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Abstract. A formalization of the processor-set selection problem for
parallel job-schedulers is presented and proven to be NP-hard in the
strong sense. Nonetheless, a simple algorithm for the problem is pre-
sented, and is seen to perform well in practice when used in combination
with more realistic, less uniform, cost-structures.
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1 Introduction

The problem of determining when and where to run a parallel program on a
parallel computer is usually referred to as job scheduling, and is but one incar-
nation of scheduling and resource allocation problems which recur at a variety
of levels and scales in the context of parallel processing.

Parallel programs running on parallel computers are susceptible to run-time
delays due to communications congestion, and it therefore benefits each program
(and other simultaneously running programs) if its communicating subtasks are
mapped to processors that are located close together in the communication topol-
ogy of the computer system being used. For reasons of efficiency/performance,
a parallel program’s subtasks should thus be mapped to processors such that
intensively inter-communicating pairs of subtasks are as closely located as pos-
sible and vice versa, and a variety of methods to do so have been developed over
the last 25 years [3–8, 36].

Unfortunately, current parallel job-schedulers tend to assign programs to run
on more-or-less randomly assembled collections of processors [26, 34], and in such
cases a carefully determined mapping of program subtasks to logical processors is
essentially worthless. Making parallel job-schedulers select processor collections
that are closely located (i.e., ‘compact’) in the communication topologies of par-
allel computer systems is not only an efficiency/performance issue, however. For
sites where single jobs never (or very very rarely) use an entire system, effi-
cient and reliable selection of compact processor collections by the job-scheduler
would enable hardware configurations with lower bisection bandwidths to remain
competitive for the workloads in question, and could thereby strongly influence
system procurement costs (and thus procurement decisions).



In this paper we present a flexible formalization of the processor-set selection
problem for parallel job-schedulers. We show that the resulting optimization
problem is NP-hard, and present results suggesting that the use of more realistic
system models, with less homogenous cost-structures, may improve the quality
of processor-set selections obtained for practically occurring problem instances.

2 Related Work

Parallel job scheduling and topology aware task mapping are well known prob-
lems that have been extensively studied since the early 1990s and early 1980s,
respectively. Each field has an extensive collection of litterature associated with
it, and the coverage in subsections below is necessarily very brief.

2.1 Parallel Job Scheduling

The dominant scheme for scheduling parallel jobs on parallel computers is known
as variable partitioning [14], the meaning of which is that when scheduled to run,
each job is assigned a set of processors (i.e., a partition) of the requested size
that it keeps and uses throughout its lifetime. In early parallel job schedulers
partitions were allocated strictly in a first-come first-served (FCFS) manner to
submitted jobs, with the result that system utilization most typically was below
60 % [18]. A widely used refinement of the scheme just described is to also apply
a technique known as backfilling [23], whereby jobs that are not first in line to
be started are nonetheless started, when doing so is possible without affecting
the expected starting-time of the job that is currently first in line to be started.
Through backfilling and other improvements, such as ordering jobs by priority
rather than strictly FCFS, it has become entirely realistic to achieve utilization
figures above 80 % [18, 25, 30].

All currently used parallel job schedulers (e.g., PBS, LSF, LoadLeveler, SLURM,
Sun/Oracle GE) use variable partitioning schemes with backfilling and order
waiting jobs by priority. Additional features such as fair-share scheduling, con-
sumable resources, and job preemption are also supported in many cases. Strate-
gies for choosing the actual subsets of nodes to use for each job, are however
essentially limited to selecting the least loaded nodes, selecting available nodes in
some constant sequential order, or selecting nodes such that the number of con-
secutive sets of nodes is minimized. However, due to fragmentation and bound-
ary effects, these strategies tend not to yield particularly encouraging results for
recent generations of parallel computer systems.

2.2 Topology Aware Task Mapping

Substantial theoretical and practical research on interconnect topologies and
topology-aware mapping of tasks to processors was performed from the early
1980s to the mid 1990s. Heuristic techniques such as pairwise exchange were
initially suggested [6, 21], but subsequently found not to scale well. Instead,



methods were developed based on recursive partitioning [13] and graph contrac-
tion [3]. Yet other methods were developed based on techniques such as simulated
annealing [7] and genetic algorithms [8]. The mapping problems considered were
not always constrained to having predefined tasks. Mapping of recurrence re-
lations [29] and loop iterations [11] onto regularly connected grids were other
aspects of mapping being studied.

Due to the deployment in the mid 1990s and onwards of virtual cut-through
and wormhole routing [19, 27] and the emergence of faster interconnects, mes-
sage latencies became relatively unimportant and research in topology aware
mapping of computations died down. However, with the reemergence of three-
dimensional torus networks in recent top-of-the-line supercomputers [1, 10, 17],
message latencies are again gaining in significance and interest in topology aware
task mapping is increasing [4, 5, 26, 36].

Processor-set selection by job-schedulers has also been investigated previ-
ously [2, 33, 34], but to our knowledge only for mesh and torus topologies, whereas
hierarchical topologies have received very little attention.

3 Problem Formulation and Notation

There exists a vast variety of communication network topologies for parallel
computing, but because of the dominance of flat and hierarchically structured
network topologies (e.g., Clos networks [9] and fat-trees [22]) in current and re-
cent Top500 rankings,1 we only consider such network topologies in the present
paper. For a fat-tree network with 256 compute nodes, overall performance dif-
ferences of 200–400% due to bad processor selections have been reported [26],
and our interest in flat and hierarchical topologies is thus not misplaced.

3.1 A Concrete Sample-System

Current high-performance computer systems are typically composed of several
hundred or thousand compute-nodes, connected to one another by communica-
tion networks of various kinds, as well as power-distribution networks, cooling
networks (for water-cooled systems), etc.

Figure 1 shows a fairly typical 256-node/2048-core system with nodes ar-
ranged in 10 racks with 25 nodes in each rack, and with the six nodes thereby not
accounted for located in the center-rack (together with login-nodes, management-
nodes, and a 288-port Infiniband switch). The limit of 25 nodes per rack is to
prevent excessive floor loading, and as expected nodes 1–25 (counted from the
bottom and upwards) are located in rack 1, nodes 26–50 in rack 2, and so on.

The system’s job-scheduler communicates with the nodes over a dedicated
control/monitoring network (plain ethernet) in which a separate switch is re-
sponsible for the nodes in consecutive pairs of racks. A yellow rectangle has

1 November 2011: 41.8 % InfiniBand, 44.8 % Gigabit Ethernet,
November 2010: 45.2 % InfiniBand, 42.8 % Gigabit Ethernet.
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Fig. 1. A 256-node system, with its power- (red) and control- (yellow boxes) networks.

been placed behind each group of nodes managed by a common switch in Fig-
ure 1. The power distribution network is shown in red in Figure 1. The red boxes
shown below the compute node racks represent fuse-blocks, and as can be seen
in the figure, nodes 1, 4, 5, 8, 9, 12, 13 of each rack are connected to one power-
line, while nodes 2, 3, 6, 7, 10, 11 of the same rack are connected to a different
power-line, and in quite a few cases also to a different fuse-block.

The communication between compute-nodes is performed over InfiniBand.
Internally, the 288-port InfiniBand switch used has a Clos topology [9, 32], and
has 12 compute nodes connected to each line-card (local routing of messages is
performed by each line card). Compute nodes are connected in-order to line-
cards, so that nodes 1–12 are connected to line-card 1, nodes 13–24 to line-card
2, nodes 25–36 to line card 3 etc.

With all the different networks that are involved and their differing struc-
tures, it is clear that no single hierarchy (such as can be defined when using
SLURM [35] or PBS Pro job schedulers) will suffice to simultaneously take the
various networks of the system into account. To make matters concrete, it is
desirable that a job makes use of as few InfiniBand line-cards as possible (for
communication efficiency reasons), but at the same time it should ideally also
make use of as few power-lines as possible (so that each given job is affected by
fewer blown fuses), and it should be assigned to nodes below as few different
control-network switches as possible (so that each given job can be harmed by
as few failed switches as possible).

Finally, the system in Figure 1 is air-cooled, with cold air being provided
from below on the system’s font-side. For this reason the use of physically lower
positioned nodes is preferrable over the use of physically higher positioned nodes,
and because of flow of hot air around the sides of the system from rear to front,
it is more desirable to use centrally positioned nodes than to use nodes nearer
to the sides.

With all things considered, it is clear that the limitations and constraints
of the various networks present in a cluster system can interact in non-trivial
ways with respect to processor set selection, and that when cooling and energy
consumption issues are considered, no two compute-nodes are truly identical
unless they also occupy exactly the same physical location. These properties
stand in noticeable contrast to most idealized scheduling and selection problems,
in which sets of indentical resources and/or objects tend to be assumed.



IB1: IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

IB2: IIIIIIIIIIIII · · ·
...

PL1: IIIIIIII IIIIIIIIIIIIIIII IIIIIIIIIIIIIIII IIIIIIIIIIIIIIII

PL2: IIIIIIIIIIIIIIII IIIIIIIIIIIIIIII IIIIIIIIIIIIIIII
...

CN1: IIIIIIII
CN2: IIIIIIII

CN3: IIIIIIII

CN4: IIIIIIII
...

Fig. 2. Typical processor-set definitions, shown as bit-vectors.

3.2 Problem Formalization

To address the processor-set selection (PSS) problem such that the different
types of constraints mentioned above can be accounted for, we define a set of
processor numbers corresponding to each practical constraint that involves that
particular collection of processors. For example, since compute nodes 1–12 are
attached to line-card 1 on the InfiniBand switch and compute nodes 13–24 are
attached to line-card 2, etc., we define sets: IB1 = {1, . . . , 96}, IB2 = {97, . . . , 192},
etc. Similarly, we define sets PL1 = {1, . . . , 8, 25, . . . , 40, 57, . . . , 72, 89, . . . , 104},
PL2 = {9, . . . , 24, 41, . . . , 56, 73, . . . , 88}, etc., for processors connected to a common
power-line, and continue in the same manner with processor-sets for control-
network switches, as well as for each group of processors on the same compute-
node (CN 1, CN 2, etc.). For the processor-set definitions given above it is assumed
that each compute-node has eight processors, and an incomplete but nonethe-
less illustrative rendering of such processor-sets is given in Figure 2 (above). A
complete example of processor-set definitions is also presented in the appendix.

Now, let U = {1, . . . , m} for some m ∈ IN be the set of all processors that are
under the job-scheduler’s control. For each processor-set Pi ⊆ U , i ∈ {1, . . . , n},
defined as described above (i.e., P1 = IB1, P2 = IB2, etc.), an associated ℓ-element
cost-vector ci ∈ INℓ is defined. Given the collection of defined processor sets and
their associated cost-vectors, we view the total cost of a processor-set selection
S ⊆ U as being given by the vector-sum (denoted by ⊕) of those cost-vectors ci

for which the corresponding processor-set Pi has at least one element in common
with S. That is, the cost of a processor selection S can be defined as:2

cost(S) =

n
⊕

i=1

ci

[

(Pi ∩ Si) 6= ∅̂
]

, (1)

from which it follows that the cost of a selection is itself also a cost-vector.

2 Using the notation introduced in [16, page 24] whereby a pair of brackets enclosing
a boolean expression evaluates to 1 when the enclosed expression evaluates to true
and evaluates to 0 when the enclosed expression evaluates to false.



Cost-vectors are compared lexicographically, which means that we consider
the cost ci ∈ INℓ as being lower than cj ∈ INℓ when ci ≺ cj , with the definition
of the latter notation given by:

ci ≺ cj ≡ (ci)1 < (cj)1 ∨
(

(ci)1 = (cj)1 ∧̂ (ci)2 < (cj)2
)

∨ · · ·

· · · ∨
(

(ci)1 = (cj)1 ∧̂ · · · ∧̂ (ci)ℓ−1 = (cj)ℓ−1 ∧ (ci)ℓ < (cj)ℓ

)

,

wherein the notation (ci)k is used to indicate the kth element of ci ∈ INℓ.
Given a set Pa ⊆ U , of currently available processors and a number of re-

quired processors r ∈ IN, the processor-set selection problem is to find a solution,
X , to the following optimization problem:

min≺
X⊆Pa

{

cost(X̂)





|X | ≥ r

}

, (2)

or determine that no such solution X exists.

3.3 Motivations

Compared to plain scalar values, lexicographically ordered cost-vectors have the
advantages that different concerns (e.g., communication costs, electrical reliabil-
ity, energy consumption, etc.) are easy to keep separate and differently priori-
tized, and that cost-constraints to decide the acceptability of selections can be
defined in terms of individual cost-vector components. When the cost of each
processor-set is limited to being a single scalar value, such tasks become more
difficult and thus error-prone.

As described above, a processor-set is defined for a group G of processors to
indicate that it is desirable (with respect to some criterion) to let the processors
of G be selected for jobs of size ≤ |G|. That is, selecting processors from two
different processor-sets P1 and P2, with cost-vectors c1 and c2, when any one of
P1 or P2 alone would suffice, leads to a total selection cost of c1⊕ c2 instead of
min≺(c1, c2). In many real cases, however, the cost implied by a processor-set
definition only arises when the processor-set is straddled by a processor selection
and not when the requested number of processors can all be selected within the
processor-set, suggesting that common and essential problem-features are not
captured by the model.

The idea behind the processor-set/cost-vector model for processor selection,
however, is that the surplus costs incurred by undesirable processor selections
will cause minimization procedures to find more suitable selections whenever
such exist,3 and that it therefore should be irrelevant whether the base (i.e.,
minimum) total cost of each particular processor selection is zero or some other
value. In the case of P1 and P2 just above, for example, it is not important that
the minimum selection cost is min≺(c1, c2) instead of 0, but what is important
is that any attempt at selecting processors from both sets will lead to a total
selection cost that lies as much above this minimum selection cost as is given by
the (lexicographically) larger value of c1 and c2.

3 In this context we consider such minimization procedures to be exact, despite the
results in Section 4 and Section 6.



4 Complexity of the Processor-Set Selection Problem

The theorem below establishes that PSS is NP-hard in the strong sense, which
in turn implies that an algorithm that efficiently delivers exact answers for all
conceivable problem instances is unlikely to exist.

Theorem 1. The PSS problem is NP-hard in the strong sense.

Proof: The proof is by reduction from the set-union knapsack problem (SUKP).
The SUKP is defined as follows:

There is a universe of m elements, denoted by 1, . . . , m, and n

items, with the set of elements constituting item i denoted by
Pi, and such that the union of all items is the set of all elements,
⋃n

i=1 Pi = {1, . . . , m}. The value of item i is denoted by vi and the
weight of element j is denoted by sj . The capacity of the knapsack
is b. For any K⊆{1, . . . , n}, we define PK as PK =

⋃

i∈K Pi. The
objective of the SUKP is to find a solution (K) to the following
mathematical program:

max







∑

i∈K

vi













∑

j∈PK

sj ≤ b, K ⊆ {1, . . . , n}







, (3)

or less formally expressed; to find a collection of items of maximum
total value such that the weight of their constituent elements does
not exceed the knapsack capacity b.

In [15], Goldschmidt et al. show that SUKP is NP-hard in the strong sense,
even in the case when |Pi| = 2, sj = 1 and vi = 1, for all i ∈ {1, . . . , n} and
j ∈ {1, . . . , m}.

Given b ≥ m, the problem in Eq. (3) is trivial. The solution K is simply
chosen to contain all items Pi, i = 1, . . . , n. Given b < m, one or more elements
(and the items containing these elements) must be removed from the solution for
b ≥ m. The elements to remove in order to satisfy Eq.(3) are those for which the
items that are consequentially removed contribute the least to the overall value
of the knapsack. With R denoting the set of elements to remove, and assuming
that sj = 1 for all j ∈ {1, . . . , m}, this can be expressed as:

min
R⊆U

{

n
∑

i=1

vi

[

(R ∩ Pi) 6= ∅̂
]











|R| ≥ m − b

}

, (4)

where U = {1, . . . , m}. Assuming single-element cost-vectors, and that Pa = U ,
the minimization problem in Eq. (4) is identical to that in Eqs. (1–2), and the
proof is thereby complete.



5 A Simple Processor-Set Selection Algorithm

As should be expected from the results arrived at in Section 4, the simple algo-
rithm presented below is by no means guaranteed to find optimal solutions.

The main idea behind the algorithm SelectProcessorSet (in Figure 3)
is to start with the set of all currently available processors Pa being the set of
selected processors, and then successively remove subsets of Pa that correspond
to defined processor sets (i.e., Pi, i ∈ {1, . . . , n}), until removing any further such
subsets would leave less than the required number, r, of processors selected.

The way in which processor-sets Pi are removed from the set of selected
processors has some similarities to the concept of reaching as used in dynamic
programming [12], in which case solutions to subproblems are computed before
it is known whether these solutions will be of use in obtaining the final solution.

The algorithm begins by populating the array remove such that remove[k]
holds the defined processor set (i.e., one of Pi, i ∈ {1, . . . , n}) of size k with the
lexicographically largest associated cost-vector (among processor-sets of size k).
The algorithm then proceeds to its main phase, in which remove[k] is processed in
sequence (for k = 1, . . . , |Pa|−r−1), by forming the union of remove[k] with each
element of Cp (i.e., the defined processor-sets). The size of each processor-set,
s′, so obtained is determined, and when the total cost of s′ is lexicographically
greater than that of the current value of remove[|s′|], the value of s′ will replace
the current value of remove[|s′|].

When remove[|Pa| − r − 1] has been processed in the manner just described,
the algorithm’s suggestion for the best set of processors to remove from Pa such
that q processors remain (where q ≥ r) is stored in remove[|Pa| − q], and conse-
quently, the value given by Pa \ (remove[|Pa|− r]) is returned as the result of the
SelectProcessorSet algorithm.

Note that actual implementations (vide infra) of the algorithm in Figure 3
compute cost-vectors for processor-sets when forming the unions s ∪ (pk ∩ Pa),
or shortly thereafter, and do not as in Figure 3 repeatedly redo this calculation
(in MaxCostSet). This is done in Figure 3 for the purpose of simplifying the
presentation.

6 Algorithm Implementation and Evaluation

The algorithm in Figure 3 and a worst-case exponential-time algorithm for the
set-union knapsack problem4 described by Goldschmidt et al. [15] were first
implemented in Common Lisp [31], along with a simple framework to perform
processor-set selection driven by the workload trace described below.

Having observed that the Lisp implementation of the algorithm in Figure 3
behaved and performed reasonably, it was reimplemented in ANSI C [20] and
interfaced to the parallel environment queue selection (PQS) API of the Sun Grid
Engine (SGE) job-scheduler, and evaluated as described in Section 6.3 below.

4 Similarly to how the algorithm in Figure 3 operates internally, the set-union knapsack
algorithm was used to determine which processors not to select.



Algorithm: SelectProcessorSet( r, Pa, Cp, Cv )
Inputs: r ∈ IN\{0}: the number of processors requested,

Pa ∈ IP(IN) : the set of currently available processors,
Cp = 〈p1, . . . , pn〉 : a sequence of processor-sets,
Cv = 〈v1, . . . ,vn〉 : a sequence of corresponding cost-vectors.

Output: S: a set of processors (∅ if selection impossible).

begin

if r ≤ |Pa| then

for k← 1 to n do

q ← pk ∩ Pa;
remove [|q|] ← MaxCostSet( q, remove [|q|], Cp, Cv );

od

for j ← 1 to |Pa| − r − 1 do

if remove [j] 6= ∅ then

s ← remove [j];
for k ← 1 to n do

s′ ← s ∪ (pk ∩ Pa);
if |s′| > |s| then

remove[|s′|]←MaxCostSet( s′, remove [|s′|] , Cp, Cv );
fi

od

fi

od

S ← Pa \ remove [|Pa| − r];
else

S ← ∅;
fi

end

-
proc MaxCostSet( s1, s2, 〈p1, . . . , pn〉, 〈v1, . . . ,vn〉 ) : IP(IN) ≡

c1 ← 0;
c2 ← 0;
for k← 1 to n do

c1 ← c1 ⊕
ˆ

(pk∩̂s1) 6= ∅
˜

vk;
c2 ← c2 ⊕

ˆ

(pk∩̂s2) 6= ∅
˜

vk;
od

if c1 ≺ c2 then

return s2;
elif c2 ≺ c1 then

return s1;
else

return (if rectrand (0.0, 1.0) < 0.5 then s1 else s2 fi);
fi

end

Fig. 3. The simple processor-set selection algorithm.



6.1 Workload Details

The workload used for evaluation is a trace of submitted and executed jobs cor-
responding to one week (24×7 hours) of wall-clock time on the system described
in Section 3.1 (and depicted in Figure 1). The trace begins at a time directly
following a restart of the entire system, and jobs started prior to the window of
observation need therefore not be considered.

Looked upon in further detail, the workload used can be seen to have the
following characteristics:

21902 jobs in total with a mean job-size of 44.6± 27.4 processors (5.57± 3.43

nodes), and with 6692 jobs using 8 or fewer processors (i.e., using at most
one node). For jobs using 8 processors or less, the mean run-time is 243±390

sec. The mean run-time of jobs using more than 8 processors is 848 ± 3170

sec., and the mean run-time of jobs using more than 8 processors and more
than 900 sec. of run-time is 8375± 6445 sec. (i.e., 2.3± 1.8 hours).

In all cases, above mentioned run-times refer to wall-clock times and have thus
not been scaled by the number of participating processors. Note that for eval-
uation of processor-set selection algorithms it is important that the workload
exhibits substantial variation in the number of unused processors. This criterion
is satisfied by the described workload.

On the system in question, the (wall-clock) run-time is limited to 8 hours for
all parallel jobs. For this reason it is common practice to use rather long job-

chains (i.e., the last action of a running job is usually to submit a new instance
of itself). In order to avoid obtaining misleading results, the use of job-chains
must be properly accounted for when replaying the job-submission traces.

6.2 Prototype Evaluation

For the evaluation of Lisp algorithm implementations, the workload described
above was simplified by considering compute-nodes to have only one processor
(instead of eight), and dividing the processor counts of all requests by eight.

The processor-set/cost-vector configuration comprised a total of 334 processor-
set definitions and associated (5-element) cost vectors, corresponding to Infini-
Band line-cards(22), control-network switches (7), power-lines (41), fuse-blocks
(8) and compute-nodes (256). The Figure-3-algorithm was run with two differ-
ent sets of cost-vectors for the mentioned processor-set definitions. In the first
such set of cost-vectors, the cost of compute-node processor-sets has been set to
reflect the relative desirability of using some compute nodes over others from an
energy- and cooling-perspective, as described in Section 3.1. In the second set of
such cost-vectors, all compute-node processor-sets have been assigned identical
cost-vectors.

Runs with the described workload-trace were performed with the simple
algorithm using both sets of cost-vectors for all processor-selection requests,
whereas the exact algorithm was run only when the problem size was small
enough (|Pa| − r ≤ 12) that its execution-time was still reasonable (see Fig-
ure 4). The selection decisions made by the simple algorithm using the more
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Fig. 4. Mean execution-times of the Lisp implementations of the simple and the ex-
act processor-set selection algorithms, as a function of |Pa| − r, for each request. All
measurements were made using compiled Lisp code with CMUCL [24] (release 19d)
running on an Intel Core2 Duo T1700 1.8 GHz processor with 2Gb physical memory.

realistic (i.e., non-uniform) cost-vectors were the ones actually used to change
the selected-state of nodes maintained by the simulation, and thus influencing
the starting conditions for subsequent processor selections.

For the limited subset of selection problems that could be handled by the ex-
act algorithm, the simple algorithm using the more realistic cost-vectors arrived
at a different selection than the exact algorithm (also using realistic cost-vectors)
for only 23 out of 4272 multi-node jobs/requests. When comparing results ob-
tained for the two different sets of cost-vectors and using the uniform cost-vectors
to judge selection quality, selections of equal cost were obtained with both sets
of cost-vectors for 15155 out of 15210 multi-node jobs. For the remaining 55 jobs,
better processor selections were obtained using realistic cost-vectors than us-
ing uniform cost-vectors for 41 jobs (∼ 75%), even though solution quality was
judged according to the uniform cost-vectors. Correspondingly for the 4272 re-
quests that could be handled by the exact algorithm, the exact algorithm (now
using uniform cost-vectors) arrived at better processor selections than the simple
algorithm using realistic cost-vectors for 4 jobs, and the simple algorithm using
realistic cost-vectors in turn arrived at better processor selections than the same
algorithm using uniform cost vectors for 4 jobs and worse for only 1 job, with
solution quality again judged according to the uniform cost-vectors. We view
this as indications that artificially introduced non-uniformness in cost-structure
definitions may contribute to improved processor-set selection quality.



Prototyping the algorithms in Lisp allowed us to focus efforts on key issues,
and postpone less immediately relevant matters such as file-formats for describ-
ing processor-sets and cost-vectors, implementations of bit-vectors, and dynamic
memory management, that need to be addressed when using a language such
as C. However, as can be inferred from Figure 4, showing mean execution-times
(without error-bars, since these would have completely cluttered the diagram),
the execution-times fluctuate noticeably, and one of the main reasons for this
variability is that bit-vectors have been implemented as bignums [31], the sizes
of which vary in correspondance with the most significant bit that is set.

6.3 SGE-implementation Evaluation

The evaluation of the SGE-interfaced algorithm implementation used the work-
load described in Section 6.1 without modification (i.e., assuming 2048 processors
in total and 8 processors per node). Compared to the description in Section 6.2,
processor-set definitions were expanded as is implied by having 8 processors per
node instead of only 1, and cost-vectors were expanded by adding a new first
element, through which the selection of processors on as few different nodes as
possible was made the primary objective.

A distinct SGE-master was set up on one of the management hosts of the
system described in Section 3.1, and its 256 compute nodes were cloned and
subsequently simulated through Xen hypervisors and virtual machines on 16

compute nodes of the same system (i.e., with 16 virtual compute nodes on each
real compute node). Since the wall-clock execution-time of each job is known
from the workload-trace, each job simply sleeps an amount of time corresponding
to its execution-time,5 and therefore no substantial load arises on the virtual
machines. This method of replaying the workload-trace enabled us to observe
the described algorithm and its implementation under very authentic conditions,
with a very modest impact on the physical system.

The mean recorded execution times of the SGE-interfaced processor-set se-
lection algorithm as a function of the number of processors not to select for each
corresponding job (i.e., |Pa| − r) is shown in Figure 5 (a). We find the observed
running-times of the algorithm to clearly be within acceptable limits, particu-
larly in view of the fact that systems of the kind in question should preferably
be sufficiently heavily used that the number of idle processors only rarely can
be counted in the hundreds or thousands, and that in the common case that
parallel jobs are always given complete nodes for themselves, problem sizes can
be reduced as was done in Section 6.2. Finally, Figure 5 (a) does indicate some
execution-time irregularities, but the exact sources of these are currently not
clear to us.

As explicitly stated and as implied, respectively, in the previous discussion,
the algorithm was run with a processor-set and cost-vector configuration such

5 In order to ensure proper treatment by the SGE job-accounting machinery, the sleep
operations were performed by letting an mpiexec-command in each job-script invoke
sleep commands (in parallel) that slept for the appropriate length of time.
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Fig. 5. (a) Mean execution-times of the SGE-interfaced processor-set selection algo-
rithm as a function of |Pa| − r, measured on a Sun Fire X4100 with 2.4 GHz AMD
Athlon processors and 4 Gb physical memory. (b) Average number of different Infini-
Band line-cards used by jobs of various sizes for three different processor-set selection
methods (error-bars indicate standard deviations).

that the primary objective was to select processors on as few different nodes
as possible and the secondary objective was to select processors connected to
as few different InfiniBand line-cards as possible. The third-, fourth-, fifth-,
and sixth-level objectives were to minimize the use of control-network switches,
power-lines, fuse-blocks, and compute-node energy/cooling costs, respectively.
The primary objective was achieved for all jobs (in part because all jobs in the
workload request a multiple of 8 processors). Figure 5 (b) presents the outcome
with respect to the secondary objective, compared to the two processor selec-
tion strategies that the SGE has built-in (i.e., sequentially by increasing node
numbers, and least loaded nodes). With respect to communication locality, as
can be seen in Figure 5 (b), the processor-set selection method described in this
paper represents a clear improvement over both of the strategies provided in the
SGE, and which are widely used in practice (also by other job-schedulers).



7 Summary and Conclusions

We have presented a model for processor selection by parallel job-schedulers that
is conceptually simple, easy to understand, and flexible with respect to the kinds
of constraints that can be accounted for. The model is also easily extended such
that different processor-set and cost-vector definitions can be given for different
ranges of job sizes.6 In this way, jobs of different sizes can be steered towards
different regions of a system, constraints only affecting jobs of specific sizes can
be accounted for, and processor-set/cost-vector definitions can be kept shorter.

The resulting minimization problem for optimal processor selection was proven
to be NP-hard in the strong sense. A simple (approximative) algorithm is nonethe-
less presented and shown to run sufficently fast to be practically useful and to
yield processor selections of acceptable quality and that represent a clear im-
provement over processor selection strategies that are currently in widespread
practical use. The quality of solutions obtained by the algorithm appears to also
benefit slightly from less uniformly defined processor-set costs, suggesting that
more realistic cost models can bring both direct and indirect advantages.

Concerning job-scheduler based processor-set selection in general, it has been
observed on multiple occasions that imposing topology-related constraints on
processor selection usually leads to longer waiting times and reduced overall sys-
tem utilization (e.g., see [2, 28]), suggesting that such mechanisms bring little
benefit. On the other hand, by successfully imposing topology-related constraints
on processor selection, it may be possible to purchase a larger number of pro-
cessors (because of a less expensive communications network), in which case a
higher total throughput may be delivered despite reduced system utilization.
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Appendix: Configuration File Format

The decisions made by the presented algorithm for processor set selection are
governed by a configuration file, that specifies the collection of available queues,
the collections of processor sets, the corresponding cost-vectors, and the cost
criteria any actual processor-set selection must satisfy in order to be seen as
being acceptably good.

A concrete example of such a configuration file is provided in Figure 6. The
hypothetical target system is assumed to be deployed analogously to that shown
in Figure 1, but in order to keep the configuration file within the allotted page-
limits, it comprises only 6 racks with 7 nodes in each rack, for a total of 42 nodes,



with a relative positioning as follows, when looking at the system’s front side:

n07 n14 n21 n28 n35 n42

n06 n13 n20 n27 n34 n41

n05 n12 n19 n26 n33 n40

n04 n11 n18 n25 n32 n39

n03 n10 n17 n24 n31 n38

n02 n09 n16 n23 n30 n37

n01 n08 n15 n22 n29 n36

As seen in Figure 6, a configuration file consists of five separate parts, each
beginning with a distinct keyword. The first part (line 1 in Fig. 6), simply names
the queues in which jobs may run for which processor-sets are to be selected.
The second part (lines 3–11) specifies how many processors that are available on
each host and for which queues. More complicated cases than what is shown on
lines 3–11 can also be handled. For example, by writing

[cluster@k007=1,3,5|standby@k007=2,4,6]

it is specified that processors 1, 3 and 5 are available through the queue cluster
and processors 2, 4 and 6 through the queue standby, on the node k007.

Processor-set definitions

The processor-sets (such as described in Section 3.2 above) that are to be used are
specified following the keyword groups. Distinct processor-sets for the processors
of each indivdual compute node are defined on lines 13–21 in Fig. 6. The 42 nodes
of our hypothetical target system are assumed to be connected to 7 different 6-
port line-cards. Processor-sets corresponding to the processors whose nodes are
directly attached to each line-card are defined on lines 21–27 of Fig. 6. For
example, through

ib1={n01,n02,n03,n04,n05,n06},

a processor-set named ib1 is defined, that comprises all processors on nodes
n01, . . . , n06, and this in turn is exactly the set of processors attached to line-
card 1 on the switch.

Analogously, the remaining processor-set definitions on lines 28–40 in Fig. 6,
correspond to other factors such that it may be desirable that they influence the
processor-set selection for jobs, and as discussed in Section 3.

Processor-set cost definitions

As shown in Figure 6, the definitions of cost-vectors associated with processor
sets can depend on the size of the requesting job. This can be used for a variety
of purposes, such as imposing stricter communication locality requirements for
small jobs and selecting processor-sets for differently sized jobs starting from
different physical regions of a machine, etc.



In Figure 6, processor-set costs for 1–4 processor jobs are defined separately
from those for jobs of all other sizes. Although this has been done mainly to
make it clear that doing so is possible, it also provides an opportunity to dis-
cuss the costs choosen for the node processor sets. Even though the system is
composed of logically identical nodes, they are obviously not physically in ex-
actly the same location, and each node thereby has a slightly different physical
environment. The different physical environments of the nodes can induce an
ordering according to which the use of some nodes is preferable over the use of
other nodes, in the absence of other constraints, and assuming the system is not
currently operating under full load (i.e., that some nodes need not be used).

In the present case, with cooling by cold air provided from below at the front-
side of the system, the use of lower placed nodes is preferable to the use of higher
placed nodes, and because of flow hot air around the sides of the system from
rear to front it is more desirable to use centrally positioned nodes than nodes
nearer to the sides. The cost-vector definitions on lines 44–64 in Figure 6 are
intended to express precisely the cooling related preferences w.r.t. processor-set
selection that have just been described.

Constraint definitions

Finally, the fifth and final part of a configuration file, contains definitions of
cost constraints that must be satisfied by processor-set selections. As shown on
lines 103–107 in Figure 6, each constraint is simply a boolean-valued expression,
and when this expression does not evaluate to true for a proposed processor-set
selection, the job scheduler is informed that the job in question should not be
allowed to start.

Just as for cost-definitions, constraints can be differently defined for jobs of
different sizes. In combination with job-size and queue differentiated processor-
set costs this enables a rather precise control over when a potential processor-set
selection is considered to be of sufficiently high quality to be used.

Minor implementation details

Due to the size and complexity of configuration files, they are not read as such
by the processor-set selection machinery. Instead, configuration files are parsed
and validated by a separate program, that for valid configuration files create
corresponding (machine independent) binary configuration files, and these in
turn are read by the processor-set selection machinery.

At regular time-intervals (every 5 min. currently), the processor-set selector
checks the last modification time of its binary configuration file, and reloads it if
it has changed. It is thereby easily arranged to make use of different processor-set
selection strategies at different times of day or during weekends vs. workdays,
etc. The separately performed configuration-file validation (and conversion into
binary form), prevents simple mistakes (e.g., syntactic errors) made when prepar-
ing and/or modifying configuration files from influencing processor-set selection
behaviour and decisions.



1 queues: cluster,standby

2

3 slots: [n01=1..4],[n02=1..4],[n03=1..4],[n04=1..4],[n05=1..4],

4 [n06=1..4],[n07=1..4],[n08=1..4],[n09=1..4],[n10=1..4],
...

...
...

...
...

...
10 [n36=1..4],[n37=1..4],[n38=1..4],[n39=1..4],[n40=1..4],

11 [n41=1..4],[n42=1..4]

12

13 groups: h01={n01},h02={n02},h03={n03},h04={n04},h05={n05},

14 h06={n06},h07={n07},h08={n08},h09={n09},h10={n10},
...

...
...

...
...

...
20 h36={n36},h37={n37},h38={n38},h39={n39},h40={n40},

21 h41={n41},h42={n42},ib1={n01,n02,n03,n04,n05,n06},

22 ib2={n07,n08,n09,n10,n11,n12},
...

...
...

27 ib7={n37,n38,n39,n40,n41,n42},

28 en1={n01,n02,n03,n04, . . . ,n11,n12,n13,n14},

29 en2={n15,n16,n17,n18, . . . ,n25,n26,n27,n28},

30 en3={n29,n30,n31,n32, . . . ,n39,n40,n41,n42},

31 ps1a={n07,n06,n03,n02},ps1b={n05,n04,n01},

32 ps2a={n14,n13,n10,n09},ps2b={n12,n11,n08},

33 ps3a={n21,n20,n17,n16},ps3b={n19,n18,n15},

34 ps4a={n28,n27,n24,n23},ps4b={n26,n25,n22},

35 ps5a={n35,n34,n31,n30},ps5b={n33,n32,n29},

36 ps6a={n42,n41,n38,n37},ps6b={n40,n39,n36},

37 pwr1={n01,n02,n03,n04,n05,n06,n07,n09,n10,n13,n14},

38 pwr2={n08,n11,n12,n15,n16,n17,n18,n19,n20,n21},

39 pwr3={n22,n23,n24,n25,n26,n27,n28,n30,n31,n34,n35},

40 pwr4={n29,n32,n33,n36,n37,n38,n39,n20,n41,n42}

41

42 costs:

43 when PEs in [1,4]:

44 cluster@h01=[0,0,0,0,129],cluster@h02=[0,0,0,0,135],

45 cluster@h03=[0,0,0,0,141],cluster@h04=[0,0,0,0,147],

46 cluster@h05=[0,0,0,0,153],cluster@h06=[0,0,0,0,159],

47 cluster@h07=[0,0,0,0,165],cluster@h08=[0,0,0,0,115],

48 cluster@h09=[0,0,0,0,121],cluster@h10=[0,0,0,0,127],

49 cluster@h11=[0,0,0,0,133],cluster@h12=[0,0,0,0,139],

50 cluster@h13=[0,0,0,0,145],cluster@h14=[0,0,0,0,151],

51 cluster@h15=[0,0,0,0,101],cluster@h16=[0,0,0,0,107],

52 cluster@h17=[0,0,0,0,113],cluster@h18=[0,0,0,0,119],

53 cluster@h19=[0,0,0,0,125],cluster@h20=[0,0,0,0,131],

54 cluster@h21=[0,0,0,0,137],cluster@h22=[0,0,0,0,102],

55 cluster@h23=[0,0,0,0,108],cluster@h24=[0,0,0,0,114],

56 cluster@h25=[0,0,0,0,120],cluster@h26=[0,0,0,0,126],

Fig. 6. Configuration file for processor-set selection.



57 cluster@h27=[0,0,0,0,132],cluster@h28=[0,0,0,0,138],

58 cluster@h29=[0,0,0,0,116],cluster@h30=[0,0,0,0,122],

59 cluster@h31=[0,0,0,0,128],cluster@h32=[0,0,0,0,134],

60 cluster@h33=[0,0,0,0,140],cluster@h34=[0,0,0,0,146],

61 cluster@h35=[0,0,0,0,136],cluster@h36=[0,0,0,0,130],

62 cluster@h37=[0,0,0,0,136],cluster@h38=[0,0,0,0,142],

63 cluster@h39=[0,0,0,0,148],cluster@h40=[0,0,0,0,154],

64 cluster@h41=[0,0,0,0,160],cluster@h42=[0,0,0,0,166]

65 otherwise:

66 cluster@h01=[0,0,0,0,129],cluster@h02=[0,0,0,0,135],
...

...
...

86 cluster@h41=[0,0,0,0,160],cluster@h42=[0,0,0,0,166],

87 cluster@ib1=[4,0,0,0,0],cluster@ib2=[4,0,0,0,0],

88 cluster@ib3=[4,0,0,0,0],cluster@ib4=[4,0,0,0,0],

89 cluster@ib5=[4,0,0,0,0],cluster@ib6=[4,0,0,0,0],

90 cluster@ib7=[4,0,0,0,0},cluster@en1=[0,1,0,0,0],

91 cluster@en2=[0,1,0,0,0],cluster@en3=[0,1,0,0,0],

92 cluster@ps1a=[0,0,2,0,0],cluster@ps1b=[0,0,2,0,0],

93 cluster@ps2a=[0,0,2,0,0],cluster@ps2b=[0,0,2,0,0],

94 cluster@ps3a=[0,0,2,0,0],cluster@ps3b=[0,0,2,0,0],

95 cluster@ps4a=[0,0,2,0,0],cluster@ps4b=[0,0,2,0,0],

96 cluster@ps5a=[0,0,2,0,0],cluster@ps5b=[0,0,2,0,0],

97 cluster@ps6a=[0,0,2,0,0],cluster@ps6b=[0,0,2,0,0],

98 cluster@pwr1=[0,0,0,4,0],cluster@pwr2=[0,0,0,4,0],

99 cluster@pwr3=[0,0,0,4,0],cluster@pwr4=[0,0,0,4,0]

100 end-costs

101

102 constraints:

103 when PEs in [1,4] : cost <= [0,0,0,0,166],

104 when PEs in [5,16] : cost <= [8,1,6,8,628],

105 when PEs in [17,32] : cost <= MINCOST(32) + [0,0,0,0,64],

106 when PEs in [33,64] : cost <= MINCOST(64) + [4,1,2,0,38],

107 otherwise : cost <= ceil(1.2*MINCOST(PEs)) + [4,0,2,0,28]

Fig. 6. Configuration file for processor-set selection (continued).


