Greedy Algorithm

The greedy algorithm is simpler than the A*-cluster aldurit At each (re)scheduling
stage, the algorithm iteratively determines the assigisntem the remaining jobs. In
each iteration, it finds the best co-run group for the job veh@snaining part has the
longest single-run time among all the unfinished jobs. Itgifion is that the longest
jobs typically determine the makespan of a schedule.

4.3 Local Perfect-Matching Algorithm

This approximation algorithm is a generalized version effibrfect-matching-based al-
gorithm proposed in Section 3.2. The extension makes ik to dual-core cases
with job migrations. At each (re)scheduling point, it apglthe perfect-matching-based



algorithm to the unfinished jobs to obtain a locally optimad-schedule. As the perfect-
matching-based algorithm assumes that the number of rérggobs equals the num-
ber of cores in the computing system, we treat the jobs thet firsished as pseudo-jobs,
which exist but consume no computing resource. This styategy introduce certain

amount of redundant work, but it offers an easy way to geizergthe perfect-matching-

based algorithm. The time complexity of this algorithn@i&® - log n).

There is a side note on the scheduling algorithms that allayvations. A migration
of different programs may have different overhead. Howelecause in our setting,
migrations happen only when some job finishes, the total murabjob migrations is
small (less than the number of jobs); the total overheadrsowely a negligible por-
tion of the makespan (confirmed in Section 6). In our expentsieve use the average
overhead measured on the experimental platform as theeagihf a migration when
comparing the makespan of different schedules.

Table 1.Benchmarks

Benchmarksingle-run co-run degrad rate

time (s)min %|max %4mean %
fmm* 5.63 0.77 11.28§ 3.67
ocearf 13.52 2.13 58.81] 19.73
ammp 21.1Q9 1.66 30.24 12.62
art 222 231 75.42 27.78
bzip 10.99 0.00 38.95 3.31
crafty 6.75 0.07 12.33 4.95
equake 11.05 6.42 78.00 26.46
gap 290 2.09 3434 11.02
gzip 14.19 0.00 13.06 2.19
mcf 7.86 8.23125.36 42.37
mesa 15.33 0.65 15.15 5.18
parser 3.74 1.74 37.79 1351
twolf 542 0.00 15.73 5.21
vpr 458 3.3l 42,52 18.30

x : from SPLASH-2. Others from SPEC CPU2000.

5 Evaluation

We evaluate the co-scheduling algorithms on two kinds dfitgcture. For CMP co-
scheduling, the machines are equipped with quad-coreXeteh 5150 processors run-
ning at 2.66 GHz. Each chip has two 4MB L2 cache, each sharé¢gdgores. Every
core has a 32KB dedicated L1 data cache. For SimultaneoustiMeading (SMT)
co-scheduling, the machines contain Intel Xeon 5080 psmregtwo 2MB L2 cache
per chip) clocked at 3.73 GHz with Hyper-Threading enabta (hyperthreads per
computing unit.)



The job suite includes 14 programs: 2 parallel programs f&6thASH-2 [21] and
12 sequential programs randomly selected from SPEC CPUZh of the two par-
allel program has two threads; so, we have 16 jobs in totaldb\Meot use the programs
from the entire benchmark suites because the large prohilmwould make it in-
feasible to compare the scheduling algorithms, espeacidtly the brute-force search
algorithm. We use the two parallel programs to examine th@icgbility of the co-
scheduling algorithms for parallel (in addition to sequahepplications. Table 1 lists
the programs with the ranges of their co-run degradationteintel Xeon 5150 pro-
cessors. The big ranges suggest the potential for co-slihgdu

In addition, we generate some sets of jobs whose singleimenand co-run degra-
dations are set randomly. The use of these synthetic pratiheips overcome the limi-
tations imposed by the particular benchmark set.

For each set of jobs, we test the scheduling in cases bothawitwithout job mi-
grations (denoted as “no rescheduling” and “rescheduliegpectively.) The difference
reflects the benefits of rescheduling.

5.1 Comparison to the Optimal

This section concentrates on the verification of the opfiymalf the A*-search and
perfect-matching-based algorithms. We stress that thenafity is under the settings
defined in Section 2. We compare the results of those scimedalgorithms with the
best schedules found through brute-force search.

Because of the scalability issue of the brute-force seaxehuse 8 jobs for the
comparison. We use the top 6 programs (8 jobs consideringpdhalel threads) in
Table 1, along with a number of synthetic job sets. Table Bntsgghe results. For each
synthetic setting, we generate 3 problems in that settéfgrned to as the 3 trials in the
table.

The data surrounded by boxes are from the optimal co-scimgdalgorithms (the
rest are from the approximation algorithms.) The two haleethe “matching” row
correspond to the precise algorithm in Section 3.2 and tpeoxpmation algorithm in
Section 4.3, respectively. Both algorithms are applicably to 2-core cases.

Optimality The data in Table 2 show that the optimal algorithms genesettedules
with the same makespans as the schedules found by the bratedearch. For the 8
real jobs on Xeon 5150 (2-cmp), for instance, the optima¢date found by the 3 algo-
rithms are all as follows: (fmm-1,ocean-1), (ammp,caftg)t,bzip), (fmm-2,0cean-2),
where fmmgsn and oceam are theimnth threads, and each pair of parentheses include a
co-running group. The makespan is 0.5% larger than the rpakeshen the programs
run in isolation.

The bottom 3 rows in Table 2 reveal the minimum, median, angimam of the
makespans of 100 randomly generated schedules, corrésgdondhe scheduling in
many existing systems, which work in a cache-sharing-ahismanner. The minimum
makespans are close to the optimal in the “no rescheduliagés, but are mostly over
10% larger than the optimal in the “rescheduling” cases.mbdian and maximum are
significantly larger than the optimal. For the 8 real jobth@lgh random scheduling is



Table 2.Co-schedule makespan on 8 real jobs and a series of synthetitusidggoroblems (each
has 8 jobs). The numbers in the table are the makespan achieved wittsgieetive schedule,
relative to the makespan when each job runs in isolation. The real jolsrtwo architectures:
Intel Xeon 5150 (2-cmp) and Intel Xeon 5080 (2-smt). The syntheti@duling problems use
both dual-core (2-core) and quad-core (4-core) systems.

no rescheduling rescheduling
jobs real synthetic real synthetic
arch. 2-cmp2-smt 2-core 4-core  |2-cmp2-smt 2-core 4-core
trial 1 2[ 3 1] 2 3 1 2[ 3 1] 2 3
brute-fc | 1.0051.0231.491.491.582.112.161.65 1.0021.0131.331.21{1.191.991.931.56
A* 1.0051.0231.491.491.582.1112.161.65 1.0021.0131.331.211.191.991.931.56

matching 1.0051.0231.491.491.58 -| - -[1.0021.0231.371.431.52 -| - -
A*-clstr | 1.0051.1671.551.751.582.382.301.65 1.0121.0231.551.481.292.192.12 1.63
greedy |1.0091.1701.491.901.802.772.341.85 1.0051.1701.431.901.802.322.08 1.87
rand-min| 1.0051.0231.551.491.692.242.161.65 1.0051.0231.491.491.582.112.16 1.65
rand-med 1.0161.2551.812.702.222.552.341.88 1.0161.1961.812.701.922.542.33 1.87
rand-max 1.1611.3292.723.302.663.132.912.68 1.1611.3292.723.302.663.132.91 2.68

likely to produce near optimal makespan in the Xeon 5150esysit causes over 20%
makespan increase on the SMT systems. These results mtlieatisks of neglecting
cache sharing in job scheduling.

The comparison between the “no rescheduling” and “resdivegluresults shows
that when the “no rescheduling” algorithms cause non-gdilé makespan increase,
rescheduling is usually able to reduce the makespan coabige

Table 3. The numbers of nodes visited and the time spent by different cedsding algorithms
on 8 jobs on Intel Xeon 5080

no resch. resch.

nodestime (ms nodestime (Ms)
brute-fc | 210 41/16643446 419332
matching 1 47| 4 179
A* 37 23 4405 718
A*-clstr 8 5 32 35
greedy 1 2 4 6
random - 1 - 1

Overhead Table 3 reports the numbers of search-tree nodes visitedhanahillisec-

onds spent by different co-scheduling algorithms on 8 jobdrdel Xeon 5080. In
the “rescheduling” case, relative to the brute-force dedvoth of the two optimal co-
scheduling algorithms save the search time by several®aolenagnitude.



Comparison with Cost Minimization As mentioned earlier in this paper, the two
scheduling criteria, makespan and total cost, typicabyl o different results. It is con-
firmed by the experimental results. For example, Figure dvshibe optimal schedules
(without rescheduling) for both criteria on the Xeon 508&(@t) machine. The sched-
ule with minimum total cost turns out to have 33% larger makesthan the schedule
from the makespan minimization algorithms. On the othedh#re schedule with min-
imum makespan causes extra cost as well. This differend@mmathe need for studies
on each of the criteria and the application of the correspnaligorithms in different
scenarios.

cost minimization:

schedule: (fmm-1, crafty), (fmm-2, ocean-1), (occean-2, athmp, bzip)
cost (ie., total degradation): 12.13

makespan: 58.02 sec

makespan minimization:

schedule: (fmm-1, bzip), (fmm-2, art), (ocean-1, ammp), (oe&ecrafty)
cost (ie., total degradation): 12.88

makespan: 43.56 sec

Fig. 4. Optimal schedules for cost minimization and makespan minimization on Xe8a (2-
smt) with no rescheduling.

Table 4. Co-schedule makespan on 16 real jobs and a series of synthetiaiBobgatoblems

(each has 16 jobs). The numbers in the table are the makespan achiélvettle respective
schedule, relative to the makespan when each job runs in isolation. @hgloe run on two

architectures: Intel Xeon 5150 (2-cmp) and Intel Xeon 5080 (2-shttg synthetic scheduling
problems use both dual-core (2-core) and quad-core (4-costrag.

no rescheduling rescheduling
jobs real synthetic real synthetic
arch. 2-cmp2-sm{  2-core 4-core  |2-cmp2-sm{  2-core 4-core
trial 1 2 3 1] 2| 3 1 2 3 1] 2| 3

Hmatching 1.0051.0331.261.14 1.2 -| - 1.0021.033 1.21.071.1y - - -
A*-clstr | 1.0051.0591.42/1.22/1.21{1.97/1.87/1.93 1.0051.1071.37/1.201.221.991.861.91
greedy | 1.0051.1581.921.321.37/2.352.972.42 1.0051.1581.921.321.352.001.951.95
rand-min| 1.0051.0621.701.481.382.111.922.05 1.0051.0561.581.32/1.382.081.952.00
rand-med 1.0291.1972.192.032.172.462.492.42 1.0161.1972.191.962.17/2.452.392.37
rand-max 1.1611.4683.482.922.753.103.232.99 1.1611.4683.482.92/2.753.033.462.86




5.2 Approximation Algorithms

Besides reporting the optimal co-scheduling results,&lakdlso lists the performance
of the approximated schedules (outside the boxes.) Onabal the matching-based
approximation produces near optimal results, the A*-dustigorithm works simi-
larly well except in the case of “no rescheduling” on “2-smarthitecture where the
makespan is about 14% larger than the minimum. Because afiprecision caused
by clustering, both approximation algorithms significgrdutperform the greedy and
random scheduling in most real and synthetic cases. On tise band, their distances
from the optimal reflect the room for improvement.

Table 4 presents the results on 16 jobs. It does not incluabrifite-force and A* re-
sults because the former takes too much time (up to yeargatatimigrations) to finish
and the latter requires too much memory to run. The resulteefpproximation al-
gorithms are consistent with the 8-job results. Althoughntinimum makespans from
the random schedules occasionally get close to the redulte @pproximation algo-
rithms, most random scheduling results are significantlgsethan the matching-based
and A*-cluster-based approximations. The greedy algarithlthough performing not
as well as the other two approximation algorithms, outgerfothe median results from
random scheduling considerably.

Tables 3 and 5 report that the approximation algorithms ke$® than one second,
in contrast to the up to years of time the brute-force seaechs.

Table 5. The numbers of nodes visited and the time spent by different cedsting algorithms
on 16 jobs on Intel Xeon 5080

no resch. resch.
nodestime (ms)nodestime (ms)
matching 1 86| 8 889
A*-clstr 76 39 122 94
greedy 1 3 8 9
random - 1 - 2

Scalability: Figure 5 shows the scheduling overhead of the three appatiim
algorithms on a spectrum of problem sizes (with migratiamdw@a= 2.) The greedy al-
gorithm shows the best efficiency for its simplicity; thedbmatching-based algorithm
shows less scheduling time than the A*-cluster algorithm.

Short Summary
We summarize the experimental results as follows:

1. The experiments empirically verify the optimality of teeheduling results of the
perfect matching and the A*-search algorithm. The two athors are orders of
magnitude more efficient than the brute-force search. Tregpplicable when the
size of the problem is not large.

2. The local matching-based approximation algorithm i$quedle when: = 2 (with
or without job migrations) for its high scheduling qualitydilittle scheduling time.
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Fig. 5. Scalability of approximation algorithms

3. Whenu > 2, the A*-cluster algorithm offers a reasonable solutiort {r@duces
good schedules in a moderate amount of time.

4. When scheduling overhead is the main concern, the gregdsithim may be favor-
able, which uses slightly more time than random schedulingffers consistently
better results.

6 Discussion

This section discusses some limitations of this work andrtfieence on practical uses.

The requirement of all co-run degradations may seem to béstacle preventing
the direct uses of the proposed algorithms in practicalot@duling systems. However,
that requirement does not impair the main goals of this work.

This work is a limit study. The primary goal is to offer fedsilvays to uncover the
optimal solutions in job co-scheduling, rather than to dgyanother heuristics-based
runtime co-scheduler. Besides offering theoretical intsignto co-scheduling, this work
enables better evaluation of co-scheduling systems thaneh@ffering the facility for
efficiently revealing the potential of a practical co-sahled in a general setting, which
has been infeasible in the past for even small problems.

Furthermore, the algorithms proposed in this work may mtehe insights for the
development of more effective online scheduling algorghoth in operating systems
and during the runtime of parallel applications. There hasnbsome advancement in
predicting co-run performance from program single rung.(d2, 4]). The research
in locality analysis has continuously enhanced the effiyieand accuracy in locality
characterization [3, 16]. These studies make it possiblebtain co-run performance
through lightweight prediction, hence offering the oppaity for the integration of the
proposed scheduling algorithms in runtime schedulingesgst

In our experiments, we conduct a measurement of the migratverhead in the
experimental machines by leveraging the system call, ‘Galegaffinity”. The system
call binds processes to cores. By invoking the call at someawm locations in an



application with different parameters, we can migrate thec@ss among chips in a
machine. (Migrations among machines are typically too agpe to support.) The

results show that a migration may cause 0.1-1.1% changkes &xéecution times of the
benchmarks used in our experiments, depending on the lehgtk original execution.

Recall that in our experiments, we use the average value griation overhead as the
cost of a migration. The introduced inaccuracy is hencethess 1.1% of the computed
minimum makespan.

7 Related Work

To the best of our knowledge, this work is the first systemsticly on finding the
optimalschedules that minimize theakesparf jobs running on CMP systems.

7.1 Comparison with Cost Minimization

As mentioned earlier, there have been some studies in dptorecheduling for mini-
mum cost [10,11,24]. We have mentioned the connections iffiedeshces between that
co-scheduling problem and our makespan minimization pratihroughout this paper.
We here give a summary.

ConnectionsThe two problems do have some connections, mainly in twocispeirst,
they have similar dimensions to explore: dual-core or mbhemttwo cores per chip,
migration allowed or not. Second, they both model the doaé-@roblems with a fully
connected graph, and model the general cases as a seartdnpeaotal derive solutions
based on A*-search.

DifferencesHowever, these two problems are fundamentally differeheidifferent
co-scheduling goals determine that important differereést in almost every aspect
of the explorations to the two problems.

— Complexity AnalysisDespite that the two problems are both proved to be NP-
complete in a general setting, their proofs are substintéferent. The previous
work [10, 11] analyzes the computation complexity of coshimization by for-
mulating the problem as an Multidimensional Assignmenbjem (MAP). But for
makespan minimization, the MAP formulation cannot be aaplecause of the
mismatch of the objectives. We have to analyze and formti&t@roblem in a dif-
ferent way, proving the NP-Completeness through the rémtuéitom the problem
of Exact Cover by 3-Sets.

— Algorithms on Dual-Core Systems without MigratioRsr algorithm design, the
classic Blossom [6] algorithm can be directly used for filgdihe optimal sched-
ule for dual-core cases for cost minimization [10, 11]. Butdnnot be applied to
makespan minimization because the algorithm aims to maangithe total weights
of a perfect matching on a graph, rather than the largesthwaigwhat makespan
minimization requires. The solution introduced in this wdBection 3.2) turns
out to be even more efficient than the Blossom algorithm, witinplexity of
O(n?? -logn) versusO(nt).



— Algorithms in Other SettingsA* is a classical search algorithm widely used in
many areas. We do not claim the use of it for job co-schedutirtge general set-
tings as a contribution of this work. In fact, previous woB4] has used it for ap-
proximating optimal schedules for cost minimization. Heem the key in applying
A* is in the formulation of the search problem and the desifthe approximation
functions f (v) used in every search-tree node. Both are specific to theqrotd
be addressed. They are where the extensions are made byptiogiagation algo-
rithms in this work. In addition, the empirical exploratiohthe tradeoff between
the approximation efficiency and the quality of resultingestules is also specific
to the makespan minimization problem.

— Scheduling Results Section 5.1 shows, the optimal schedules for the two prob-
lems typically differ from each other, confirming the need $tudies on each of
them.

Overall, the previous work on cost minimization [10, 11, 24s given some in-
sights to this work. But because of the different goals oftthe problems, this sys-
tematic exploration is imperative for achieving a good ustinding of the makespan
minimization problem.

7.2 Comparisons with Other Scheduling Work

Scheduling is a topic with a large body of relevant work. Amsuarized in theHand-
book of Schedulingl?], previous studies on optimal job scheduling have ocedet
types of machine environmentiedicatedlidentical paralle| uniform parallel andun-
related parallelmachines. On all of them, the running time of a job is fixed ona m
chine, independent on how other jobs are assigned, a clatrasbto the performance
interplay in the co-scheduling problem tackled in this eatrwork.

Traditional Symmetric Multiprocessing (SMP) systems orMW platforms have
certain off-chip resource sharing (e.g., on the main memdmyt the influence of the
sharing on program performance has been inconsiderabkcfaduling and has not
been the primary concern in previous scheduling studieseSscheduling work [12]
has considered dependences among jobs. But the dependifeetom the perfor-
mance interplay in co-scheduling in that the dependencest@ins the order rather
than performance of the execution of the jobs.

The hierarchical scheduling algorithm [5] in traditionabjscheduling also uses a
tree-like hierarchy for job scheduling. However, it is abbhaw to move tasks among
queues along a path to feed an idle processor, considerimgeriormance influence
caused by co-running jobs.

7.3 Other Work on Shared Cache Management

Due to the importance of shared cache, recent years haveadaege number of rel-
evant studies. Some of them try to construct practical o@{bb scheduling systems.
They employ different program features, including estedatache miss ratios, hard-
ware performance counters, and so on [7, 19, 20]. Architeciesigns for alleviat-
ing cache contention have focused on cache partitioniny fE&he quota manage-
ment [14], and so forth. But none of them has focused on thenapto-scheduling to



minimize makespan. In addition, some studies [2, 4] havpgsed statistical models
for the prediction of co-run performance. The models mag ¢las process for getting
the data needed for optimal scheduling.

8 Conclusion

As the processor-level parallelism increases, the urgéorcglleviating the resource
contention among co-running jobs is continuously growifigs work concentrates on
the theoretical analysis and the design of optimal co-adivegl algorithms for min-
imizing the makespan of co-running jobs. It proves the caiienal complexity of
the problem, proposes an(n?® - logn) algorithm and A*-search-based algorithms
to solve the makespan minimization problem, and empisicadrifies the optimality
of the algorithms and examines the effectiveness and stlalf several approxima-
tion algorithms. The analysis and algorithms contributethis paper may complement
previous explorations by both revealing the lower boundefealuation, and offering
insights in the development of lightweight co-scheduliggtems.
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