
Employing Checkpoint to Improve Job
Scheduling in Large-Scale Systems

Shuangcheng Niu*, Jidong Zhai*, Xiaosong Ma†,
Mingliang Liu*, Yan Zhai*, Wenguang Chen*, Weimin Zheng*

* Tsinghua University, Beijing, China
†North Carolina State University and Oak Ridge National Laboratory, USA

Abstract. The FCFS-based backfill algorithm is widely used in schedul-
ing high-performance computer systems. The algorithm relies on runtime
estimate of jobs which is provided by users. However, statistics show the
accuracy of user-provided estimate is poor. Users are very likely to pro-
vide a much longer runtime estimate than its real execution time.
In this paper, we propose an aggressive backfilling approach with check-
point based preemption to address the inaccuracy in user-provided run-
time estimate. The approach is evaluated with real workload traces. The
results show that compared with the FCFS-based backfill algorithm, our
scheme improves the job scheduling performance in waiting time, slow-
down and mean queue length by up to 40%. Meanwhile, only 4% of the
jobs need to perform checkpoints.

Keywords: job scheduling, backfill algorithm, runtime estimate, check-
point/restart

1 Introduction

Supercomputers and clusters today are usually managed by batch job schedul-
ing systems, which partition the available set of compute nodes according to
resource requests submitted through job scripts, and allocate such node parti-
tions to parallel jobs. A parallel job will occupy the allocated node partition till
1) the job completes or crashes, or 2) the job runs out of the maximum wall
execution time specified in its job script. Jobs that cannot immediately get their
requested resources will have to wait in a job queue. The goal for parallel job
schedulers is to reduce the average queue waiting time, and maximize the system
throughput/utilization, while maintaining fairness to all jobs [1].

Parallel job scheduling technology has matured over the past decades. Though
many strategies and algorithms have been proposed, such as dynamic parti-
tioning [2] and gang scheduling [3], they are not widely used due to practical
limitations. Instead, FCFS (First Come First Served) based algorithms with
backfilling are currently adopted by most major batch schedulers running on
supercomputers and clusters alike. It was first developed for the IBM SP1 par-
allel supercomputer installed at Argonne National Laboratory, as part of EASY
(the Extensible Argonne Scheduling sYstem) [4]. Several variants of FCFS-based

backfilling (referred to as backfilling in the rest of this paper) serve as the default
setting in today’s prominent job schedulers, such as LSF [5], Moab [6], Maui [7],
PBS/Torque [8], and LoadLeveler [9].

 0

 50

 100

 150

 0 20 40 60 80 100

Q
ue

ue
 le

ng
th

System utilization (%)

ANL

 0

 50

 100

 150

 0 20 40 60 80 100

Q
ue

ue
 le

ng
th

System utilization (%)

SDSC

 0

 50

 100

 150

 0 20 40 60 80 100

Q
ue

ue
 le

ng
th

System utilization (%)

CTC

 0

 50

 100

 150

 0 20 40 60 80 100

Q
ue

ue
 le

ng
th

System utilization (%)

HPC2N

Fig. 1. Queue length vs. system utilization level based on job traces on four parallel
systems

The backfilling algorithm is able to make use of idle “holes” left caused by
advance reservation for jobs that arrived earlier but unable to run due to in-
sufficient resources, by filling in small jobs that are guaranteed to finish before
the reservation starts (more details of the algorithm will be given later). How-
ever, systems using such mechanism still suffer from resource under-utilization.
Figure 1 illustrates such problem based on the workload traces from four produc-
tion systems (available online at the Parallel Workloads Archive [10]): Intrepid
at Argonne National Laboratory (ANL), Blue Horizon at the San Diego Super-
computing Center (SDSC), IBM SP2 at the Cornell Theory Center (CTC) and
Linux cluster at High Performance Computing Center North, Sweden (HPC2N).
The parallel job schedulers used at these systems Cobalt, Catalina, EASY, and
Maui, respectively, most of which use FCFS+backfilling algorithms. 1 For each
system, Figure 1 plots the average system utilization level (x axis) and the av-
erage job queue length (y axis), calculated for each day from the traces. The
results show that on all four systems, it is common for a significant amount of
system resource (20% to 80% of nodes) to be idle while there are (many) jobs
waiting in the queue. In Peta- and the upcoming Exa-FLOP era, such system
under-utilization translates into more severe waste of both compute resources
and energy.

One key factor leading to this defect is that the backfilling effectiveness de-
pends on the job execution wall time estimate submitted by the user, which has

1 Cobalt uses a WFP-based backfill algorithm.

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

C
D
F
(%

)

The accuracy of user-provided runtime estimate

ANL
SDSC
CTC
HPC2N

Fig. 2. Distribution of the ratio between the actual and the user-estimated job execu-
tion time. Note that supercomputers scheduling policies often allow a “grace period”,
such as 30 minutes, before terminating jobs that exceed their specified maximum wal-
l time. This, plus extra storage and cleanup operations involved in job termination,
explains the existence of ratios larger than 1.

been found in multiple studies to be highly inaccurate [11, 12]. By comparing
the user-estimated and the actual job execution times from the aforementioned
traces, we calculate the probability density function of the wall time estimate
accuracy, as trun/treq, where trun is the actual runtime and treq is the user-
provided estimate.

Figure 2 suggests that a large portion (∼40%) of jobs actually terminated
within 20% of the estimated time. The distribution of the actual/estimated ex-
ecution time ratio spread quite uniformly over the rest of the spectrum, except
a noticeable burst around 1. Overall, only 17% of jobs completed within the
0.9-1.1 range of the estimated time, across the four systems. As to be discussed
in more detail in the next section, such dramatic job wall time estimate error
leads to significant problems in backfilling effectiveness.

To improve scheduling performance, many previous studies have targeted
improving the accuracy of job execution time estimate [13–15], with only limited
success. In fact, there are several factors leading to inaccurate estimates, mostly
overestimates. Firstly, users may not have enough knowledge on the expected
execution time of their jobs (especially with short testing jobs and jobs with
new input/parameters/algorithms), and choose to err on the safe side. Secondly,
in many cases the large estimated-to-actual execution time ratio is caused by
unexpected (early) crash of the job. Thirdly, users tend to use a round value (such
as 30 min or 1 hour) as the estimated wall time, causing large “rounding error”
for short jobs. All the above factors help making job wall time overestimation
a perpetual phenomenon in batch systems. Actually, a study by Cynthia et
al. revealed that such behavior is quite stubborn, with little estimate accuracy
improvement even when the threat of over-time jobs being killed is removed [16].

In this paper, we propose a new scheduling algorithm that couples advance
reservation, backfilling, and job preemption. Our approach is motivated by the
observation that on today’s ever-larger systems, checkpointing has become a s-
tandard fault tolerance practice, in answer to the shortening MTBF (mean time
between failures). With portable, optimized tools such as BLCR [17], parallel

file systems designed with checkpointing as a major workload or even specifically
for the checkpointing purpose (such as PLFS [18]), emerging high-performance
hardware such as aggregated SSD storage, and a large amount of recent/ongoing
research on checkpointing [19–21], the efficiency and scalability of job check-
pointing has been improving significantly. Such growing checkpoint capability
on large-scale systems enables us to relax the backfill conditions, by allowing
jobs to be aggressively backfilled, and suspended for later execution if resources
are due for advance reservation.

This approach manages to make use of idle nodes without wasting resources
by aborting opportunistically backfilled jobs. By limiting the per-job checkpoint-
ing occurrences and adjusting the backfill aggressiveness, our algorithm is able to
achieve a balance between improving resource utilization, controlling the extra
checkpointing and restarting overhead, and maintaining scheduling fairness.

We consider our major contributions as follows:

1. A checkpoint-based scheduling algorithm. To our knowledge, this is the first
paper that discusses how to leverage checkpointing techniques to optimize
the backfilling scheduling algorithm. Although some previous works pro-
posed preemption based backfill, no works discussed how to use checkpoint
technique to improving backfilling scheduling. We analyzed the limitations
of an existing FCFS-based backfilling algorithm and improved it by enabling
aggressive backfilling with estimated wall time adjustment and checkpoint-
based job preemption.

2. Comprehensive evaluation with trace-driven simulation. We conducted ex-
periments using job traces collected from four production systems, including
Intrepid, currently ranked 15th on the Top500 list. Our results indicate that
compared with the classical FCFS-based backfill algorithm, the checkpoint-
based approach is capable of producing significant improvements (by up to
40%) to key scheduling performance metrics, such as job average wait time,
slowdown, and the mean queue length.
In our evaluation, we also estimated the overhead incurred by checkpoint/restart
operations, based on system information from the Intrepid system. Differ-
ent I/O bandwidths are considered, simulation results suggest that extra
checkpoint/restart operations hardly cause any impact on the key schedul-
ing performance metrics.

The remainder of this paper is organized as follows. Section 2 reviews the
traditional FCFS-based backfilling algorithm. Section 3 presents our checkpoint-
based scheduling approach and gives detailed algorithms. Section 4 reports our
simulation results on job scheduling performance, while Section 5 analyzes the
introduced checkpoint overhead. Section 6 discusses related work, and finally,
Section 7 suggests potential future work and concludes the paper.

2 Classical Backfilling Algorithm Overview

In this section, we review the classical backfilling algorithm to set a stage for
presenting our checkpoint-based approach.

Most modern parallel job schedulers give static allocations to jobs with spa-
tial partitioning, i.e., a job is allocated the number of nodes it requested in its job
script and uses this partition in a dedicated manner throughout its execution.
The widely used FCFS-based backfill algorithm does the following:

– maintain jobs in the order of their arrival in the job queue and schedule them
in order if possible,

– upon a job’s completion or arrival, dispatch jobs from the queue front and
reserve resources for the first job in the queue that cannot be run due to
insufficient resource available,

– based on the user estimated wall times of the running jobs, calculate the
backfill time window, and

– traverse the job queue and schedule jobs that can fit into the backfill window,
whose execution will not interfere with the advance reservation. Such jobs
should either complete before the reserved “queue head job” start time or
occupy only nodes that the advance reservation does not need to use.

A simplified version of such strategy, used in the popular Maui scheduler [7],
is shown as Algorithm 1, which is also used as the classical backfilling algorithm
in our trace-driven simulation experiments. Other popular schedulers such as
EASY and LoadLeveler also use similar frameworks.

As can be seen from the algorithm, user-provided estimated runtime is crucial
to the overall scheduling performance. Overestimation will not only postpone the
reservation time, but also affect the chance for a job to be backfilled. We will
see later that increased estimate inaccuracy can significantly impact the classical
algorithm’s scheduling performance, particularly in the “job slowdown” category.

3 Checkpoint-based Backfilling

In this section, we explain our scheduling approach and the proposed algorithm
in details. Our algorithm overcomes the limitation in the classical backfilling
algorithm by weakening the impact of the user job run time estimation accuracy
on the system performance. With our approach, both the wait time and the
chance of backfill can be significantly improved.

3.1 Assumptions

First, we list several major assumptions made in this work:

1. Rigid jobs: Our design assumes that the jobs are rigid jobs, running on a
fixed number of processors (nodes) during its end-to-end execution. This
resource requirement is specified in the job script.

2. Jobs not bound to specific nodes: Each job can execute on any set of nodes
that meets the processor number requirement.

3. Checkpoint/Restart abilities: The applications or the supercomputing center
has checkpoint/restart (C/R) abilities, which can be initiated any time by
the scheduler.

Algorithm 1 FCFS-based backfilling algorithm

Require: Job queue Q is not empty, Resource manager RM
1: /* Schedule runnable jobs */
2: for each job ∈ Q do
3: if job.size > RM.free size then
4: break
5: end if
6: job.predictEndtime← job.estimateRuntime+ now()
7: run(job)
8: RM.free size− = job.size
9: end for

10: if Q.isEmpty() then
11: exit
12: end if
13: /* Make Reservation */
14: reserve job← Q.top()
15: future available size← RM.free size
16: running jobs list← Sort running jobs in order of their predicted termination time
17: for each job ∈ running jobs list do
18: future available size += job.size
19: if future available size ≥ reserve job.size then
20: reserve time← job.predictEndtime
21: break
22: end if
23: end for
24: backfill window ← reserve time− now()
25: extra size← future available size - reserve job.size
26: /* Backfilling */
27: for each job ∈ Q do
28: if job.size > RM.free size then
29: continue
30: end if
31: predictRuntime←job.estimateRuntime
32: if predictRuntime ≤ backfill window or job.size ≤ extra size then
33: job.predictEndtime← predictRuntime+ now()
34: backfill(job)
35: RM.free size− = job.size
36: if predictRuntime > backfill window then
37: extra size− = job.size
38: end if
39: end if
40: end for

Note that the first two assumptions apply to most of classical backfilling
algorithms too, allowing each job to be scheduled once and assigned an arbi-
trary subset of all the available nodes. In the context of our checkpoint-based
backfilling scheduling, however, they allow an interrupted and checkpointed job

A

Processors

B

C

D
E

Arrived

C

Reserve time

Time

(a) In the system, 2 jobs are running, 3
jobs are waiting.

A

Time

Processors

B

C

D

E

(b) Scheduling with FCFS-based
backfill algorithm

A

Time

Processors

B

C

D

E1 E2

CheckPoint Restart

(c) Scheduling with checkpoint-
based backfill algorithm

Fig. 3. With checkpoint-based backfill algorithm, job D which is overestimated benefits
from the backfilling, job E also reduces the response time. Meanwhile, the top queue
job is not affected.

to resume its execution with the same number of nodes without any placement
constraints.

3.2 Methodology Overview

The main idea behind our checkpoint-based scheduling is to allow the queued
jobs to be backfilled more aggressively, but reserve the right to suspend such jobs
when they are considered to delay the execution of a higher-priority job. The
flow of our algorithm works similarly as the classical one. The major difference
lies in that at the time a high priority waiting job with advance reservation is
expected to run, if any backfilled jobs are still running, we checkpoint rather
than kill them. This allows us to cope with the highly overestimated run time
and perform aggressive backfilling. In selecting backfill candidates, rather than
directly using the user provided run time estimate, our scheduler predicts a job’s
actual execution time by intentionally scale down the estimated run time. Ac-
cording to Figure 2, most of the overestimated jobs can safely complete before
the reserved deadline. For those jobs that such prediction actually underesti-
mates their execution time, checkpointing avoids wasting the amount of work
already performed, yet maintains the high priority of the job holding advance
reservation.

Figure 3 illustrates the working of the checkpoint-based scheduling scheme
with a set of sample jobs. Each job is portrayed as a rectangle, with the horizontal

Algorithm 2 Job.predictRuntime()

Require: job runtime estimate threshold tthr, the split factor p
1: if job.estimateRuntime < tthr then
2: return job.estimateRuntime
3: else
4: if job.isCheckPointJob() then
5: return job.estimateRuntime− job.hasRunTime
6: else
7: return job.estimateRuntime ∗ p
8: end if
9: end if

and vertical dimensions representing the 2D resource requirement: estimated wall
time and processor/node number requested. The gray area within each waiting
job’s rectangle indicates its actual execution time. At a certain time point, jobs
A and B are running, and jobs C, D and E are waiting in the queue, as shown
in Figure 3(a). Upon A’s completion, there are not sufficient resources for the
queue head job C. The scheduler performs advance reservation for C, based on
the estimated wall time of B. The moment that B terminates is the reserve time
for C. The time from A’s to B’s termination forms the backfill window.

With the classical backfilling algorithm (Figure 3(b)), because D’s and E’s
runtime estimates exceed the backfill window, D and E will not be backfilled,
although D’s actual runtime can fit in the window. D and E will run after C
terminates, wasting resources within the backfill window.

With the checkpoint-based backfilling algorithm (Figure 3(c)), instead, both
D and E will be backfilled. D will terminate before the reserved time. E, on
the other hand, will be preempted at the reserved time and broken into two
segments: E1 and E2. When C terminates, E will be restarted to resume its
execution.

This example illustrates several advantages of the checkpoint-based schedul-
ing approach. First, overestimated jobs benefit from eager backfilling, producing
both shorter wait time and higher system utilization. Second, the checkpointed
jobs also observe a reduced response time. Finally, the priority of the job holding
advance reservation is preserved.

3.3 The Checkpoint-based Scheduling Algorithm

Next, we give more detailed description of our proposed checkpoint-based schedul-
ing algorithm and discuss important parameters.

The main checkpoint-based scheduling framework is same with classical back-
filling (Algorithm 1). It is executed repeatedly whenever a new job arrives or
when a running job terminates. The major different is in Line 31 (highlighted in
the algorithm with underlined subroutine calls). When checking backfill eligibili-
ty and calculating the predicted end time, it according to the scheduler-predicted
run time instead of the user-provided runtime estimate.

Algorithm 3 Preempt algorithm

Require: the reserve time arrives
1: if RM.free size < reserve job.size then
2: preempting jobs list← RM.getPreemptingJobsList(reserve job)
3: for each job ∈ preempting jobs list do
4: checkpoint (job)
5: kill (job)
6: RM.free size+ = job.size
7: Q.push(job)
8: end for
9: end if

10: run (reserve job)
11: RM.free size− = reserve job.size

The calculating predicate runtime algorithm is the core algorithm, which
is shown in Algorithm 2. It describes how the checkpoint-based scheduler per-
forms job execution time prediction. As mentioned earlier, it scales down the
user-estimated job wall time treq by a factor of p, 0 < p <= 1. However, such
adjustment is only applied to jobs that are over a certain threshold tthr. This
is due to several considerations. First, short jobs are fairly easy to be backfilled
even without such scale-down. Second, checkpointing and restart will turn out
as more expensive to short jobs. Third, short jobs are often meant for testing
and debugging, where a split execution might cause more degradation in user
experience. Both p and tthr are tunable parameters, controlling the aggressive-
ness of backfilling. In our experiments, we find that such simple schemes seem to
work well and system administrators can select a proper parameter values based
on empirical results collected from their actual workloads.

Finally, Algorithm 3 specifies the preempt scheme. It is executed whenever
the reserved time arrives but there are no sufficient resources to allocate for the
top priority job. In this algorithm, the backfilled jobs are checkpointed and ter-
minated, until the top queue job gets its requested resources. The checkpointed
jobs are put on the head of the queue. Also, in selecting checkpoint candidates,
we start from jobs that are using more nodes, to reduce the number of pre-
emption and checkpointing. Note that each backfilled jobs use fewer nodes than
requested by the high-priority job holding advance reservation. Otherwise the
latter could be scheduled at an earlier time point. Therefore, our checkpoint
candidate identification is essentially performing a “best-fit” selection.

4 Evaluation Results

In this section we present our evaluation results obtained from trace-driven simu-
lation experiments. We first analyze the performance of our proposed checkpoint-
based backfill approach using real job traces, and compare it with that of the
classical FCFS-based backfilling algorithm. Second, we evaluate the impact of

the accuracy of user-provided estimate runtime on the performance of scheduling
algorithms.
Simulator We designed and implemented a trace-driven simulator to evaluate
the performance of various of scheduling algorithms, which simulate events and
states related to batch job scheduling, such as node allocation, job scheduling, job
queue status, etc. The input of the simulator includes a job submission trace and
a scheduling algorithm. The output of the simulator includes key performance
metrics for scheduling systems, which are to be discussed in more details below.
Workload Traces In our evaluation, we analyze four real workload traces col-
lected from production systems from the Parallel Workload Archive [10]. Variants
of backfilling is used as the default scheduling strategy in these systems. Each
trace entry contain job description information items such as user-provided run
time estimate, job submission time, actual execution time, and job size (number
of processors requested). Below we briefly describe these traces:

– ANL: This trace contains entries for 68,936 jobs that were executed on
a 40,960-node IBM Blue Gene/P system at Argonne National Laborato-
ry called Intrepid. It was collected during the first 8 months of 2009 from
the 40-rack production Intrepid.

– SDSC : This trace contains entries for 250,440 jobs that were executed on
the 144-node IBM SP2 called Blue Horizon at the San Diego Supercomputer
Center from April 2000 to January 2003.

– CTC : This trace contains entries for 79,302 jobs that were executed on a
512-node IBM SP2 at the Cornell Theory Center from July 1996 through
May 1997.

– HPC2N : This trace contains entries for 527,371 jobs that were executed on a
120-node Linux cluster from the High-Performance Computing Center North
(HPC2N) in Sweden from July 2002 to January 2006.

Metrics We evaluate our proposed approach with four commonly used schedul-
ing performance metrics, as defined below.

– Wait Time (wait): the average per-job wait time in the job queue.
– Bounded Slowdown (slowdown): the ratio of a job’s response time to its

actual execution time. In this work, we use bounded slowdown to reduce the
impact of very short jobs on the average value, calculated as shown in the
formula below. The bound value of 10 seconds is used in all our experiments.

WaitT ime+Max(RunTime,BoundT ime)

Max(RunTime,BoundT ime)

– Queue Length (qLength): the number of average waiting jobs in the job queue
at a given time.

– Backfill Ratio (bRatio): the ratio of the number of backfilled jobs to the total
number of jobs.

As will be shown later, with the checkpoint-based backfilling algorithm, most
of the jobs still wait only once in the queue. Thus its wait time is the difference

0

20

40

60

80

100

120

140

wait slowdown bRatio

N
or
m
.
p
er
fo
rm

an
ce

(%
)

ANL

0

20

40

60

80

100

120

wait slowdown bRatio

N
or
m
.
p
er
fo
rm

an
ce

(%
)

SDSC

0

20

40

60

80

100

120

wait slowdown bRatio

N
or
m
.
p
er
fo
rm

an
ce

(%
)

CTC

0

20

40

60

80

100

120

140

160

wait slowdown bRatio

N
or
m
.
p
er
fo
rm

an
ce

(%
)

HPC2N

Classical,Actual
Checkpoint(p=0.1)
Checkpoint(p=0.2)
Checkpoint(p=0.3)

Checkpoint(p=0.4)
Checkpoint(p=0.5)
Checkpoint(p=0.6)
Checkpoint(p=0.7)

Classical,Actual
Checkpoint(p=0.1)
Checkpoint(p=0.2)
Checkpoint(p=0.3)

Checkpoint(p=0.4)
Checkpoint(p=0.5)
Checkpoint(p=0.6)
Checkpoint(p=0.7)

Fig. 4. Performance of checkpoint-based algorithm with different p values, normalized
against the performance of the classical backfilling algorithm, which is marked by
the dotted “100%” reference line. The “Classical, Actual” bar shows the performance
with the classical algorithm, but supplied with the actual wall time (i.e., without any
estimation error).

between its execution and submission. However, for jobs that do go through
checkpointing, the wait time includes all segments of waiting the job spends in
the queue.

Note that our trace-driven simulation is asynchronous, in the sense that we
replay each job’s submission according to the submission time specified in the
trace. Therefore, even if an algorithm can improve system utilization, it will not
be able to shorten the makespan for all jobs. In this context, it can be proved that
the average wait time and the average queue length are equivalent. Therefore,
in our results discussion, we only report the job wait time.

4.1 Performance of checkpoint-based backfill algorithm

Recall that in the checkpoint-based backfill algorithm, there are two key param-
eters:

– tthr: The estimated wall time threshold, to mask jobs with wall time esti-
mate smaller than this given threshold from being scaled down with p when
calculating the predicted execution time. If tthr is set too low, many short
jobs will be checkpointed, causing increased overhead. In this paper, we fixed
this parameter at 1800 seconds.

– p: The scale-down factor used to predict the actual job run time. The process
of tuning p needs to consider the tradeoff between system utilization and
cost. If p is set too low, many of the backfilled jobs might not finish by

0

10

20

30

40

50

60

70

10 30 50 70 90

M
ea
n
q
u
eu

e
le
n
gt
h

Daily avg. system utilization

ANL

0

10

20

30

40

10 30 50 70 90

M
ea
n
q
u
eu

e
le
n
gt
h

Daily avg. system utilization

SDSC

0

10

20

30

10 30 50 70 90

M
ea
n
q
u
eu

e
le
n
gt
h

Daily avg. system utilization

CTC

0

20

40

60

80

100

10 30 50 70 90

M
ea
n
q
u
eu

e
le
n
gt
h

Daily avg. system utilization

HPC2N

Classical,Estimate
Classical,Actual

Checkpoint

Classical,Estimate
Classical,Actual

Checkpoint

Classical,Estimate
Classical,Actual

Checkpoint

Classical,Estimate
Classical,Actual

Checkpoint

Fig. 5. Scheduling performance of different backfilling algorithms, averaged over subset
of days where the system utilization level falls into certain intervals.

the reserved time for higher-priority jobs, and have to be checkpointed. In
contrast, a very high value of p can reduce the backfill ratio and work quite
similar to the classical algorithm. So we suggest that system administrators
utilize their systems’ historical job statistics in selecting a proper p.

Figure 4 shows the simulation results and compares the checkpoint-based
algorithm with two variants of the classical one (with the user supplied run time
estimate and with the actual job run time as a “ideal” estimate).

From the result, our algorithm performs better than both the base and ideal
cases of classical algorithm in wait time (equivalent to queue length) and the
backfill ratio. This is expected because of our relaxed condition. At the point of
p = 0.1 or p = 0.2, our algorithm performs better than other selection of p.

One thing to note is the slowdown factor. Except for trace HPC2N, the
slowdown in our algorithm can be larger than the ideal case of classical algorithm
(but still far better than that of the base classical algorithm). The dominant
reason for this is that the accurate estimation of small jobs can significantly
improve the slowdown factor. However, it’s impossible for the users to know
exactly how long their jobs can run. In fact, our algorithm still performs better
than classical algorithm if we directly use the runtime estimate in the collected
trace. In trace set CTC and HPC2N, the slowdown decreases more than 50%.

So from these experiments, we have verified that our algorithm is more ad-
vanced than the classical algorithm in improving scheduling performance. Across
the traces we obtained, it appears that a p value of 0.1 or 0.2 delivers the best
overall performance. It matches the observation from Figure 2: more than 40%
jobs have at least a 5-time overestimation in specifying their expected wall time.

Figure 5 further compares the three algorithms by partitioning days record-
ed in the trace into multiple buckets according to the daily average system
utilization level, and depicting average queue length over jobs in each bucket.

0

20

40

60

80

100

120

wait slowdown bRatio

N
or
m
.
p
er
fo
rm

an
ce

(%
)

ANL(Classical)

0

20

40

60

80

100

120

wait slowdown bRatio

N
or
m
.
p
er
fo
rm

an
ce

(%
)

ANL(Checkpoint)

0

20

40

60

80

100

120

wait slowdown bRatio

N
or
m
.
p
er
fo
rm

an
ce

(%
)

SDSC(Classical)

0

20

40

60

80

100

120

wait slowdown bRatio

N
or
m
.
p
er
fo
rm

an
ce

(%
)

SDSC(Checkpoint)

0

20

40

60

80

100

120

wait slowdown bRatio

N
or
m
.
p
er
fo
rm

an
ce

(%
)

CTC(Classical)

0

20

40

60

80

100

120

wait slowdown bRatio

N
or
m
.
p
er
fo
rm

an
ce

(%
)

CTC(Checkpoint)

0

20

40

60

80

100

120

wait slowdown bRatio

N
or
m
.
p
er
fo
rm

an
ce

(%
)

HPC2N(Classical)

0

20

40

60

80

100

120

wait slowdown bRatio

N
or
m
.
p
er
fo
rm

an
ce

(%
)

HPC2N(Checkpoint)

α = 0 α = 0.5 α = 1 α = 0 α = 0.5 α = 1

Fig. 6. Evaluation of the impact of estimate accuracy on scheduling algorithms. The
left side uses classical algorithm, and right side uses the checkpoint-based algorithm
with p = 0.2. The higher α is, the more inaccurate runtime estimate will be. When
α = 0, it is scheduled with actual runtime. When α = 1, it is scheduled with user-
provided runtime estimate.

It demonstrates that our proposed checkpoint-based algorithm significantly re-
duces the average queue length on most of the four platforms, especially when
the system is busy.

4.2 The impact of estimate accuracy on scheduling algorithms

To understand the impact of overestimation on algorithms’ behavior, we evaluate
how the two algorithms perform under different degrees of overestimation. As
in the Figure 6, the result indicates checkpoint-based algorithm is more stable
regarding the degree of inaccuracy changing, especially slowdown metric.

The degree of overestimation is defined as a job’s actual run time dividing
the runtime estimate. To do quantitative analysis, we introduce a parameter α,
where tsch = trun + α × (treq − trun). Here treq is the job’s user requested run

time in real world trace. We use the tsch as the job’s user estimated runtime
to submit to the simulator. In this manner, we can obtain workload traces with
different overestimation degrees by tuning the α. When α = 0, tsch = trun and
when α = 1, tsch = treq. The larger α is, the more inaccurate estimate time will
be.

In Figure 6, we simulate the cases when α is 0, 0.5 and 1. The left side uses
classical algorithm, and right side uses the checkpoint-based algorithm. It’s quite
clear left results vary in much larger extent when the runtime estimate tends to
be more inaccurate. For example, the slowdown factor, which grows even more
than twice when α changes from 0 to 1 in trace sets CTC and HPC2N.

These results indicate that classical algorithm might work well when the
user estimation is accurate enough, and it’s sensitive to the inaccurate factor.
However, in Figure 2 we have shown it is usually unrealistic to have accurate
estimate in real world system: a large portion of users tend to highly overestimate
the actual run time by more than 5 times. Moreover, even in optimal case (α =
0), classical algorithm can archive only comparable performance as checkpoint-
based algorithm, which is also consistent with our results in previous section.

5 Analyzing Checkpoint/Restart overhead

In the previous section, we don’t consider the overhead of the checkpoint/restart
operations. Actually the software state and temporary data are saved to the
storage in checkpoint process, and are restored in restart process. In this section,
we evaluate the overhead introduced by checkpoint/restart via simulation.

5.1 Checkpoint overhead analysis

We select the trace of Argonne Intrepid to evaluate. Intrepid is a 557 TF, 40-rack
Blue Gene/P system deployed at Argonne National Laboratory. This system was
ranked No. 15 in the list released in June 2011 [22]. It has 40,960 compute nodes
and 640 I/O nodes, which is configured with a single I/O node managing 64
compute nodes. These I/O nodes connect to the file servers with 10 Gb Ethernet
network. The peak bandwidth between the I/O node and the network is limited
to 6.8 Gb/s. All the 640 I/O nodes can theoretically deliver up to 4.25 Tbps [23].

The entire Intrepid system consists of 128 dual-core file servers. The file
servers connect to DataDirect 9900 SAN storage arrays through the Infiniband
DDR ports, each with a theoretical unidirectional bandwidth of 16 Gbps. All
the 128 file servers can theoretically deliver up to 2 Tbps [23].

Generally, the bandwidth bottleneck for the maximum data throughput lies
more towards the file servers than the I/O nodes when the system is running in
its full capacity. However, only partial running jobs are involved in checkpoint in
the checkpoint based backfilling scheduler. The bottleneck depends on the I/O
nodes bandwidth, which is limited to 0.85 GB/s per I/O node [23].

At the reserve time, it’s not allowed to run the reserved job until all pre-
empted job have done checkpoint. The delay of the reserved job depends on

0

20

40

60

80

100

120

0.1 0.2 0.3 0.4 0.5 0.6 0.7

N
or
m
.
p
er
fo
rm

an
ce

(%
)

The split factor (p)

wait

0

20

40

60

80

100

120

0.1 0.2 0.3 0.4 0.5 0.6 0.7

N
or
m
.
p
er
fo
rm

an
ce

(%
)

The split factor (p)

slowdown

0

20

40

60

80

100

120

140

0.1 0.2 0.3 0.4 0.5 0.6 0.7

N
or
m
.
p
er
fo
rm

an
ce

(%
)

The split factor (p)

bRatio

0

1

2

3

4

5

6

7

0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
re
em

p
t
ra
ti
o
(%

)

The split factor (p)

pRatio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7C
h
ec
k
p
oi
n
t
n
u
m

p
er

n
o
d
e
p
er

d
ay

The split factor (p)

cNum

0

1

2

3

4

0.1 0.2 0.3 0.4 0.5 0.6 0.7

W
as
te

re
so
u
rc
e
ra
ti
o
(%

)

The split factor (p)

wRatio

Classical,Actual
Kill

Checkpoint(O.=0)
Checkpoint(O.=120)
Checkpoint(O.=430)
Checkpoint(O.=1200)
Checkpoint(O.=3600)

Classical,Actual
Kill

Checkpoint(O.=0)
Checkpoint(O.=120)
Checkpoint(O.=430)

Checkpoint(O.=1200)
Checkpoint(O.=3600)

Classical,Actual
Kill

Checkpoint(O.=0)
Checkpoint(O.=120)
Checkpoint(O.=430)
Checkpoint(O.=1200)
Checkpoint(O.=3600)

Kill
Checkpoint(O.=120)
Checkpoint(O.=430)

Checkpoint(O.=1200)
Checkpoint(O.=3600)

Kill
Checkpoint(O.=120)
Checkpoint(O.=430)
Checkpoint(O.=1200)
Checkpoint(O.=3600)

Kill
Checkpoint(O.=120)
Checkpoint(O.=430)

Checkpoint(O.=1200)
Checkpoint(O.=3600)

Fig. 7. Evaluation the impact of checkpoint overhead using ANL trace. Different check-
point overhead are simulated. The simulate results that using classical backfill algo-
rithm with runtime estimate are the baseline.

the maximal checkpoint duration of all preempted jobs. The restart process also
consumes the resources, which extends the actual runtime. There is no memory
requirement information in the workload trace of ANL. So we prepare for the
worst, and simply assume the required memory is the total memory of the com-
pute nodes. We assume that 70% of the bandwidth is available. Therefore, the
delay time and extended runtime can be calculated as following.

Tdelay = Tchkpnt = 2G× 64/(0.85GB/s× 70%) = 215s.

Textend = Tchkpnt + Trestart ≤ 2× Tchkpnt = 430s.

Algorithm 2 should be modified to reflect the runtime extending. In the
algorithm, the predicted runtime of checkpointed jobs need to add the Textend.

5.2 Evaluation results with overhead

Our algorithm with checkpoint overhead is evaluated in Figure 7. It’s compared
against the same algorithm without adding overhead. To reflect the impact of
the checkpoint overhead, we simulated with different Textend values such as 120,
430, 1200 and 3600 seconds.

In addition to the original metrics, we also import three metrics to depict
the overhead:

– Preempt Ratio (pRatio): The ratio of the preempted jobs to all jobs.
– Checkpoint number per node in a day (cNum): The average checkpoint num-

ber for a compute node in a day.
– Waste Resource Ratio (wRatio): The ratio of the waste computing resources

by preempt to all computing resources.

From the result, even adding the overhead, our algorithm still outperforms
the baseline a lot when p is 0.2. The waiting time and queue length are improved
by up to 40%. The slowdown is improved about 20%. In fact, Figure 7 indicates
that the chances we have to do checkpoint are rare. When p = 0.2, the average
number of checkpoint on each node is about 0.4 times per day and only 4% of
the jobs need to do checkpoint. The waste resource is not more than 1.5%.

One thing to note is the intercepted point in slowdown curve in Figure 7. In
fact, the runtime extending enlarges the backfill window and lets more shorter
jobs to be backfilled. Thus, the backfill ratio increases, and the slowdown becomes
better in some cases.

In summary, the overhead in checkpoint does not hurt the algorithm a lot,
since the number of checkpoint we need to do is not quite large in our set-
tings. Thus we stand on solid ground to conclude that the overhead is tolerable
compared with the benefits gained.

6 Related work

6.1 Job Scheduling Algorithms

Job scheduling systems take an important part in improving the efficiency of high
performance computing (HPC) centers. Although a lot of scheduling algorithms
have been proposed by industry and academia [2, 3], FCFS-based backfilling
algorithm is regarded as the most efficient algorithm for modern HPC centers.
Several variants of FCFS-based backfilling algorithms serve as the default setting
in a lot of famous job scheduling systems, such as LSF [5], Moab [6], Maui [7],
PBS/Torque [8] and LoadLeveler [9].

User estimated runtime is a key factor affecting performance of backfilling
algorithms. The first study to identify the inaccuracy of user runtime estimates
was Feitelson and Mu’alem Weil [24]. There are a lot of studies trying to improve
the accuracy of user estimated runtime. Chiang et al. suggested a test run before
running to acquire more accurate estimated runtime [13]. Zhai et al. developed
a performance prediction tool to assist an accurate estimated time [14]. Tang et
al. got usable information from historical information [15]. In order to improve
the estimate accuracy, Cynthia Bailey Lee et al. gave a detailed survey. However,
performance prediction is a very difficult problem for HPC users. Most of user
estimated runtime provided to scheduling systems is not accurate enough [16].
This results in very poor efficiency for scheduling systems.

Lots works suggested relaxing the backfilling conditions. These methods al-
lowed jobs to be backfilled even that the estimated runtime are longer than the
backfilling window. If the backfilled jobs can’t finish in the specified period, un-
completed backfilled jobs are allowed to continue [15, 25, 26]. This strategy will
postpone top-queue jobs.

Several works suggested preemption based backfill. Snell et al. studied ag-
gressive backfill with kill-based preemption and discussed strategies that were
used to select candidate preempted jobs [27]. Maui support PREEMPT backfill
policy. It allows the scheduler to start backfill jobs even if required walltime is
not available. If the job runs too long and interferes with another job which was
guaranteed a particular timeslot, the backfill job is preempted and the priority
job is allowed to run [28]. Perkovic et al. proposed “speculative backfilling” after
regular backfilling [29]. If a speculatively run jobs runs longer than its speculat-
ed time, it will be killed. Most of these works focused on kill-based preemption.
However, checkpoint-based preemption has different features than kill-based pre-
emption. The latter hopes that preempted jobs have a short running time to
reduce waste resources. It is more suitable for improving the short-run failure
jobs. Our work uses checkpoint-based preemption, and it hopes that preempted
jobs have a long running time to improve effect-cost ratio. It is more suitable for
solving inaccurate user-provided runtime estimate.

Morris Jette et al. developed a preemption-based gang scheduler at Lawrence
Livermore National Laboratory (LLNL) for the Cray T3D. The Gang Scheduler
combines a checkpoint-based preemptive processor scheduler with the ability to
relocate jobs within the pool of available processors. That approach can sus-
tain machine utilization and provide interactive workload with a lower response
time [30,31]. Different, our work is focused on traditional backfilling algorithm.

6.2 Checkpoint/Restart Techniques

As the size of HPC systems increases, reliability is becoming more and more
important for HPC users. Checkpoint/Restart technique has become a standard
configuration for real systems.

A lot of system-level and application-level checkpoint techniques have been
proposed. Berkeley Lab’s Checkpoint/Restart (BLCR) is a system-level check-
point technique, which is the Linux kernel-based coordinated checkpoint tech-
nique [17]. BLCR is integrated with LAM/MPI and OpenMPI to provide check-
point and restart for parallel applications. IBM proposed a special application-
level checkpoint library [32] for BlueGene/P applications. This library provides
support for user initiated checkpoint. Users can insert checkpoint invocation
manually in the application arbitrarily. Xue et al. propose a user-level file sys-
tem which can guarantee the consistency between the application and its files
during checkpoint and restart [33].

A lot of work tried to reduce the overhead of checkpoint. Liu et al. used
exponential distributions to model the system failure, and proposed a reliability-
aware checkpoint/restart method [34]. Shastry et al. found that the optimal

checkpoint interval was approximately directly proportional to the checkpoint
cost while inversely proportional to shape parameter [21].

7 Conclusion

In this paper, we propose a checkpoint-based backfill algorithm, and evaluate
it using real workload traces. Our analysis indicates that the checkpoint-based
backfill algorithm can effectively improve the job scheduling in waiting time,
slowdown and mean queue length by up to 40%. The checkpoint/restart overhead
is also analyzed based on the real trace from Argonne Intrepid system. The
results show that only 4% of the jobs need to be checkpointed due to preemption.
This demonstrates that our checkpoint-based algorithm is able to improve overall
system utilization considerably without spending significant amount of system
resources on checkpoint/restart operations.

We plan to extend our work in several directions. We will develop an aging
algorithm to adaptively tune the parameter p so as to achieve approximating op-
timal performance. Moreover, we will study other split policies, such as splitting
the running process into three segments. We will also apply the checkpoint-ability
to other job scheduling algorithms.

8 Acknowledgement

We want to express our thanks to anonymous reviewers who gave valuable sug-
gestion that has helped to improve the quality of the manuscript. This work gets
support partly from Chinese ”863” project 2008AA01A204, 2010AA012403, NS-
FC project 61103021, NSF grants 0546301 (CAREER), 0915861, 0937908, and
0958311, in addition to a joint faculty appointment between Oak Ridge National
Laboratory and NC State University, as well as a senior visiting scholarship at
Tsinghua University.

References

1. Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam. An integrated approach
to parallel scheduling using gang-scheduling, backfilling, and migration. Parallel
and Distributed Systems, IEEE Transactions on, 14(3):236–247, 2003.

2. C. McCann, R. Vaswani, and J. Zahorjan. A dynamic processor allocation poli-
cy for iviukiprogrammed shared-memory multiprocessors. ACM Transactions on
Computer Systems, 11(2):146–178, 1993.

3. S. Majumdar, D.L. Eager, and R.B. Bunt. Scheduling in multiprogrammed parallel
systems, volume 16. ACM, 1988.

4. D. Lifka. The ANL/IBM SP scheduling system. In Job Scheduling Strategies for
Parallel Processing, pages 295–303. Springer, 1995.

5. Platform Computing Inc. Platform LSF. http://www.platform.com/products/

LSFfamily/, 2012.

6. Adaptive Computing Enterprises Inc. MOAB workload manager. http://www.

supercluster.org/moab/, 2012.

7. D. Jackson, Q. Snell, and M. Clement. Core algorithms of the Maui scheduler. In
Job Scheduling Strategies for Parallel Processing, pages 87–102. Springer, 2001.

8. Adaptive Computing Enterprises Inc. PBS/Torque user manual. http://www.

clusterresources.com/torquedocs21/usersmanual.shtml, 2012.

9. Joseph Skovira, Waiman Chan, Honbo Zhou, and David Lifka. The EASY –
LoadLeveler API project. In Job Scheduling Strategies for Parallel Processing,
pages 41–47. Springer, 1996.

10. Parallel Workloads Archive. http://www.cs.huji.ac.il/labs/parallel/

workload/, 2012.

11. S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan. Characteri-
zation of backfilling strategies for parallel job scheduling. In Parallel Processing
Workshops, 2002. Proceedings. International Conference on, pages 514–519. IEEE,
2002.

12. W. Cirne and F. Berman. A comprehensive model of the supercomputer workload.
In Workload Characterization, 2001. WWC-4. 2001 IEEE International Workshop
on, pages 140–148. IEEE, 2001.

13. S.H. Chiang, A. Arpaci-Dusseau, and M. Vernon. The impact of more accurate
requested runtimes on production job scheduling performance. In Job Scheduling
Strategies for Parallel Processing, pages 103–127. Springer, 2002.

14. J. Zhai, W. Chen, and W. Zheng. PHANTOM: predicting performance of par-
allel applications on large-scale parallel machines using a single node. In ACM
SIGPLAN Notices, volume 45, pages 305–314. ACM, 2010.

15. W. Tang, N. Desai, D. Buettner, and Z. Lan. Analyzing and adjusting user runtime
estimates to improve job scheduling on the Blue Gene/P. In Parallel & Distributed
Processing (IPDPS), 2010 IEEE International Symposium on, pages 1–11. IEEE,
2010.

16. C. Bailey Lee, Y. Schwartzman, J. Hardy, and A. Snavely. Are user runtime esti-
mates inherently inaccurate? In Job Scheduling Strategies for Parallel Processing,
pages 253–263. Springer, 2005.

17. Berkeley Lab Checkpoint/Restart (BLCR). https://ftg.lbl.gov/projects/

CheckpointRestart/, 2012.

18. J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez, M. Polte,
and M. Wingate. Plfs: A checkpoint filesystem for parallel applications. In Pro-
ceedings of the Conference on High Performance Computing Networking, Storage
and Analysis, page 21. ACM, 2009.

19. Y. Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon, M. Paun, and SL Scott.
An optimal checkpoint/restart model for a large scale high performance computing
system. In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE Interna-
tional Symposium on, pages 1–9. IEEE, 2008.

20. G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill. Automated application-
level checkpointing of MPI programs. In Proceedings of the ninth ACM SIGPLAN
symposium on Principles and practice of parallel programming, pages 84–94. ACM,
2003.

21. M.S. PM and K. Venkatesh. Analysis of Dependencies of Checkpoint Cost and
Checkpoint Interval of Fault Tolerant MPI Applications. Analysis, 2(08):2690–
2697, 2010.

22. TOP500 Supercomputing web site. http://www.top500.org, 2012.

23. H. Naik, R. Gupta, and P. Beckman. Analyzing checkpointing trends for applica-
tions on the IBM Blue Gene/P system. In Parallel Processing Workshops, 2009.
ICPPW’09. International Conference on, pages 81–88. IEEE, 2009.

24. D.G. Feitelson and A.M. Weil. Utilization and predictability in scheduling the ibm
sp2 with backfilling. In Parallel Processing Symposium, 1998. IPPS/SPDP 1998.
Proceedings of the First Merged International... and Symposium on Parallel and
Distributed Processing 1998, pages 542–546. IEEE, 1998.

25. W. Ward, C. Mahood, and J. West. Scheduling jobs on parallel systems using
a relaxed backfill strategy. In Job Scheduling Strategies for Parallel Processing,
pages 88–102. Springer, 2002.

26. D. Tsafrir, Y. Etsion, and D.G. Feitelson. Backfilling using system-generated pre-
dictions rather than user runtime estimates. Parallel and Distributed Systems,
IEEE Transactions on, 18(6):789–803, 2007.

27. Q. Snell, M. Clement, and D. Jackson. Preemption based backfill. In Job Scheduling
Strategies for Parallel Processing, pages 24–37. Springer, 2002.

28. Adaptive Computing Enterprises Inc. Preemption Policies. http://www.

adaptivecomputing.com/resources/docs/maui/8.4preemption.php, 2012.
29. D. Perkovic and P.J. Keleher. Randomization, speculation, and adaptation in batch

schedulers. In Proceedings of the 2000 ACM/IEEE conference on Supercomputing
(CDROM), page 7. IEEE Computer Society, 2000.

30. M.A. Jette. Performance characteristics of gang scheduling in multiprogrammed
environments. In Supercomputing, ACM/IEEE 1997 Conference, pages 54–54.
IEEE, 1997.

31. M. Jette, D. Storch, and E. Yim. Gang scheduler-timesharing the cray t3d. Cray
User Group, pages 247–252, 1996.

32. C. Sosa and B. Knudson. IBM System Blue Gene/P Solution: Blue Gene/P Appli-
cation Development. http://www.redbooks.ibm.com/abstracts/sg247287.html,
2007.

33. R. Xue, W. Chen, and W. Zheng. CprFS: a user-level file system to support
consistent file states for checkpoint and restart. In Proceedings of the 22nd annual
international conference on Supercomputing, pages 114–123. ACM, 2008.

34. Y. Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon, M. Paun, and SL Scott.
An optimal checkpoint/restart model for a large scale high performance computing
system. In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE Interna-
tional Symposium on, pages 1–9. IEEE, 2008.

