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Abstract. In an Internet desktop grid, the computing power may be
leveraged by providing economic incentive for computer owners. Using
batch mode scheduling heuristics, such as MinMin, MaxMin or Suffer-
age, this paper describes an algorithm that performs independent task
scheduling on a large scale heterogeneous system, with a budget con-
straint. Under the restriction of never exceeding a periodically refreshed
budget, successive optimizations are performed to enhance the makespan
by finding a suitable distribution of the budget among the given tasks,
through the given time horizon. For the scalability purpose, the com-
puting resources are partitionned according to their speed into classes.
First, a schedule on these classes is computed using one of the men-
tioned well-known heuristics, and then, tasks assigned to a class are
actually scheduled to the respective computing resources, as these tasks
were ranked by the first scheduling algorithm. To evaluate the effective-
ness of our scheduling approach, we have built a simulator that uses real
traces obtained from the BOINC based XtremLab project. The results
show that the repartition of the budget among tasks, and through time,
improves the makespan by a significant factor. They also show that the
adaptation to the grid scale can achieve comparable makespan when the
availability interval of computing node is not too small.

Keywords: independent task scheduling, batch mode, high throughput com-
puting, budget constraint, large scale heterogeneous computing

1 Introduction

Over the past few years we have seen an increasing use of commodity tech-
nologies for high-performance computing. The supercomputer vendors are using
more and more common commodity components and processors. Gone are the
days when high performance computing was possible only for those who could
afford expensive supercomputers. Nowadays, very large scientific applications
in genome analysis, molecular interaction, protein modeling, etc, are being de-
veloped using middleware technologies that aggregate the computing power of



an extensive number of Internet-connected machines [1, 3, 11, 14]. To support
this expanding interest and acceptance of the use of commodity computers to
solve large-scale computational problems, desktop grids are being developed as
promising high-performance and high-throughput computing infrastructures.

For peer-to-peer and global computing systems, it is rather common that
volunteers make a commitment to donate unused computational resources for
public interest, for challenge, for fame or simply just for amusement. It is through
the introduction of economic incentives and by embedding a pricing strategy for
welfare that it would be possible to increase the number of computing resource
providers as well as the number of consumers. This new approach would allow
providers’ investments and consumers’ expenses to be better justified. Providers
will be able to address wider markets and consumers will not have to contin-
uously maintain and adapt their computing infrastructures to evolving needs
and will pay only for what they really use. Computing would be a commodity
as replacement of computer and software goods. The emergence and recent de-
velopment of cloud computing platforms shall extend even further shifting of
computing to computing centers connected to the Internet [9]. However, until
now, cloud computing services cannot be regarded as real commodities because
these services are not fully fungible and cloud providers have their own pricing
schemes.

Task scheduling is one of the most challenging problems facing Internet com-
puting. As the worldwide Internet network is too slow to support tightly coupled
applications, in the present work, we consider only independent task schedul-
ing. Such scheduling problem, on non-identical processors, is well known to be
NP-complete [18]. Many distributed and parallel computing researches have ex-
plored heuristics for independent task scheduling that aim to maximize execution
throughput on heterogeneous systems [18, 17, 21, 4]. However, little work has con-
sidered economic incentive criteria in the objective function. The present work
describes an adaptation method of classical batch mode scheduling heuristics to
support independent task scheduling with a budget constraint on heterogeneous
Internet-connected machines. Under the restriction of never exceeding a periodi-
cally refreshed budget, the goal is to minimize the makespan. Besides scheduling,
we must also address other issues including security, quality of service guaran-
tees, pricing, accounting and trusted payment. These issues are not covered in
the present paper but are investigated in other ongoing works. Scheduling in-
dependent tasks with economic constraints on a set of available heterogeneous
computational resources is the challenging problem addressed in this paper.

Most widely known Internet computing projects, such as BOINC based pro-
jects [3], Entropia [11] and XtremWeb [14], described as peer-to-peer, actually
rely on a non-peer central element. The central element is used for global schedul-
ing, task initialization, maintaining a central repository for machine and task
information, collection of results, etc. The other nodes, called the peers, perform
the actual computations. This centralized approach makes the computation of
schedules easier. In line with this same approach we aim at adapting the classical
batch mode scheduling heuristics to performance and budget constraints.



The considered heuristics are MinMin, MaxMin [17] and Sufferage [21] ; they
are based on centralized computation of schedules. As the time complexity of
these heuristics depends on the number of workers in the grid, these heuristics
are not well suited for large-scale systems. To overcome this drawback, we have
partitioned the workers into classes according to their speed. First, a schedule on
these classes is computed using one of the mentioned well-known heuristics, and
then, tasks assigned to a class are actually scheduled to the respective workers
as these tasks were ranked by the first scheduling algorithm.

Desktops and workstations represent a big underutilized reserve of hetero-
geneous resources [2]. Most components of these computers spend a great part
of their time doing nothing. Especially, it is the case of CPUs, even if you are
actively working away on your computer, your CPU is likely to be waiting for
keystrokes, mouse clicks and so on. However, you may also run a CPU intensive
application. Besides, your computing node may join or leave the grid at any mo-
ment. Clearly, the processing power available for the Internet computing usage
is highly variable, a scheduler has no guarantees regarding the availability and
the computing speed of the execution nodes. The proposed scheduling method
is designed to support scheduling on such non-dedicated workers.

The paper is organized as follows. Section 2 discusses the related work. Sec-
tion 3 gives the outline of our scheduling model and provides a comprehensive
description of the considered classical scheduling algorithms. Section 4 describes
the proposed scheduling algorithm. Section 5 gives the experimental environ-
ment, and presents the simulation-based experimental results. Finally, Section 6
concludes our work and presents the future work.

2 Related Work

Ibarra and Kim [18] have described several heuristic-based algorithms for task
scheduling on non-identical processors. Two of them have been implemented by
Freund et al. as potential dynamic batch mode scheduling algorithms in the
SmartNet system [17]. They called them MinMin and MaxMin algorithms. An-
other well-known heuristic-based algorithm is the Sufferage algorithm described
in [21]. A short description of these heuristics is given in the section 3.4. In this
last work, Maheswaran et al. have also compared the above three batch mode
scheduling algorithms and several immediate mode scheduling algorithms. They
have considered makespan as a measure of the throughput of the computing
system. They showed that for heterogeneous computing, when there are a large
number of tasks and high task arrival rate, the batch mode is able to provide a
smaller makespan than the immediate mode. Indeed, these conditions will insure
that there will be a sufficient number of tasks in order to take better decisions
and to keep the workers busy between mapping events and while a mapping is
being computed [21]. MinMin, MaxMin and Sufferage have been used in many
grid execution environments and especially in AppLeS [10] and GrADS [12]. The
AppLeS (Application-Level Scheduling) template uses a specific scheduler within
each application that could use one of these heuristics. GrADS (Grid Applica-



tion Development Software) provides a generic application-level scheduler that
maps workflow application tasks to a set of resources according to the heuristic
that compute a schedule with the minimum makespan. As MinMin, MaxMin
and Sufferage are becoming benchmarks, we are looking to adapt them to sup-
port high throughput computing through economic incentive-based scheduling
onto an Internet Desktop Grid. While these heuristics have been proposed for
mono-objective optimization, Phatanapherom and Uthayopas have used them
for multi-objective optimization [22]. Instead of makespan, they have defined an-
other objective function which is a weighted-sum of execution time, ready time,
cost, accumulative cost and time period between completion time and deadline.
Using this function, new economic scheduling algorithms have been proposed as
an extension to conventional scheduling algorithms (MinMin, MaxMin, Suffer-
age). These extended algorithms optimize rental cost of running tasks but are
not able to support optimization strategies that must respect a budget limit.

Buyya et al. have designed a GRid Architecture for Computational Economy
(GRACE) [5, 6] which corresponds to a system-level middleware infrastructure
that includes a user-level broker, called Nimrod/G, and a trading mechanisms
working closely with the Globus grid middleware [16]. As a part of the Nim-
rod/G broker, three budget and deadline constrained scheduling algorithms are
proposed [7]. These algorithms differ in that: the first one tries to minimize the
time, the second one tries to minimize the cost while the third one does not mini-
mize either. In [8], a forth algorithm was proposed, called cost–time optimization,
which keeps the cost at a minimum and applies time-optimization while allocat-
ing tasks to a group of equal-cost resources. However, all these algorithms assign
tasks in an arbitrary order without optimizing the scheduling by taking into
account the expected completion times of tasks on computing resources, as it is
done in MinMin, MaxMin or Sufferage. Besides, all the mentioned budget con-
strained scheduling algorithms are application-centric. The submitted tasks are
supposed to belong to a same application which has its specific deadline and bud-
get limits. Another interesting case study, which is our main concern here, is the
system-centric scheduling constrained by a budget shared among different users.
Both the computing power and the budget are considered as shared resources.
The corresponding model is detailed in the section 3. Under the restriction of
never exceeding the budget, we have optimized the makespan by finding a suited
repartition of the limited - but periodically recharged - budget among tasks and
through time. As we are looking to support high throughput computing, our
proposed generic scheduling algorithm has no deadline constraints.

The MinMin, MaxMin and Sufferage scheduling algorithms operate in a cen-
tralized fashion and are not designed to support a massive number of workers:
to schedule a set of tasks onto a grid the time complexity is O( t2 ∗ w), where t
is the number of tasks and w is the number of workers in the grid (for Suffer-
age, this complexity is in the worst case) [21]. To reduce the time complexity of
the scheduling algorithm, in [13] and as a part of GrADS framework, a search
space is pruned. Resources are grouped into disjoint subsets such that network
delays within each subset are lower than network delays between subsets. In [23],



Venugopal and Buyya have proposed a scheduling algorithm of data intensive
applications using a detailed cost model associated with the movement and the
processing of datasets. A search space is also limited by selecting computing re-
sources from a sorted list and by making assignments in an incremental fashion.
In [26], a guided search procedure was applied using a genetic algorithm to com-
pute a static scheduling that minimizes the execution time of a workflow while
meeting user’s budget constraint. In the present work, tasks are independent and
are not known a priori. Only dynamic scheduling heuristics are considered. We
do not address overheads due to file staging and so we do not apply an approach
that limits the search space in a similar way as in [13] or [23]. To reduce a search
space, which is enlarged by a massive number of computing workers, the workers
are gathered into classes of equivalent workers. Using the MinMin, the MaxMin
or the Sufferage heuristic, a first mapping to these classes is computed. Then
final task schedules onto actual workers are computed. An information server is
used to dynamically lookup the computing workers in the grid and to determine
their average speeds.

3 Grid Scheduling Model

We consider the scenario where a computing center aims to provide a high
throughput computing service to its users not necessarily by acquiring supercom-
puters, but by appealing to grid resource providers which receive, in exchange,
a monetary reward. A computing center has its own scheduler and a global pe-
riodically refreshed budget shared among all its users, users submit tasks to the
same scheduler. We do not address starvation problem where a task may wait a
long time before it starts. To resolve the starvation problem, in the same way as
described in [21], aging schemes may be used.

3.1 Task Scheduling Model

All tasks are assumed to be independent and have no deadlines or priorities
associated with them. They have a coarse granularity. The delay needed to start-
up a remote task, including task transfer delays, is assumed to be negligible as
compared to task execution time. A rule of thumb is: if a remote execution of a
task needs more time to ship data and code than the computing time, then it is
cheaper to use local computing resources. So, we suppose that such a task is never
submitted to our grid-wide scheduler. Besides, the running time to compute task
scheduling must be negligibly small compared with the average task execution
time. Especially this last condition must hold even when there is a high number
of workers. Task arrival times may be random and are unknown in advance. A
dynamic non-preemptive scheduling scheme is applied using the batch mode.
Tasks are not scheduled immediately but they are periodically collected into
a set, called a meta-task, and then scheduled at the end of each period. The
scheduling period is denoted R. A meta-task includes newly (not yet scheduled)
arrived tasks and those that were scheduled in earlier scheduling events but did



not began or they failed to complete their execution. Indeed, a task execution
may be aborted due to a network or a worker failure. At the k th-scheduling
event, the meta-task is denoted Mk and the wall-clock time is denoted Dk.

A parametric function is used to estimate a task completion time. Each task
ti is characterized by its length li, known in advance and used in the parametric
function. This length may be a loop iteration count, an input data length or
whatever parameter needed to estimate the task execution time. We assume
that all tasks have the same unit of length that we call operation. For simplicity,
and without loss of generality, the parametric function used to estimate the
expected completion time of a task ti on a worker wj (at k th-scheduling event)
is given by (1).

ECT k(ti, wj) = rkj +
li
skj

(1)

where skj is the average speed of wj , r
k
j is the maximum of (Dk, rj), rj denotes

the expected time at which wj will become ready to execute a new task, after
finishing the execution of any previously assigned task. rj is updated according
to the effective progress of the last submitted task at the previous scheduling
event k-1. Note that at the kth-scheduling event, if the worker wj is ready before
the scheduling event time Dk then the task ti could not be started before Dk.

3.2 Grid Model

Computational grids include a variable number of computers distributed over
the Internet. Computers are heterogeneous and have various nominal computing
powers. Each computer is called a worker and may offer to the grid its remaining
computing power - which is not used by the local users (i.e. owners) - or a dedi-
cated fraction of its processing capacity. The resulting available computing power
is modeled as an execution speed and is expressed as the number of operations
computed per time unit. The speed of each worker varies over time according
to the load generated by its local users. This execution speed model is used to
represent the computer heterogeneity and the computing power availability. As
almost all workers are time-sharing systems and since the submitted tasks are
CPU intensive ones, the pseudo-parallel execution of two tasks may take more
time than executing them sequentially. So, on each worker is launched only one
non-local task at a time per core.

Any worker may leave (respectively, join) the grid at any moment. This
may happen due to an owner decision or simply as consequence of a worker
or network failure (respectively, end of failure). A worker that leaves and then
joins again the grid is considered as a new worker. At the k th-scheduling event,
the set of workers is denoted Gk. An information service, such as the directory
service discribed in [15], is used to lookup the workers that belong to Gk. All
workers must be registered at this server. A prediction mechanism is also needed
to determine the expected average speed of each worker. The Network Weather
Service (NWS) [24] may be used for this purpose. In this paper we are not
concerned with how prediction is done. At the k th-scheduling event, the set of



workers with an average speed sn is denoted Gk
sn . We assume that there are

N representative standard values of the average speeds. While the number of
workers |Gk| may be massive, the number of average speeds N is assumed to
be reduced. For the considered heuristics, it is possible to explore iteratively all
the N alternative average speeds in a reasonable time. For an average speed sn,
|Gk

sn | may be massive (note that |Gk| is equal to the sum of all |Gk
sn |, 1≤n≤N ).

3.3 The Budget Model

The execution of a task is budget constrained. The available budget must never
be exceeded. As in [19], we assume that the budget is periodically recharged.
The recharge value is denoted B. At each scheduling event, a scheduler can
never accumulate more than B credits. This automatic refresh of the budget
avoids hoarding and starvation.

Any node is able to execute every task, the rental cost of running a task ti
on worker wj with an average speed sn is:

RentalCost(ti, sn) = li ∗ pksn (2)

where pksn is the execution price of an operation unit. At each scheduling event k,
each operation price pksn , 1≤n≤N, is obtained from the information server. The
pricing algorithm is studied in another ongoing work. Note that if the execution
of a task is aborted then no penalty charges are incurred.

3.4 The General Scheduling Algorithm

The classical scheduling heuristics MinMin, MaxMin and Sufferage have the
same general algorithm [10]. The pseudo-code of this algorithm is depicted in in
Figure 1. The set of not yet scheduled tasks is denoted by Mk. Tasks are assigned
iteratively to workers. For each task ti, a selection metric di is computed as a
function of the expected completion times of the task ti on all workers. When
all the metrics - for the not yet scheduled tasks in Mk - are computed, they are
used to select a best task tp. For this task, the worker wq that gives the minimum
expected completion time cp,q is determined. The task tp is then scheduled on the
worker wq. This process is repeated until all tasks are scheduled. The functions
Metric and BestMetric entirely define a heuristic as shown in Table 1.

3.5 Notation Summary

Table 2 gives a summary of the notation we have just used in the section 3.

4 The Adapted Algorithm

4.1 Adaptation to the budget constraint

With a slight modification of the algorithm described in Figure 1, we could
respect the budget limit as follows. At each iteration and when selecting a new



At each scheduling event k
1: Mk = Mk

2: while Mk 6= ∅
3: for each ti in Mk

4: for each wj in Gk

5: ci,j = ECT k(ti, wj)
6: di = Metricwj∈Gk (ci,j)
7: end for
8: select p such as dp = BestMetricti∈Mk (di)

9: select q such as cp,q = Minimumwk∈Gk (ECT k(tp, wk))
10: schedule task tp on wq

11: remove tpfrom Mk

12: end while

Fig. 1. The general scheduling algorithm

Table 1. Definition of Metric and BestMetric functions for the classical heuristics

Heuristic Metric BestMetric

MinMin Minimum Minimum
MaxMin Minimum Maximum
Sufferage Difference between second minimum and minimum Maximum

Table 2. Notation summary

Symbol Description

Dk The the wall-clock time at the k th-scheduling event
R The scheduling period

Mk The meta-task at the k th-scheduling event
ti A task i
li The length of the task ti
Gk The set of workers at the k th-scheduling event
wj A worker j
rj The expected ready time of the worker wj

rkj rj or at least Dk

skj The average speed of worker wj at the k th-scheduling event
N The number of representative values of the average speeds

Gk
sn The set of workers with an average speed sn at the k th-scheduling event

B The recharge value of the budget at each scheduling event

pksn The execution price of an operation unit by a worker with an average speed sn



worker-task match, the metric associated to a task ti is evaluated using only the
workers that do not need a cost which exceeds the expected remaining budget
B. When the budget limit is exhausted, the not yet scheduled tasks are delayed
to the next meta-task. Figure 2 gives a sketch of this first solution.

At each scheduling event k
1: Mk = Mk

2: B= B
3: while (Mk 6= ∅) and (B 6=0)
4: for each ti in Mk

5: Sk
i ={n : 1≤ n ≤ N}

6: for n=1 to N
7: if RentalCost(ti, sn)> B then
8: remove n from Sk

i

9: W k
i =

⋃
n∈Sk

i
Gk

sn

10: for each wj in W k
i

11: ci,j = ECT k(ti, wj)
12: if W k

i = ∅ then
13: remove ti from Mk

14: else
15: di = Metricwj∈Wk

i
(ci,j)

16: end for
17: if Mk 6= ∅ then
18: select p such as dp = BestMetricti∈Mk (di)

19: select q such as cp,q = Minimumwk∈Wk
p

(ECT k(tp, wk))

20: schedule task tp on wq

21: remove tp from Mk

22: B = B-RentalCost(tp, swq ) //swq is the speed of wq

23: end while

Fig. 2. The non-optimized version of the budget constrained scheduling algorithm

However, all the considered heuristics tend to select the fastest, and likely
more expensive, workers. Such selection increases the expenditure and risks to
quickly exhaust the budget. Clearly, this situation does not optimize neither the
makespan nor the use of the budget. Indeed, it may be wasteful to minimize the
execution time of some tasks and then wait the refresh of the budget to schedule
the other tasks. The delayed tasks will constitute a supplementary load for the
next meta-task. On the other hand, it could be possible to use less expensive
workers and, with the saved expenses, schedule much more tasks and reduce
the overall makespan. From this discussion emerges the importance of a good
repartition of the budget among tasks and through time. To be able to schedule
all the tasks of a meta-task Mk with the budget B, we should select workers



with an operation unit price close to:

B∑
tm∈Mk lm

(3)

For this purpose, a task ti could be scheduled on a worker only if the following
condition is verified:

B + li ∗ pksn∑
tm∈M

k lm + li
≤ B∑

tm∈Mk lm
(4)

where B denotes the already allocated budget (B = B − B), M
k

denotes the

subset of scheduled tasks at the iteration k (M
k ⊂ Mk) and sn is the average

speed of the target worker.
Besides, the budget could be recharged before the actual start of all tasks

in the meta-task Mk. The not yet started tasks would be rescheduled at the
iteration k+1 according to a newly updated budget. However, according to (4),
these tasks have been taken into account in the repartition of the kth-budget
among tasks while they should not be considered. This potential imprecision may
be removed by adapting the time repartition of allocated expenses. To not under-
utilize the budget B during the refresh period R, allocated expenses through time
should be close to B/R. If we consider a current task to be potentially scheduled
on worker wj then we should have:

B

rkj −Dk
≈ B

R
if rkj > Dk

recall that Dk denotes the wall-clock time of the kth-scheduling event and rkj
denotes the expected ready time of the worker wj . Note that we do not have
to consider workers with a ready time greater than Dk+R. When Dk is greater
or equal to rkj , it is still the beginning of the period R, so the budget is not

underutilized and the condition (4) is sufficient. However, if rkj is greater than

Dk and we have:
B

rkj −Dk
<<

B

R

then this situation leads to the creation of savings, denoted by Ek
j , given by the

following expression:

Ek
j = (

B

R
− B

rkj −Dk
) ∗ (rkj −Dk) =

B ∗ (rkj −Dk)−B ∗R
R

Using this savings and applying the condition (4), a task ti could be scheduled
on a worker wj (with an average speed sn) that verifies the following condition:

B − Ek
j + li ∗ pksn∑

tm∈M
k lm + li

≤ B∑
tm∈Mk lm



or simply
B
R ∗ (rkj −Dk) + li ∗ pksn∑

tm∈M
k lm + li

≤ B∑
tm∈Mk lm

(5)

To take into account this condition in the adapted algorithm described by
figure 2, we have modify the line 9 as follows:

W k
i ={wj :∃n ∈ Sk

i , wj ∈ Gsn , if psn is not the lowest price then
(if rkj>Dk then condition (5) holds else condition (4) holds)}

4.2 Adaptation to grid scale

The above general scheduling algorithm and the adapted one to the budget con-
straint are not well suited when there is a large number of workers. Indeed, at an
iteration k, for each remaining task and on each worker that fulfills the budget
constraint, we need to compute the expected completion time. The number of
workers may be a massive number and then it is very time-consuming to com-
pute separately all the expected completion times for all the potential workers.
To overcome this problem, the ready time of a sn speed worker wj is globally
approximated by (6):

rkj = rksn = max
(
Dk, r̃k−1sn

)
+

∑
tm∈M

k
Gsn

lm

|Gk
sn |∗sn

if all Gk
sn workers are busy

rkj = rksn = Dk otherwise (6)

where r̃k−1sn is a real-time updated value of rk−1sn such as only the not-yet-finished
tasks are taken into account (k>0 ), r0sn is the wall-clock time (D1), |Gk

sn | is the

number of sn speed workers and M
k

Gsn
is the current subset of tasks assigned to

workers with an average speed sn at the scheduling event k. In the determination
of rkj , the use of an arithmetic average time as an approximation of the execution

duration of all scheduled tasks in M
k

Gsn
is justified by the fact that, anyway, the

estimations are based on average speeds.
As a consequence of this global approximation of the ready times, and so also

the expected completion times, the scheduling algorithm computes schedules
of tasks onto a limited number N of worker-sets (Gk

sn , 1 ≤ n ≤ N) without
considering all the |Gk| workers and assigning the tasks to the actual workers.
The final adaptation of the general scheduling algorithm - to support both the
budget constraint and a large number of workers - is obtained by making the
following modifications to the algorithm described by figure 2. The notation of
a worker wj has to be replaced by a speed index reference n, the ready time
denoted by rkj must replaced by rksn as formulated by the expression (6), and the
lines 9, 11, 15, 19 and 20 are respectively replaced by:

(9): W k
i ={n : n ∈ Sk

i , if psn is not the lowest price then
(if rksn>Dk then condition (5) holds else condition (4) holds)}

(11): ci,n = rksn + li
sn



(15): di = Metricn∈Wk
i

(ci,n)

(19): select q such as cp,q = Minimumn∈W k
p

(rksn +
lp
sn

)

(20): Schedule task tp on Gk
sq

After this first scheduling, a second and final scheduling is needed to de-
termine for each task the actual worker that will execute the task. This last
scheduling is done as follows. When a worker wj , with an average speed sn, fin-
ishes the execution of its current task, the next task assigned to Gsn(as it was
ranked by the first scheduling algorithm), if any, is scheduled on the worker wj .

5 Experimental results and discussion

In section 4, we have proposed successive enhancements to the general scheduling
algorithm to support the budget constraint and to adapt the algorithm to the
grid scale. The evaluation of the contribution of each of these optimizations is
performed by simulation experiments using repeatable patterns of worker’s and
task’s behavior. An essential issue in this simulation is the characterization of
the heterogeneity and the availability of Internet desktop computers (i.e. work-
ers). However, this characterization has been poorly understood [20]. Rather
than to try to model the behavior of the workers, we used real traces obtained
from XtremLab project [25]. The goal of this project is to monitor the avail-
ability of a large number of desktop PC’s within a worldwide global computing
infrastructure that uses the BOINC (Berkeley Open Infrastructure for Network
Computing) platform [1].

XtremLab determines CPU availability using an active measurement method.
To a monitored worker is submitted a task that iteratively computes integer
and floating-point operations and periodically, nearly every 10 seconds, writes
the number of iterations performed to a trace file. Each iteration corresponds
to a known number of integer and floating point operations. A task length is
expressed in iterations. For simplicity, these iterations are called operations. We
structured the traces as a time series and used them to simulate the execution
of tasks on workers. All the simulated tasks are assumed to make the same type
of calculation and so to perceive availability such as that traced.

Several hundred of thousand active computers participate to BOINC projects
but XtremLab project monitors a limited number of participating computers.
In the present work, the used traces were collected between 02 March 2006 and
09 April 2007 from 4309 computers. Nevertheless, this not very large fraction
of workers contains a variety of rather representative heterogeneous computers.
Figure 3 shows the cumulative speed distribution of near 19*107 measured speeds
averaged over a period of 10 seconds (during 21939 CPU days). The average
speed is 8.9*103 operations/second; 90 % of measures corresponds to a speed less
than 12*103 operations/second. For higher speeds, the curve continues to always
increase slightly until it reaches 100% which corresponds to a speed of 99*103

operations/second. Hence, the speed values between 0 and 12*103 are potentially
more relevant than the upper values. The N representative standard values of



the average speed were chosen as follows. From 0 to 12*103 we selected 121
equidistant values (i.e., the integer interval between 0 and 120 multiplied by 102

operations/second) and from 20*103 to 99*103 we selected 80 equidistant values
(i.e., the integer interval between 20 and 99 multiplied by 103 operations/second).
A traced speed value is rounded to the nearest representative standard value.
The half-integers are rounded to even numbers.
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Fig. 3. Cumulative distribution of speeds

On a given worker and while it is available, the duration between two consec-
utive failures is called an availability interval. As XtremLab executes successive
measurement tasks, called work unit, for each available processor, we have used
an interpolation function to determine a presumable speed between two con-
secutive work units. Besides, XtremLab is not able to trace the precise date at
which a worker becomes unavailable. We approximate this date by the end time
of the last entirely executed work unit (before the worker becomes unavailable
during a significant duration).

The simulated tasks are generated randomly: the size of an arriving task is
a random value chosen between 5*106 (lmin) and 12*106 (lmax) operations. We
have fixed a minimum length value of 5*106 operations because we assumed
previously that tasks have a coarse granularity (see section 3.1). As 95% of
the availability intervals reach 12*106 operations, this value has been chosen
arbitrary as a maximum task length to limit the proportion of aborted tasks.
Recall that the execution of a task must fit completely in an availability interval
otherwise the task is aborted and rescheduled in the next meta-task.

For each month, in the trace period, we calculated the Average Number of
available Workers (ANW) and the Average Cumulative Speed (ACS) of these
available workers. We found that the ACS is not proportional to ANW. For in-



stance, while for June and September we have not too different values of ANW,
respectively 101 and 94 workers, the ACS of September is almost 12*106 oper-
ations/second which is near the double of the ACS of June. These two months
are very representative of many other months (except the beginning and the end
months of the trace period). Without overloading the simulated desktop grid,
we have chosen to tune and maximize the task arriving rate according to ANW
and ACS of September. The so-generated task arrival patterns are used first,
to carry out the simulation study using September worker time series and then,
to simulate overloaded conditions, we have used the same task arrival patterns
with June worker time series.

To make the average number of newly arriving tasks close to ANW of Septem-
ber, at each scheduling event, the number of arriving tasks has been randomly
generated between 0 and 200. So, at each scheduling event, the consequent to-
tal average number of submitted operations is 85*107 operations , not included
operations that belong to the rescheduled tasks (i.e., 100*(lmin + lmax) /2). As
the ACS of September is approximately 12*106 operations/second, to compute
85*107 operations, the grid needs roughly 70 seconds. The scheduling algorithm
likely cannot maintain always the workers busy and consequently the value of
70 seconds is a lower bound of R. To simulate a high task arrival rate, as it is
the case for high throughput computing, we must tune the period of time (R)
between two scheduling event to generate a task arrival rate close as much as
possible to the task completion rate without exceeding it. For the basic heuristics
(MinMin, MaxMin and sufferage) and after a manual tuning, the best value we
obtained for R is 2 minutes.

To be able to evaluate the effectiveness of the different studied scheduling
algorithms, we have used the same task arrival patterns. A task arrival pattern
corresponds to a finite list of task arrivals generated over a period of two weeks.
According to the above values, we generated a set of 50 task arrival patterns (50
trials). The same set of task arrival patterns is used for each simulated schedul-
ing algorithm. These patterns are used to average each point in the following
comparison charts. Vertical lines at the top of a bar indicate the minimum and
the maximum values for the 50 trials. The makespan for each adapted heuris-
tic has been normalized with respect to the non-adapted heuristic. Note that
a unit value of the normalized makespan is specific to each month and is not
comparable with another month.

As we are not concerned in this paper with studying prediction techniques,
the predicted average speed of a worker has been computed using the actual
time series values. At a scheduling event time, an average worker speed was
computed using the next time series values corresponding to the next fifteen
minutes. All the computed average speeds are structured as times series. These
average worker speed time series have been also used to determine the workers
that belong to each Gk

sn . The price associated with an average speed sn is sn
divided by s0, where s0 is the minimum positive speed.

In the rest of this section, only the results obtained using MinMin heuristic
will be presented. For the two other heuristics, namely MaxMin and Sufferage, we



obtained comparable results as with MinMin. Using this heuristic, the simulated
scheduling algorithms are :

1. the original version which is not adapted to the budget constraint and to
the grid scale,

2. the adapted version to the budget limit without any optimization of the
budget repartition as described by the figure 2, named BMinMin,

3. the version with a repartition of the budget among tasks according to the
condition (4), named BTMinMin,

4. the version with a repartition of the budget among tasks and through time
according to the condition (5), named BTTMinMin, and

5. the version adapted to a large number of workers with a repartition of the
budget among tasks and through time, named LBTTMinMin.
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Fig. 4. Normalized makespan of the adapted MinMin versions

Figure 4 shows the effect of varying the budget on the normalized makespan
for the different adapted MinMin based algorithms. The conventional MinMin
heuristic is not budget constrained, it gives the minimum makespan which, in
average, corresponds to the two weeks task generation period plus ten minutes
for September and plus 42 hours 30 minutes for June simulations. So for Septem-
ber, the MinMin heuristic achieves an execution rate close to the arriving rate,
while for June an overload problem occurs. Indeed we had tuned the task arriv-
ing rate according to the ACS of September which is near the double of June.
Nevertheless, for June simulations, even if the desktop grid is overloaded, the
repartition of the budget among tasks and through time is able to enhance the
makespan. It can also be observed that for all the MinMin budget adapted ver-
sions, increasing the budget decreases the makespan until it reaches a value close
to that of the non constrained MinMin version.

For September series with a budget little more than 3*1011, the BTTMin-
Min version is also able to sustain the arrival rate whereas the other budget
constrained versions (BMinMin, BTMinMin and LBTTMinMin) are not able



to perform so much. The repartition of the budget among tasks, applied by
the BTMinMin version, reduces significantly the normalized makespan. Using
the BTTMinMin version, and so adding the repartition of the budget through
time, improves more over the normalized makespan. Then, if we consider the
LBTTMinMin version, which gathers workers into classes according to their
speed and uses an approximated value of ready time for all workers in a same
class, the normalized makespan suffers from this approximation as counterpart
of the ability to support a large scale desktop grid. Notwithstanding, with a
budget equal to 7*1011, the LBTTMinMin version is able to achieve a normal-
ized makespan comparable to the BTTMinMin version. This is due to the fact
that for this last budget the most part of the submitted computing tasks were
executed by workers which are more expensive but have a larger availability in-
terval. For such workers, which belong to a same class, the imprecision of the
approximation of the ready time is quite small.

Figure 5 shows the average resource utilization rate of the original and the
extended MinMin versions. As we have already noted, it can be seen that the
desktop grid is overloaded in the June case: the average resource utilization is
about 98% for the non-adapted MinMin version. Applying a budget constraint
decreases the resource utilization. According to figures 4 and 5, we can observe
that a lower makespan can be achieved by increasing the resource utilization. It
is through an appropiate pricing that it would be possible avoiding the under
utilization of resources.
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Fig. 5. Resource utilization rate of the original and adapted MinMin versions

6 Conclusion and future work

MinMin, MaxMin and Sufferage scheduling heuristics have been used in many
grid execution environments and are becoming benchmarks. To reach high com-
puting capacities and speeds, an economic incentive-based approach may be



used. In this context, we have proposed a generic adapted algorithm to support
independent task scheduling with a budget constraint onto large scale hetero-
geneous systems. The generic algorithm includes successive optimizations, to
enhance the makespan, it computes a suited distribution of the budget among
tasks and through time horizon. The simulation study, based on real traces,
shows that the proposed optimizations are able to improve the makespan by a
significant factor. For the scalability purpose, the computing resources are gath-
ered according to their speed into classes; the algorithm maps the submitted
tasks to these classes and then achieves a final scheduling for each worker class.
The simulation results show that the adaptation to the grid scale does not de-
grade the makespan when the availability interval of computing node is not too
small.

Our proposed algorithm rely on good prediction of worker speeds, we are
now investigating this issue using time series prediction approach. Besides, the
execution price at given speed should depend on the global offer and the global
demand in the grid. For this purpose, a pricing algorithm is also studied in
another ongoing work. To tackle malicious aborts, we are are looking to use
a reputation mechanism to put aside the bad workers that try to degrade the
performance of the scheduling system by intentionally accepting the execution
of tasks and then aborting them.
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