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Abstract. The performance of supercomputer schedulers is greatly af-
fected by the characteristics of the workload it serves. A good under-
standing of workload characteristics is always important to develop and
evaluate different scheduling strategies for an HPC system. In this pa-
per, we present a comprehensive analysis of the workload characteristics
of Kraken, the world’s fastest academic supercomputer and 11th on the
latest Top500 list, with 112,896 compute cores and peak performance of
1.17 petaflops. In this study, we use twelve-month workload traces gath-
ered on the system, which include around 700 thousand jobs submitted
by more than one thousand users from 25 research areas. We investi-
gate three categories of the workload characteristics: 1) general charac-
teristics, including distribution of jobs over research fields and different
queues, distribution of job size for an individual user, job cancellation
rate, job termination rate, and walltime request accuracy; 2) tempo-
ral characteristics, including monthly machine utilization, job temporal
distributions for different time periods, job inter-arrival time between
temporally adjacent jobs and jobs submitted by the same user; 3) exe-
cution characteristics, including distributions of each job attribute, such
as job queuing time, job actual runtime, job size, and memory usage,
and the correlations between these job attributes. This work provides
a realistic basis for scheduler design and comparison by studying the
supercomputer’s workload with new approaches such as using Gaussian
mixture model, and new viewpoints such as from the perspective of user
community. To the best of our knowledge, it’s the first research to sys-
tematically investigate the workload characteristics of a petascale super-
computer that is dedicated to open scientific research.
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1 Introduction

As high performance computing (HPC) is becoming highly accessible, more re-
searchers from a variety of research fields start to use supercomputers to solve



large scientific problems. A supercomputer provides massive computational re-
sources to achieve extremely fast processing speed in order to accelerate slow
processes and generate outcomes with less time. The overall performance of a
supercomputer depends heavily on the quality of the scheduling system. As in-
dicated in [6], the performance of a supercomputer scheduler is greatly affected
by the workload to which the supercomputer is applied, and there is no single
scheduling algorithm working perfectly for all workloads. Therefore, workload
characterization of a supercomputer is an important step to develop and evaluate
scheduling strategies. Furthermore, a good understanding of workload charac-
teristics can guide an HPC center to make decisions for purchasing or allocating
specific hardware and software for the applications with different resource usage
patterns.

Over the past decades, a variety of studies were conducted on workload analy-
sis and modeling of parallel computers to evaluate scheduler performance [5] [11],
and to predict job performance [6] [20]. Using historical data of workload traces
that were recorded on real machines, statistical analysis of workloads was per-
formed to understand the characteristics, such as distributions of job runtime and
memory usage, of a single HPC system [3], a multi-cluster supercomputer [8], or
a Grid computing environment [2]. Statistical workload models were also widely
studied to generate abstract representation of job attributes, such as fitting dis-
tributions to job attributes [17] and modeling correlations between job attribute
pairs [7]. Another type of workload models were developed on the basis of usage
behavior classification. Wolter [21] experientially classified supercomputer users
into three groups, and analyzed the job characteristics in each group. Song [18]
used a mixed usage group model to classify jobs into predefined number of cate-
gories and investigated the workload traces in each category for job scheduling.
Temporal characteristics of workloads in parallel systems were also analyzed and
modeled. An infinite two-state Markov model was used to describe the charac-
teristics of job inter-arrival in [13], which was extended to a n-state Markov
modulated Poisson process to capture autocorrelations in [9]. Temporal locality
of parallel system workloads was investigated in [14] to improve runtime pre-
diction accuracy. However, the user community was relatively small in previous
publications compared to a top ranking petascale supercomputers with a large
user community and millions of job submissions. Previous researches failed to
provide a comprehensive analysis of the characteristics of the user community,
which greatly affects the patterns of the workload on a machine. For instance,
the geographical distribution of users determines the temporal distribution of
workload in a day.

In this paper, we present a comprehensive workload characterization of Kraken,
an petascale supercomputer, which now ranks as the eleventh fastest computer
in the world, and holds the title of world’s fastest academic supercomputer [19].
Different from other top ranking HPC systems, Kraken is dedicated to academia,
and it’s user community consists of researchers from universities, research cen-
ters, institutes and laboratories. By analyzing Kraken workload, we can under-
stand the patterns of how academia uses supercomputers to solve large scientific



problems. Another distinguished characteristic of Kraken is the high utilization,
which has been a sustained rate of 94 percents by average for the past year, and
already contributed two billion CPU hours in total to open scientific research.
The workload dataset used in this work contains about 700 thousand job traces,
which were collected between November 2010 and October 2011 on Kraken.
The large size of the dataset ensures that we are able to analyze the workload
characteristics properly and come to solid conclusions. The job characteristics
investigated in this work include general characteristics (e.g., distribution of the
number of jobs submitted by a user), temporal characteristics (e.g., distribution
of job inter-arrival time), and execution characteristics (e.g., distribution of job
size).

The contributions of this paper are two fold. First, this paper analyzes a large
workload dataset that was collected from the world’s fastest petascale academic
supercomputer. This is the first work, to the best of our knowledge, to system-
atically investigate the workload characteristics on a petascale supercomputer
that is dedicated to open scientific research. Second, we provide new viewpoints
and approaches with statistical models to comprehensively investigate a variety
of the characteristics of Kraken workload. Besides investigating and modeling
most of the workload characteristics introduced in previous research, we also an-
alyze some characteristics which appear to be unique to Kraken, especially the
characteristics of the user community, such as the user distribution and the dis-
tribution of the compute resource allocated to each research field. We also apply
the Gaussian mixture models to fitting the distributions of some job attributes,
such as job queuing time and actual runtime, which exhibit different patterns on
a petascale supercomputer and cannot be modeled using a single distribution.
We believe that this work is valuable in helping HPC centers to better under-
stand the workload characteristics of a petascale supercomputer and the user
community in academia, which is a necessary and important step to improve the
overall performance of a supercomputer, and to prepare for the next generation
of exascale HPC systems.

The remainder of the paper is organized as follows. Section 2 introduces the
Kraken supercomputer and describes the workload dataset used in this study.
Section 3 discusses the general workload characteristics of Kraken, including
distribution of research fields, distribution of job size for an individual user, job
distribution over queues, job cancellation rate, job termination rate, and walltime
request accuracy. The temporal workload characteristics of Kraken are investi-
gated in Section 4, which are monthly utilization, job temporal distribution in
a year, a month, a week, and a day, and inter-arrival time between temporally
adjacent jobs and jobs submitted by the same user. Section 5 talks about the
execution characteristics, such as distributions of each job attribute, job queuing
time, job actual runtime, job size, memory usage, and the correlations between
these job attributes. Finally, Section 6 concludes the paper and reiterates the
important characteristics of a petascale academic supercomputer.



2 Workload Traces of the Kraken Supercomputer

The historical workload traces of the Kraken supercomputer [15] was used in
this study. Kraken is managed by the National Institute for Computational Sci-
ences (NICS) at the Oak Ridge National Laboratory (ORNL) in the United
States, and is funded by the National Science Foundation (NSF). It provides
a petascale computing environment that is fully integrated with the Extreme
Science and Engineering Discovery Environment (XSEDE). The supercomputer
is a Cray XT5 system consists of 9,408 compute nodes with 112,896 compute
cores, 147 terabytes of memory, and 3.3 petabytes storage. Each compute node
contains 12 AMD 2.6 GHz Istanbul compute cores and 16 GB memory. The
peak performance of the Kraken supercomputer is now 1.17 petaflops. Access
to Kraken compute resources is managed by the Portable Batch System (PBS).
The Lustre file system is used to support I/O operations, with the peak perfor-
mance of 30GB/s. Moab is used to schedule jobs on Kraken, with preference to
large core count jobs. Backfilling is applied on Kraken to allow smaller, shorter
jobs to use remaining idle resources. The supercomputer is funded for the NSF
community, which enables the scientific discoveries of nationwide researchers. In
general, experienced researchers from academic or nonprofit organizations of the
United States are eligible to request allocations of compute time of Kraken.

Table 1: A typical historical usage data that records the workload traces of the
Kraken supercomputer. The exemplary workload dataset contains five instances.
Each row represents a job, and each column denotes a job attribute.

job id user name account nproc mem used submit time

0000001.nid00016 hao U1-INDEX001 12 7588 2011-01-27 08:10:13
0000002.nid00016 haihang U2-INDEX001 1 142664 2011-03-28 14:15:50
0000003.nid00016 hao U2-INDEX001 1032 16276 2011-04-16 01:28:41
0000004.nid00016 admin SUPPORT 288 11836 2011-05-31 09:43:51
0000005.nid00016 hao U1-INDEX002 98304 71812 2011-07-05 17:01:08

start time end time walltime req walltime cpu hours

2011-01-27 09:26:03 2011-01-27 09:36:14 00:30:00 00:10:11 3.22
2011-03-28 14:16:14 2011-03-28 14:35:01 05:30:00 00:18:47 0.0658
2011-04-16 11:51:30 2011-04-17 11:51:56 24:00:00 24:00:27 24775.74
2011-06-04 21:00:20 2011-06-05 21:00:57 23:59:59 24:00:37 6914.96
2011-07-07 11:11:13 2011-07-08 13:11:34 32:00:00 26:00:21 2556477.44

queue type software research area description

small batch —– Physics Simulation in Physics
hpss batch wrf Earth Sciences Simulation in Earth Science

medium batch mpcugles Physics Energy conserving eddy simulation
small interactive —– Benchmark Interactive benchmark

capability batch gadget Earth Sciences Large earth simulation



Table 2: Classification of jobs that are submitted to Kraken, which is determined
by the number of compute nodes. Each job category is associated with a unique
queue that is managed by job scheduler.

Queue
Compute Cores WalltimeMax

Minimum Maximum Percentage (%) (hours)

Small 1 512 0–0.45 24.0
Medium 513 8,192 0.45–7.26 24.0

Large 8,193 49,536 7.26–43.88 24.0
Capability 49,537 98,352 43.88–87.12 48.0
Dedicated 98,353 112,896 87.12–100 48.0

HPSS N/A N/A N/A 24.0

The dataset of the Kraken workload traces were collected between Novem-
ber 2010 and October 2011. It contains 693,829 job traces submitted by more
than one thousand researchers from 25 research fields. This dataset was ob-
tained by tracking all jobs that were submitted to the Kraken supercomputer
and documenting the information that was related to the jobs. Some instances
of the Kraken workload traces are listed in Table 1, each of which contains six-
teen attributes. The attributes job id, user name, and account are the unique
identifiers of a job, an user, and an account, respectively. The attributes sub-
mit time, start time and end time record the times when a job is submitted,
executed, and finished, respectively. Jobs are automatically classified into sev-
eral categories according to the number of requested compute nodes, denoted
by nproc. Each category is associated with a queue that indicates the priority.
The definitions of the job categories and queue types are described in Table 2.
Because each compute node of Kraken contains twelve cores, the attribute nproc
must be a multiple of 12, except for the jobs in the queue for accessing the High
Performance Storage System (HPSS). These jobs are executed to transfer files to
a storage system using a batch file. No compute nodes on Kraken are allocated
to the jobs in HPSS queue. The attribute walltime req is the requested wall-
time of a job, which is required to be estimated and provided by a user before
submitting a job. The attributes walltime, mem used and cpu hours represent
actual runtime, consumed memory and CPU hours of a job, respectively. The
attribute type takes a boolean value (i.e., interactive or batch), which indicates
whether a user has interactive access to the compute resources. The attribute
software describes the name of the software or package, if any, used by a job. For
instance, the job 0000003.nid00016 used MPCUGLES, which is a software for
energy-conserving large eddy simulations. The attribute research area indicates
the research field of the target problem, or to which the user belongs. At last,
the attribute description explains the objective of the project.



Fig. 1: Pie chart of the research fields sorted by the number of jobs submitted to
Kraken in each field.

3 Job General Characteristics

We first analyze the general characteristics of jobs running on Kraken and its
user community. The objective of this analysis is to figure out how users from
different research fields utilizing the petascale supercomputer, and how well they
performed on using the supercomputer for open scientific research.

3.1 Distribution of Research Fields

There were 1,111 users from 473 different accounts submitted jobs to Kraken
during the year when the workload traces were collected. The users scattered in
25 different research fields from all over the United States. The proportion of each
research field sharing the supercomputer is illustrated in Figure 1. The top five
research fields using Kraken were Atmospheric Sciences, Molecular Biosciences,
Chemistry, Materials Research and Physics, which took over 75 percents of the
job submissions to Kraken. However, the number of Kraken users in a research
field was not necessarily proportional to the number of job submissions in the
research field. For example, the research field of Molecular Biosciences had the
most 205 Kraken users, but only 90 users came from Atmospheric Sciences who
submitted the most jobs. On the other hand, the number of job submissions and
the number of users in a research field were positively correlated, i.e., a larger
user group often resulted in more job submissions.

3.2 Distribution of Number of Jobs for a User

Typically, a supercomputer user only submits jobs to address similar problems
in the same discipline. On the other hand, it is very common that a user submits
multiple jobs at one time or across multiple times. The distribution of the number
of jobs submitted by a user is depicted in Figure 2 in a logarithm scale. On
Kraken, there were 693,829 job submissions recorded in a year, and an average
of 624 jobs were submitted by each user. However, it should be noted that the
number of jobs submitted by a user was not uniformly distributed. Oppositely,



Fig. 2: Histogram (red rectangles) of the number of jobs submitted by a Kraken
user, with density estimate (blue curve) and statistical summary (gray boxplot).

Fig. 3: Distribution of jobs over queues in different research fields. The number
in a red rectangle indicates the probability that a job belongs to a queue.

the most active 10% users contributed 79.2% job submissions to the workload.
The statistical summary of the jobs submitted by a user is also plotted with a
boxplot in Figure 2, which indicates that 50% users had job submissions between
20 to 600 in a year. The number of jobs submitted by a user can be modeled using
the log-normal distribution, i.e., the logarithm of the number of job submissions
conforms to the Gaussian distribution. The parameters of the distribution can
be computed using the maximum-likelihood estimation (MLE). The probability
density function (PDF) is plotted with the blue curve in Figure 2.

3.3 Distribution of Jobs over Queues

The probability distribution of jobs over queues and the probability distribu-
tions of jobs over queues within different research fields are depicted in Figure
3. In general, the probability of the jobs belonging to a queue consistently de-
creased with the increase of the job size in the queues of Small, Medium, Large,
Capability, and Dedicated, as shown by the average distribution in Figure 3. The
probability that a job belongs to a queue is shown in a red rectangle in the figure.
On average, over 80% jobs belonged to the queue of type Small, and only 1%
jobs consumed significant compute resources, which belonged to the queues of
type Large, Capacity, or Dedicated. As for the distributions of jobs over queues
in each individual research field, although the distribution in Earth Science had



Fig. 4: General characteristics of workload traces in different queues.

great difference from the average distribution, in which case the probability that
a job was in the queue of type Medium was greater than the probability that the
job belonged to the queue of type Small, in general, most of the per-discipline
distributions were quite similar to the average distribution, such as Atmospheric
Sciences and Materials Research. Consequently, we can model the distribution
of jobs over queues with a single multinomial distribution for all research fields,
with each model parameter equal to the value of the corresponding average
probability of a job belonging to a queue.

3.4 Cancellation/Termination Rate and Walltime Request Accuracy

The general characteristics of the jobs in different queues are also investigated
in this study, which include job termination rate, job cancellation rate, and
average accuracy of walltime estimation. In most HPC systems, a job can be
canceled manually by a user before the job starts executing, in which case the
job actual runtime is zero. On the other hand, a job can be forcefully terminated
by the HPC system if the job runs out of the requested walltime, in which
case the job actual runtime is equal to the requested walltime. Moreover, a job
might fail and exit during its execution due to some runtime error, in which
case the job actual runtime is often significantly smaller than the requested
walltime. If a job neither completes correctly, nor provides meaningful results,
it is considered incorrect. Because the incorrect jobs are always misleading for
meaningful analysis, we evaluate the accuracy of the requested walltime with
correct jobs. A job is considered correct, if it belongs to the job set:

Jc = {j | (j.mem used 6= 0) ∧ (j.walltime > 30)

∧ (j.walltime < j.walltime req)}
(1)

where “.” represents attribute relationship, and the unit of the attribute walltime
is second. The three literals in (1) remove the canceled jobs, terminated jobs, and
a part of jobs with runtime errors at the beginning of job execution, respectively.
The second literal also contributes to remove some “hello world” jobs, in which
case a user often does not care about job runtime. On the other hand, it should



Fig. 5: Monthly utilization of the Kraken supercomputer over a year

be noted that this definition does not remove all incorrect jobs, such as jobs
with runtime errors at the end of their execution. These remaining incorrect
jobs are treated as noise in this work. To quantitatively measure the accuracy
of the requested job runtime, the walltime request accuracy (WRA) is applied.
For a correct job j in Jc, WRA is defined as:

WRA(j) =
j.walltime

j.walltime req
× 100% (2)

The rates of canceled jobs, terminated jobs and jobs with runtime less than 30
seconds, along with the WRA for each queue are illustrated in Figure 4. A most
obvious phenomenon is that the jobs requesting significant compute resources, in
the queues of type Capability and Dedicated, had the highest cancellation rate of
more than 60%, which might be resulted from the long queuing time. Moreover,
the jobs in the queue Capability and Dedicated had the lowest termination rate
of less than 5%, and the lowest 30-second job quitting rate of less than 1%,
along with the lowest WRA. This phenomenon can be partially explained by
the fact that researchers submitted these jobs often had rich HPC experience
to reduce errors in the code, and they also tended to request longer walltime
to decreased the probability that their jobs were forcefully killed by the system.
Third, a high rate of the jobs quitting within 30 seconds in the queues of type
Small and HPSS, which at least doubled the same rate of other queues, indicates
that new users of Kraken were more probable to submit small jobs to figure out
how to access the compute and storage resources. Consequently, it is necessary
for the scheduling system of an HPC system to have backfilling policy, which
allows small jobs to be backfilled. The last important observation is that the
overall accuracy of the requested walltime was around 33%, which was typically
estimated and provided by a user. The low accuracy of the job runtime estimate
indicates that many users were lack of experience with the HPC system. It is of
great necessity for HPC centers to provide users with more supports, such as a
recommendation system to guide users to predict the runtime of their jobs.



(a) Histogram (red rectangles) and the kernel density estimate (blue curve) of the
number of jobs that were submitted to Kraken in the year between November 2010
and October 2011.

(b) Temporal distribution of the number of per-day jobs over a month.

(c) Temporal distribution of the number of per-day jobs over a week.

(d) Temporal distribution of the number of per-hour jobs over a day.

Fig. 6: Temporal distributions of the Kraken workload.



4 Job Temporal Characteristics

In this section, we investigate the temporal characteristics of the jobs submitted
to Kraken, which include 1) the monthly utilization of the supercomputer in a
year; 2) temporal distributions of jobs in a year, a month, a week, and a day; and
3) the inter-arrival time of job submissions. The goal is to unveil the workload
dynamics, i.e., the time-based patterns in the workload.

4.1 Supercomputer Utilization

The monthly utilization of Kraken over a year is depicted in Figure 5. The sys-
tem utilization for each month was very consistent on Kraken, which oscillated
between 90% and 97%, and an average monthly utilization of 94.6% was ob-
served. Kraken has been providing two thirds of cycles that are available to the
national research community funded by NSF in the United States. Projects are
selected by xRAC [22] through process which is designed to provide independent
merit-review of proposals for the XSEDE. At NICS, teams of operations, user
support, computational science and education, outreach and training provide
support at various levels. The combination of project selection, management,
support, and expertise provided on site at NICS result in such high utilization
rate for the petaflop supercomputer, which serves as a good example to increase
the overall utilization of an HPC system to open scientific research.

4.2 Temporal Distributions

The temporal distributions of the Kraken job submissions over a year, a month,
a week, and a day are illustrated in Figure 6a, 6b, 6c, and 6d, respectively. In
Figure 6a, the kernel density estimate [16] is computed to fit the dataset and to
provide a smooth representation. An important observation from this figure is
that the job submissions were not uniformly distributed over time, and the bursty
behavior of job arrivals can be observed, such as the burstiness of the job arrivals
in the middle of February and August, 2011. This phenomenon is possibly caused
by the training activities using the supercomputer at the beginning of spring
and fall semester. On the other hand, the low job arrival can be also observed,
which might be caused by system upgrade, system failure, or occupation by
capacity or dedicated jobs. An interesting observation is that the number of job
submissions was not necessarily correlated with the utilization. For instance,
running dedicated jobs might lead to very high system utilization with very low
job counts. At last, the workload of Kraken did not exhibit obvious patterns
over a year. The temporal distribution of the daily job arrivals over a month
is computed using the 12-month Kraken workload dataset, and the standard
deviations are also calculated to indicate the reliability of the estimates, which
are presented with the error bars in Figure 6b. The large errors for the daily job
arrival estimates indicate that the workload of the same day (e.g., the 8th day)
in a month was not stationary, which varied greatly from month to month.



(a) Distribution of the inter-arrival time(second) between the temporally adjacent
jobs.

(b) Distribution of the inter-arrival time(second) of jobs from the same user.

Fig. 7: Comparisons between the inter-arrival time of the continuous job stream
and the inter-arrival time of the job sequence submitted by the same user.

However, the workload exhibited obvious and stationary patterns in weekly
cycles. As illustrated in Figure 6c, the daily workload presented obvious cyclical
patterns in a week, which started at the maximum on Mondays, then constantly
decreased to its minimum on Saturdays, and bounced back on Sundays towards
the peak. Moreover, the small standard variations presented by the short error
bars in Figure 6c also indicate a high degree of consistency in the daily workload
over a week. In general, the workload at the end of a week was quite different
from the workload at the beginning of a week. The maximum daily workload on
Mondays was 1.8 times of the minimum daily workload on Saturdays. Similarly,
the hourly workload also showed stationary, obvious, but more complicated pat-
terns in daily cycles, which is illustrated in Figure 6d. The peak of the hourly
workload arrival appeared at around 3:00 PM in the afternoon. In general, the
hourly workload in the midnight was much lower than the hourly workload in the
afternoon. Another interesting phenomenon is that researchers tended to submit
more jobs before getting off work and going to sleep, which is well supported by
the local maximum at around 5:00 PM and 12:00 PM in Figure 6d, respectively.
However, it should be noted that the cyclical patterns of hourly workload over
a day on a supercomputer is significantly dependent on the spatial distribution
of its users.

4.3 Inter-Arrival Time

We analyze the inter-arrival time of the jobs submitted in sequence to Kraken,
and compare the results with the inter-arrival time of the jobs submitted by



the same user. The inter-arrival time distributions are illustrated in Figure 7,
in which the inter-arrival time is plotted in a log scale to reduce a wide range
to a manageable size. From Figure 7a, we can observe that the time intervals
between two temporally adjacent job submissions were very small. As indicated
by the statistical summary in the box plot, around 25% inter-arrival times were
less than three seconds, around 50% inter-arrival times less than six seconds,
and around 75% inter-arrival times less than 30 seconds. The large inter-arrival
time might be resulted from system upgrade or system failure, in which case,
users cannot access or submit jobs to the supercomputer. The inter-arrival time
distribution of the jobs submitted by the same user exhibited similar charac-
teristics to the distribution of the overall inter-arrival time, as shown in Figure
7b. This distribution indicates the temporal locality, or burstiness, of the jobs
submitted by an individual user, which is well supported by the observation
that 25% inter-arrival times were less than two seconds, and 50% inter-arrival
times were less than five seconds. The job burstiness was generally caused by the
fact that users usually repeated submitting the same jobs or jobs with similar
attributes in a short time span. Due to the similarity of these distributions, a
single statistical model can be applied to model the inter-arrival times of the
workload. In this work, we apply a Weibull distribution to model the logarithm
of the job inter-arrival times, with MLE to estimate the model parameters. The
results are shown with the blue curves in Figure 7.

5 Job Execution Characteristics

In this section, the job execution characteristics are investigated. First, we ana-
lyze the characteristics of each individual job attribute in the Kraken workload,
including actual job queuing time, actual job runtime, number of compute nodes
used by a job, and total memory consumed by a job. Then, the correlations
between these job attributes are studied. The results of the characteristics of
each job attribute and the correlations between job attributes are drawn with
scatter-plot matrices which is depicted in Figure 8. Each diagonal plot presents
the univariate histogram of the logarithm of one job attribute, along with the fit-
ted distribution. The plots above the diagonal, with different shapes and colors,
present the queue types to which each data point belongs, which also indicate the
geographical distributions of the jobs in the 2-dimensional attribute space. Al-
though plots below the diagonal contain the same data points as the plots above
the diagonal, a smooth curve is fitted to each plot using the locally weighted
scatter plot smoothing [4] to intuitively present the correlations between the job
attributes. It should be noted that, because incorrect jobs are always distracting
in investigating the underlying distributions of the job attributes, we intention-
ally remove the incorrect jobs, and only use the correct jobs in the set Jc, defined
in (1), for the following analysis. Moreover, the characteristics of the jobs in the
HPSS queue are not analyzed, because these jobs do not consume any compute
cores and memory, and users generally do not care about the performance of
such jobs.



Fig. 8: Execution characteristics of actual queuing time, actual runtime, re-
quested compute nodes, and consumed memory in the Kraken workload. All
quantities in the figure are in a logarithmic scale based on 10.

5.1 Individual Attribute Characteristics

When analyzing the characteristics of each individual job attribute and plotting
the scatter-plot matrices, the job submissions belonging to the queues of type
Capacity and Dedicated are also intentionally removed, because these jobs only
take over 0.21% of the entire job traces in the Kraken workload, which are always
treated as outliers by the statistical models that are used to fit the individual
attribute distributions.

We first analyze the characteristics of the job attribute queuing time, denoted
as Tq, which is the actual waiting time of a job in a queue between job submission
and execution. Different from the conclusions in previous research that a single
distribution, such as the log-uniform distribution discussed in [10], can be used
to present the queuing time distribution in a small system, for the workload
of Kraken, a petascale supercomputer, any single distribution does not well fit
to the job queuing time. In this study, the Gaussian mixture model (GMM),



with two Gaussian component distributions, is applied to model the logarithm
of the job queuing time, as illustrated in Figure 8-(1, 1). The parameters of the
GMM model are estimated using MLE. The data of the job queuing time are
well fitted by the GMM model with two components, which actually shows the
characteristics of the scheduling queues. The first Gaussian component with a
smaller mean is resulted from the backfilling policy of the scheduler, in which
case the jobs requesting a small portion of compute resources can be backfilled
and executed faster. The second Gaussian component represents the distribution
of the queuing time of the non-backfilled jobs. On average, a job needs to wait
in the queue for 34.5 minutes before starting execution.

Similarly, the distribution of the actual job runtime, denoted as Tr, cannot be
simply modeled with a single distribution as well, such as the log-uniform [10],
hypergamma [12], or Webull [1] distributions. In this study, we apply the GMM
model to present the distribution of the logarithm of the actual job runtime, as
shown in Figure 8-(2, 2). The GMM model contains three Gaussian components,
which well fits the distribution of the logarithm of the job runtime. A possible
explanation for the three Gaussian components is that the actual runtime of the
jobs in each queue conforms to a logarithm-normal distribution, in which case
the logarithm of the actual runtime of all jobs conforms to a mixture Gaussian
distribution. The average job actual runtime is 36.8 minutes.

The characteristics of job size, denoted as Nn in number of compute nodes,
for the Kraken workload are also investigated. On Kraken, there are 12 cores per
node, and it is not possible to allocate part of a node. After applying logarithm
on the number of nodes, the resulted distribution still has a short tail, as shown in
Figure 8-(3, 3). This tailed distribution indicates that there are a great number of
small jobs along with few large jobs are submitted to Kraken, which is consistent
with the results shown in Figure 3. In more detail, there are 80.1% jobs submitted
to the queue of type Small, and 26.5% jobs requesting only one node with twelve
compute cores for learning HPC or debugging code. Consequently, we argue
that, while the scheduler is collecting resources for larger jobs, backfilling policy
is important for a petascale supercomputer to make jobs with short wall-clock
limits and small core counts to start execution faster, in order to respond to the
users with small job submissions quickly.

Memory usage is defined as the maximum amount of physical memory that
is consumed by a job at some time point during its execution, which is recorded
by the PBS on Kraken. Kraken is a distributed-memory system, with 16 GB
memory for each compute node. The univariate histogram and the fitted dis-
tribution of the logarithm of the memory usage are depicted in Figure 8-(4, 4).
In this study, a single Gaussian distribution is applied to fit the memory usage
represented in a log scale. Although the Gaussian distribution fits most memory
usage data very well, it cannot well model the heavy tail, which actually indi-
cates that the entire workload is dominated by the computationally-intensive
jobs with few memory-intensive jobs. A possible solution to address this prob-
lem is first to cluster the jobs into computationally-intensive or memory-intensive
categories, then to model each job category separately. On Kraken, an average



Table 3: Correlation coefficients between job attributes

Correlation Tq − Tr Tq −Nn Tq −Mu Tr −Nn Tr −Mu Nn −Mu

Pearson 0.2439 0.0061 0.0210 −0.0481 −0.0177 0.0620
Log-Pearson 0.3946 0.0768 0.0286 −0.2092 0.0070 0.2501
Spearman 0.3951 0.0593 0.0367 −0.2293 −0.0716 0.4893

memory usage for the computationally-intensive jobs is around 12.3 GB, and the
memory-intensive jobs usually consume over 80 GB memory.

5.2 Attribute Correlations

The correlations between job attributes are computed using all jobs in the queues
of type Small, Medium, Large, Capacity, and Dedicated in the job set Jc. Pearson
product-moment correlation coefficient is the most commonly used measure of
the strength of linear dependence between object attributes. Pearson correlation
works well in the cases that the values of the attributes are roughly normally
distributed. But Pearson correlation is very sensitive to the strong outliers, and
works poorly on modeling correlations between data sampled from heavily tailed
distributions. Thus, we also apply the Spearman’s rank correlation coefficient to
study the correlations between job attributes, which is a non-parametric corre-
lation measure that is less sensitive to strong outliers. The correlations between
job attributes are intuitively presented with the red smooth curves in the plots
below the diagonal in Figure 8. We also applied the Pearson measure on both the
raw job attributes and the logarithmic-scaled job attributes. Because Spearman
measure is invariant to the logarithm operation, the Spearman correlation coef-
ficients are only computed using the raw job attributes. The resulted coefficients
are quantitatively listed in Table 3.

A strong positive correlation between job queuing time Tq and actual runtime
Tr is observed from all three correlation measures, which can also be intuitively
observed from the curve with a large positive slope in Figure 8-(2, 1). Because
the Spearman correlation and Pearson correlation have similar values when the
data are roughly normally distributed with few outliers, the almost identical co-
efficients computed from the Log-Pearson measure and the Spearman measure
indicate that the GMM model is a good model for fitting logarithm-scaled job
queuing time and actual runtime. The second observation of job attribute cor-
relations is that the job size Nn is positively correlated, in a non-linear manner,
with the memory usage Mu, which can be observed from the curve with a pos-
itive slope in Figure 8-(4, 3). A possible explanation for this observation is that
Kraken is a distributed-memory system which always allocates 16 GB memory
with each compute node allocation. Because each core can only access to the
memory on the same node, the total allocated memory is always proportional
to the number of allocated nodes. In this sense, a user tends to use more mem-
ory, when more compute cores are allocated with a larger amount of memory



available. Third, there is a negative correlation between job size Nn and job
actual runtime Tr, which can be easily observed from the curve with a nega-
tive slope in Figure 8-(3, 2). This phenomenon indicates that, in general, using
more compute resources reduces the wall-clock time of a job, which is actually
the initial reason to use a supercomputer. Fourth, job queuing time Tq can be
considered independent with job size and memory usage, as indicated by the
coefficients that are close to zero. Similarly, job actual runtime Tr is statistically
independent with job memory usage Mu. These independences indicate that job
queuing time and memory usage are more random than other job attributes,
which means it is harder to predict these two job attributes. The fitting curves
with slopes close to zero graphically indicate the independences between the job
attribute pairs, as shown in Figure 8-(3, 1), 8-(4, 1), and 8-(4, 2). Finally, for the
correlation measures, the Spearman measure generally performs better than the
Pearson measure in the sense of detecting the non-linear correlations between
job attribute pairs.

6 Conclusion

In this paper, the workload characteristics of a petascale academic supercom-
puter is comprehensively and systematically investigated, based on the twelve-
month workload dataset collected from the world’s most powerful academic su-
percomputer, with around 700 thousand jobs submitted by more than one thou-
sand users from 25 research fields. The general characteristics, temporal char-
acteristics, and execution characteristics of the workload traces are investigated
and well represented with statistical models, with the objective of providing a
realistic basis for scheduler design and comparison, as well as helping HPC cen-
ters to better understand the characteristics of workload and user community.
For the highly-utilized petascale academic Kraken supercomputer, the most im-
portant observations and conclusions are reiterated as follows, according to the
order they are discussed in the paper:

– Jobs are not uniformly distributed over research fields and users, and several
users from a few research fields usually dominate the job submissions.

– The distributions of jobs over queues are very similar in different research
fields. Thus, the same multinomial distribution can be applied, in all research
fields, to model how jobs distribute over queues.

– Users with large job submissions generally have more HPC knowledge than
users only with small job submissions. However, in general, the job runtime
estimate is shown to be highly inaccurate.

– The Kraken workload does not show stationary patterns over a month or a
year. But the workload exhibits obvious patterns in weekly or daily cycles.

– Due to the strong similarity between the patterns of overall job inter-arrival
time and inter-arrival time of the jobs submitted by a user, a single statistical
model is enough to represent the distributions of job inter-arrival time.

– Backfilling policy is important for a petascale supercomputer to enable small
jobs to run effectively, which take over 80% job submissions in Kraken.



– The distributions of job queuing time and actual runtime on a multi-queue
petascale supercomputer cannot be modeled with a single distribution. Gaus-
sian mixture models perform well on modeling the log-scaled attributes.

– Job actual runtime is positively correlated with job queuing time, and neg-
atively correlated with job size. Job memory usage has positive correlation
with job size. Job queuing time can be considered independent with job size
and memory usage. Job actual runtime and memory usage are also statisti-
cally independent.
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