
On Identifying User Session Boundaries

in Parallel Workload Logs

Netanel Zakay Dror G. Feitelson

School of Computer Science and Engineering
The Hebrew University of Jerusalem

91904 Jerusalem, Israel

Abstract. The stream of jobs submitted to a parallel supercomputer is
actually the interleaving of many streams from different users, each of
which is composed of sessions. Identifying and characterizing the sessions
is important in the context of workload modeling, especially if a user-
based workload model is considered. Traditionally, sessions have been
delimited by long think times, that is, by intervals of more than, say, 20
minutes from the termination of one job to the submittal of the next job.
We show that such a definition is problematic in this context, because
jobs may be extremely long. As a result of including each job’s execution
in the session, we may get unrealistically long sessions, and indeed, users
most probably do not always stay connected and wait for the termination
of long jobs. We therefore suggest that sessions be identified based on
proven user activity, namely the submittal of new jobs, regardless of how
long they run.

1 Introduction

There has recently been increased interest in user-based workload models for
parallel supercomputers [16, 11–13]. Such models are generative in nature. This
means that instead of modeling the statistical properties of the workload, as was
done for example by Jann et al. and Lublin and Feitelson [3, 5], they model the
process by which the workload is generated. As jobs are submitted by users, this
implies the need to model user behavior.

The motivation for using generative user-based workload models is that such
models enable us to include feedback effects in performance evaluations. The
stream of jobs submitted to a parallel supercomputer is the result of an inter-
action between the system and its users. If the system is responsive, users will
submit more jobs. If it performs poorly, users may depart in frustration and
refrain from submitting more jobs. When we evaluate the performance of a new
scheduler design, we need to include such feedback and its effect on user behavior
[11, 13].

An important characteristic of user behavior is its temporal pattern. Human
users may work for some time, but then they stop and do something else. The
periods of continuous work are called sessions. There are usually many more
user sessions during the day than during the night or weekend, leading to the

creation of an overall daily and weekly cycle of activity. Understanding how such
patterns are generated is a basic component in defining a generative workload
model.

Data about user behavior is contained in accounting logs from existing paral-
lel machines, such as those that are available in the Parallel Workloads Archive
[9]. Unfortunately, these logs only include data about individual jobs: when the
job was submitted, when it started to run and when it terminated, how many
processors it used, etc. Importantly, we usually also know the identity of the
user who submitted the job (or at least anonymized identity, in the interest of
preserving privacy). But we do not know when the user started or ended each
session. If we want to characterize this behavior, we need to glean this data based
on the pattern of job submissions.

The common approach to extracting session data is based on the assumption
that users typically wait to see the results of their jobs, and then submit addi-
tional jobs. Thus the user session extends from the submittal of some job till the
termination of that or some later job. Zilber at al. have suggested that breaks
of 20 minutes or more between successive jobs indicate a session break [16], and
others have followed this definition [12].

The problem with this definition is that parallel jobs may be very long.
In some logs we even observe jobs that run for multiple days. Obviously it is
unreasonable to expect the user to remain active for such a long time waiting for
the job to terminate. And indeed we find that sessions defined according to the
above definition may be much longer than is reasonable. We therefore suggest
an alternative approach, whereby sessions are defined based on only explicit user
activity, namely the submittal of new jobs. The times at which the jobs terminate
are ignored.

A basic problem with this line of research is that ground truth is not available
for comparison. In other words, we do not really know when users started or
ended their sessions. We therefore need to make qualitative judgments. Our
main criterion is to look at the distribution of session lengths that is generated
by the analysis, and to reject methods that lead to distributions with obvious
deficiencies (such as sessions that extend over more than a week).

The next section describes the technical details of how sessions may be
defined according to different approaches. Section 3 discusses the selection of
threshold values used to identify session breaks. Section 4 shows how we can
use the distribution of generated sessions to select among two competing ap-
proaches for how to apply the threshold. Section 5 identifies some problems that
occur when using inter-arrival times rather than think times. Finally, Section 6
introduces the notion of using the generated session lengths as a criterion for
accepting or rejecting different approaches.

2 Definition of Sessions and Batches

Intuitively, a session is a period of continuous work by a user. This does not
mean that the user was active 100% of the session’s time. A user may run a job

to completion, think about the result, and then run another job, all within the
same session.

The above description seems to imply sequential work, where jobs in a session
never overlap. Empirical evidence from parallel supercomputer job logs shows
that this is clearly not always the case, and jobs may overlap. Given such an
overlap, the later job cannot depend on the earlier one. Following Shmueli, we
call a set of such independent, overlapping jobs a batch [11]. Thus a session may
contain several batches in sequence, and each batch may contain a number of
jobs. The interval between batches is called the think-time, or TT.

Finding the batches and the sessions of the users is a basic requirement in
order to understand and analyze their behavior. However, activity logs do not
contain explicit information about neither the sessions nor the batches. There-
fore, we need to estimate them based on the data that the logs do contain. The
most relevant information is the job arrival times (also called submit times) and
the job end times. For job i, we will denote these as J [i].arr and J [i].end.

2.1 Definitions Based on Think Times

Assume we scan the jobs in a log one by one. As each job is considered, the
question is whether it belongs to the previous session or batch, or starts a new
session or batch. The simplest and most commonly used approach makes this
decision based on the think time, namely the interval from the termination of
one job to the submittal of the next1:

1. If the think time is negative, the job overlaps the current batch and therefore
belongs to this batch.

2. If the think time is positive but below the session threshold, the job starts a
new batch in the same session as the previous batch. (We discuss the value
of the session threshold in Section 3.)

3. Otherwise, the job starts a new batch in a new session.

Note, however, that we need to be precise regarding how we measure the think
time, and in particular, exactly what job end time do we use as a reference point.
There are two possibilities:

– The end time of the last job that was submitted. With this approach, the
think time of job i will be calculated as

TTLast = J [i].arr − J [i− 1].end

Hereafter we denote this approach by Last.
– The maximal end time among all previous jobs. In this case, the think time

is calculated as
TTMax = J [i].arr −max

j<i
J [j].end

This approach will be denoted by Max.

1 Recall that the conceptual model is that the user submits a job, waits for it to
terminate, and then thinks about the result before submitting the next job.

To appreciate the difference, consider a sequence of 3 jobs. Job 1 is very long.
Job 2 is short and ends much before job 1 ends. Job 3 arrives after job 2 ended,
but still overlaps job 1. In this situation all 3 jobs will be in the same batch
based on Max, but job 3 will start a new batch based on Last. This is illustrated
in Figure 1.

Last

Max

Arrival Time

Time

Time

Time

Fig. 1. Batches according to the three approaches: Last, Max, and Arrival.

2.2 Definition Based on Inter-Arrival Times

Another approach to define sessions is according to the arrival times of the jobs,
or rather, the inter-arrivals (to be denoted by Arrival). In this approach, the
current job would belong to the same session as previous jobs if it arrives up
to the session threshold time after the arrival of the previous job in the session.
In other words, if the inter-arrival time is longer than the session threshold,
we decide that this represents a session break. Once the jobs are partitioned
into sessions using this approach, we partition each such session into batches
according to the Max approach.

An example showing the effect of this procedure is shown in Figure 1. The
four jobs in the middle all overlap, and are considered to be the same batch by
both Last and Max. But there is a relatively large gap between the arrival of the
first pair and the arrival of the second pair. If this gap is bigger than the session

threshold, the two pairs will be in different sessions according to Arrival, and as
a result also in different batches.

The reason for using Max to partition a session into batches is as follows.
Consider how the end of a batch is defined. If batch A comes a certain TT after
batch B according to Max, then it will start only TT time after all the jobs in
B are finished. But according to Last, it will start TT time after the last job
in B has finished, while other jobs from B may still be running. Shmueli indeed
used the last job as the critical one [13]. However, this definition is problematic,
because it means that the future activity of the user depends only on the last
job in each batch, while the other jobs don’t effect the future activity at all. This
seems very unrealistic. A simple example of the problem is that it is very easy to
create a scheduler that reduces both the user’s wait-times and the overall system
utilization by running the last job of each user last, thereby causing the user to
wait a long time before submitting more jobs. Alternatively, one can construct a
scheduler that would increase both the wait-times and the utilization by handling
the last job of each user first. To avoid such problems, we prefer Max.

We note that Max creates a sequence of batches with no overlaps. In Last they
may overlap, but the dependencies between batches are still a linear sequence.
In Arrival a batch may depend on multiple earlier batches.

In the area of parallel supercomputer workloads, the common way to define
sessions uses the end time (meaning Last or Max). For example Zilber et al. and
Shmueli use Last [16, 12]. But in other areas, where job durations are extremely
short, it is more common to define sessions based on arrivals. An example is
interactive web use (surfing, searching, or e-commerce) [1, 2, 4, 7, 8, 10, 15]. Of
course, due to the very short time it typically takes to process a request on
the web, requests never overlap. Therefore Last, Max, and Arrival are actually
equivalent in this case.

In the next sections we will discuss the session threshold for each approach
and the influence of the choice of this unique value. Additionally, we will present
a comparison between the Max and Last approaches. Later, we will investigate
the session lengths produced by the different approaches, and conclude that
Arrival is the best approach to use.

3 Selecting a Session Threshold Value

The dominant methodology to extract session data from activity logs is to pos-
tulate a certain threshold value, and assume that breaks in activity which are
longer than this threshold represent a division between separate sessions. Such
a threshold exists in all three approaches: Last, Max, and Arrival. The main dif-
ference between these definitions is the time interval that we compare to the
threshold. In Arrival this interval starts at the arrival of the last job, in Last at
the end of the last job, and in Max at the maximal end time among previous
jobs. The threshold value that is chosen may have a strong effect on the resulting
session properties [1]. In this section we will consider how to select the threshold
value for each approach, and consider its influence on the sessions.

0 50 100 150 200 250 300 350
0

2000

4000

6000

8000

10000

12000

inter arrival time (in minutes)

nu
m

be
r

of
 jo

bs

0 50 100 150 200 250 300 350
0

1000

2000

3000

4000

5000

6000

inter arrival time (in minutes)

nu
m

be
r

of
 jo

bs

Fig. 2. The distribution of inter-arrival time in the SDSC-BLUE and SDSC-DS logs.

As mentioned above, Last and Max are both popular approaches in this area.
Therefore, many previous works have considered the selection of the the thresh-
old value for them. The commonly used value is 20 minutes, because this seems
to capture the majority of think times. For example, Zilber et al. and Shmueli
[16, 12] used this threshold value.

As far as we know, there has been no previous work concerning the selection
of a threshold on inter-arrival times for parallel workloads. Several different
values have been used in the context of web workloads, including 30 minutes
[2, 7], an hour [14], and even two hours [8]. To find what value would make
a suitable threshold for our parallel workloads, we calculated the distribution
of inter-arrival times for different logs available from the Parallel Workloads
Archive [9]. Thus, for each user we found the difference between the arrival
times of each pair of successive jobs. We ignored values that were above a day
(1440 minutes), because such long intervals obviously defy the notion of a single
session. Examples of the resulting distributions are shown in Figure 2. CDFs2

2 The Cumulative Distribution Function (CDF) is the integral of the probability den-
sity function (pdf). For each value x, it gives the probability of observing values that
are smaller than or equal to x. In the case of empirical data, it is the fraction of
samples that are smaller than or equal to x.

0 500 1000 1500
0

0.5

1

inter arrival time (in minutes)

fr
ac

tio
n

of
 jo

bs

0 500 1000 1500
0

0.5

1

inter arrival time (in minutes)

fr
ac

tio
n

of
 jo

bs

Fig. 3. CDFs of inter-arrival times in the SDSC-SP2 and KTH-SP2 logs.

0 50 100 150 200 250 300 350
0.7

0.75

0.8

0.85

0.9

inter arrival time (in minutes)

fr
ac

tio
n

of
 jo

bs

0 50 100 150 200 250 300 350
0.7

0.75

0.8

0.85

0.9

inter arrival time (in minutes)

fr
ac

tio
n

of
 jo

bs

Fig. 4. Zoom in on the CDFs of inter-arrival times for the SDSC-BLUE and SDSC-DS
logs.

are shown in Figure 3 and Figure 4. In all these figures we added a vertical line
at 60 minutes (1 hour), which is the threshold we eventually chose.

Our goal was to find the point in the distribution where the derivative doesn’t
changed much any more. From Figure 2 it appears that any value between ap-
proximately 25 minutes and 200 minutes will be logical. However, for values
below 40 one can still observe an obvious drop in the distribution. This is even
clearer in the CDF (and especially in the figures with zoom in). In the range of
100 to 200 minutes the slope is already very low, and therefore we would prefer a
lower value for the threshold. We concluded that the value ought to be between
40 minutes to 100 minutes. We chose 60 minutes as it is in the middle of this

range and is a round value (one hour). We do not claim this is necessarily the
best value, but it seems that there is no other value that is obviously better.

Selecting a session threshold has a strong impact on the resulting analysis. If
we were to select a higher threshold, jobs with longer intervals will nevertheless
be grouped together. As a result the number of jobs in each session would grow
and the number of sessions would decrease. In the following sections we provide
an in-depth analysis of the implications of the selected session threshold values,
mainly in terms of the distribution of session lengths.

4 Comparing Last and Max Using the Think-Time

Distribution

As we mentioned above, the most common definition of sessions is based on
think times, using Last or Max. In this section we investigate which definition
leads to a more reasonable think time distribution. The problem is that we do not
know what the think time distribution should be. We circumvent this problem as
follows. First, we identify the batches according to both approaches separately,
and calculate the think times. Then we create a list that contains the common
batches (batches that are exactly the same according to both approaches). Based
on this list, we extract the think times following these common batches. This
provides us with two lists of think times: CommonTTMax and CommonTTLast.
Note that the common batch think times may be different because the think
times are defined differently in each approach. In Last, the think time is measured
from the end of the last job, whereas in Max it is the maximal end time of all
jobs. But we expect the distributions to be close, which indeed they are.

Given the agreement on the common batches, and the similarity of their
think time distributions, we take this to represent the “real” distribution of
think times. The remaining think times, that we didn’t put in the common
lists, represent the differences between think times of batches that were created
according to Last and Max. Therefore, we would prefer the approach for which
the distribution of unique think times is similar to the distribution of common
think times.

The resulting distributions are shown in Figure 5. The first obvious conclu-
sion from the graphs is that our expectation that the distributions for common
batches shared by Max and Last would be very close to one another was correct.
It is also quite clear that the distribution for unique batches as identified by
Last is much closer to the common distributions than the distribution for unique
batches as defined by Max. It is true that the distribution for Max is closer for
larger values, but in most of the range, Last is a lot closer. We concluded that
Last creates a more realistic distribution of think times. This supports the use
of Last by Zilber et al. [16], Shmueli [12], and others.

10
0

10
2

10
4

10
6

10
80

0.2

0.4

0.6

0.8

1

think time (in seconds)

 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

Last

Max

commonLast

commonMax

10
0

10
2

10
4

10
6

10
80

0.2

0.4

0.6

0.8

1

think time (in seconds)

 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

Last

Max

commonLast

commonMax

Fig. 5. Comparison between distributions of think times in the SDSC-BLUE and
SDSC-DS logs.

5 Artifacts in the Distribution of Session Lengths with

Arrival

According to the work of Mehrzadi, using the Arrival approach may lead to
artifacts in the distribution of session durations [6]. Specifically, he shows that
in web search data the distribution of session lengths exhibits a pronounced drop
exactly at the threshold value that was used to define the sessions. In order to
check this, we examined the distribution of session durations for each of the three
approaches. Due to the large number of very short sessions, we ignore sessions
of up to 2 minutes. The results are shown in Figure Figure 6 for Last, Figure 7
for Max, and 8 for Arrival.

Upon examination of the graphs, we found that Last and Max behave very
similarly, but Arrival is indeed different. According to the Max and Last ap-
proaches, the distribution of session lengths is essentially the same for different
threshold values. The difference in heights is due to the fact that larger thresh-
olds lead to a smaller number of sessions, but the behavior of each graph is the
same. In addition, for all values, there are no obvious discontinuities.

In contrast, with the Arrival approach it is easy to notice a sharp drop in
the distribution at the threshold value, exactly as had occurred in Mehrzadi’s

10
0

10
2

10
40

200

400

session length

se
ss

io
ns

 n
um

be
r

10m
20m
60m

10
0

10
2

10
40

500

1000

session length

se
ss

io
ns

 n
um

be
r

10m
20m
60m

Fig. 6. Distribution of session lengths as created by Last, for the KTH-SP2 and SDSC-
SP2 logs.

10
0

10
2

10
40

200

400

session length

se
ss

io
ns

 n
um

be
r

10m
20m
60m

10
0

10
2

10
40

500

1000

session length

se
ss

io
ns

 n
um

be
r

10m
20m
60m

Fig. 7. Distribution of session lengths as created by Max, for the KTH-SP2 and SDSC-
SP2 logs.

10
0

10
2

200

400

600

800

1000

session length
se

ss
io

ns
 n

um
be

r

10m
20m
60m

10
0

10
2

10
40

500

1000

session length

se
ss

io
ns

 n
um

be
r

10m
20m
60m

Fig. 8. Distribution of session lengths as created by Arrival, for the KTH-SP2 and
SDSC-SP2 logs. Arrows denote threshold values.

data. In particular, each specific threshold value changes the distribution of
session lengths in a different way (see arrows). However, this effect is reduced
when we increase the value of the threshold. This is more evident in Figure 9.
In this figure we ignored all session lengths below 9 minutes, and present the
histogram without any connecting lines for clarity. With a 10 minute threshold
the discontinuity is very significant. For 20 minutes the discontinuity is smaller
(but still noticeable). With 60 minutes the drop becomes a step. It is worth
mentioning that in some logs (although not in most) there is a clearer drop for
60 minutes, yet rather less dramatic than for 20.

In conclusion, we find that the Arrival approach is sensitive to the threshold
value, although with large values (like the one we chose) the effect is rather
small.

6 The Problem of Very Long Sessions

The graphs in Figures 6 and 7 show that with Last and Max most sessions
are short, and few sessions are very long, possibly unrealistically so. However,
it is impossible to see the details. In order to emphasize the long sessions we
calculated the survival function3, and present the results in Figure 10. This
shows that when using the Last approach, approximately 13.5% of the session

3 The survival function is the complement to the CDF: for each value x, it gives the
probability of observing values that are larger than x.

10
0

10
1

10
2

10
30

100

200

300

session length

se
ss

io
ns

 n
um

be
r

10
0

10
1

10
2

10
30

50

100

150

200

session length

se
ss

io
ns

 n
um

be
r

10
0

10
1

10
2

10
30

50

100

session length

se
ss

io
ns

 n
um

be
r

Fig. 9. Detailed view of discontinuities in the histogram of session lengths, using the
Arrival approach, with thresholds of 10m (top), 20m (middle), and 60m (bottom), for
the KTH-SP2 log.

lengths are longer than 103 minutes (16 hours) in the SDSC-BLUE log, and
17.7% are longer than this value in the SDSC-DS log. With the Max approach,
the percentages are a little higher: 15% in SDSC-BLUE and 19.5% in SDSC-
SP2. In addition, one may notice that the maximum session length is above 105

minutes (approximately 70 days) in both logs.

Recall that a session is supposed to represent the time period when the user is
active at the computer (the interval from when the user begins to work and until

10
0

10
1

10
2

10
3

10
4

10
5

10
610

−5

10
−4

10
−3

10
−2

10
−1

10
0

su
rv

iv
al

 p
ro

ba
bi

lit
y

sessions length

Last

Max

10
0

10
1

10
2

10
3

10
4

10
5

10
610

−5

10
−4

10
−3

10
−2

10
−1

10
0

su
rv

iv
al

 p
ro

ba
bi

lit
y

sessions length

Last
Max

Fig. 10. The survival function of session lengths in the SDSC-BLUE and SDSC-SP2
logs, using log-log axes.

he is done working). Therefore, session lengths above 104 minutes are impossible.
In addition, even sessions of 16 hours are not reasonable. It should be very rare
that a user would work this long continuously, yet still the results show that
more than 13% of the sessions are that long. This is very unlikely.

The reason both approaches create sessions that are far too long so many
times is that both are based on a wrong assumption. This is the assumption
that all work is interactive. With interactive work, it is reasonable to assume
that the users wait for the termination of each job, think for a while, and then
send the next jobs. But on parallel supercomputers at least some of the work is
not interactive. In particular, this is the case for very long jobs that run for many
hours or even days. Including these very long jobs within the session, as is done
by both Last and Max, then leads to unrealistically long sessions. For example,
if a user sends out a job that takes 5 days, and after 3 days sends another job
to the system, both approaches will put these two jobs into the same session,
although the user most probably wasn’t active in the system this whole time.
The same problem may also occur on a smaller scale of a hew hours. If there
are jobs that run during a break in the user’s activity in the middle of the day
(for example, during meetings or lunch), these jobs may overlap new work done

after the user returns. Therefore, instead of a few short sessions of a couple of
hours scattered along the day, we would get one long session — from the first
job the user submits in the morning until after he goes home at night.

In order to avoid such problems, we suggest alternative versions of Last and
Max which we call Last+Cut and Max+Cut. In these versions we define a new
threshold value, called the Cut. Then, we use each job’s arrival time plus Cut as
its effective end time, instead of using the real end time, provided it is shorter.
This means that if a job ends within Cut time from its arrival, we measure the
think time from its end time without change. Otherwise, we use its arrival time
+ Cut as the start of the think time. Assuming a session threshold of T minutes
we then have:

– Last+Cut: A job will belong to the current batch if it arrives before the
arrival time of the last job + Cut + session-threshold (or the end time +
session-threshold):

J [i].arr ≤ min{ J [i− 1].end, J [i− 1].arr + Cut }+ T

– Max+Cut: A job will belong to the current batch if it arrives before the
maximum of the arrival times of all the jobs in the batch + Cut + session-
threshold (or with end times):

J [i].arr ≤ max
j<i

[min{ J [j].end, J [j].arr + Cut }] + T

The results of using these approaches are shown in Figure 11. We checked
three different values for Cut: 30 minutes, 1 hour, and 2 hours. (Last, Max,
and Arrival are also included for comparison.) As expected, in all 3 cases the
problem of overly long sessions is largely eliminated. Also, the difference between
Max+Cut and Last+Cut with the same threshold is very marginal. Therefore we
will distinguish between the Cut approaches only according to the threshold. In
the SDSC-BLUE log, the fraction of sessions longer than 103 is a little more
than 10−3 with a large Cut value of 2 hours, but with 1 hour or 30 minutes this
fraction is only a little higher than 10−4 (approximately 10−3.9). In the SDSC-
SP2 log, this fraction is approximately 10−3.4 with a 2 hours Cut, 10−3.7 with
1 hour, and 10−3.9 with 30 minutes. The value of the maximum session length
is also dramatically decreased in the Cut approaches: down to 2600 minutes (43
hours) in the SDSC-BLUE log and less than 2000 minutes (33 hours) in the
SDSC-SP2 log.

The conclusion is that the Cut approach creates more realistic session lengths.
The longest sessions still seem to be too long, lasting nearly 2 days, but still this
is much better than the sessions that last for more than 2 months we had before.
While unreasonable for humans, such long sessions may be due to a short script
or a number of people who might have replaced each other on the computer,
sending the jobs through the same user name. In addition, the percentage of
long sessions has dropped. Only a very small percentage of the sessions were
more than 1000 minutes (16 hours) long, in comparison to 13% or more with
the original Last and Max.

10
0

10
1

10
2

10
3

10
4

10
5

10
610

−5

10
−4

10
−3

10
−2

10
−1

10
0

session length (in minutes)

su
rv

iv
al

 p
ro

ba
bi

lit
y

Arrival

Last

MAX

Last With 30M−cut

Max with 30M−cut

Last With 1H−cut

Max with 1H−cut

Last With 2H−cut

Max with 2H−cut

10
0

10
1

10
2

10
3

10
4

10
5

10
610

−5

10
−4

10
−3

10
−2

10
−1

10
0

session length (in minutes)

su
rv

iv
al

 p
ro

ba
bi

lit
y

Arrival

Last

MAX

Last With 30M−cut

Max with 30M−cut

Last With 1H−cut

Max with 1H−cut

Last With 2H−cut

Max with 2H−cut

Fig. 11. The survival function of session lengths according to all the different ap-
proaches, for the SDSC-BLUE log and the SDSC-SP2 log.

However, although the length of the sessions in the Cut approaches are more
realistic, the effect of the Cut value on the distribution is enormous: There is a
very sharp drop in the graph at the point of the Cut value. In order to examine
this effect, we created histograms of the session lengths generated by Last+Cut

and Max+Cut. These are presented in Figure 12. It is easy to see that the Cut
values produce a very significant mode in the distributions. The reason for these
modes is as follows. For all the sessions with one job, if the job ends before the
Cut value, the length will be the end time minus the arrival time. This part of
the distribution will be continuous. But if the job ends after the Cut Value, the
length will be the equal to the Cut value. Therefore, many sessions will receive
the Cut value length.

The bottom line is that Last and Max remain problematic. In the original ver-
sion, they create sessions that are way too long. Introducing the Cut heuristic
leads to a strong artifact in the distributions of session lengths. Hence, the only
logical approach is to use the Arrival approach. It is equivalent to the Cut ap-

10
0

10
2

10
40

5000

10000

15000

session length

se
ss

io
ns

 n
um

be
r

30m
1h
2h

10
0

10
1

10
2

10
30

2000

4000

6000

session length

se
ss

io
ns

 n
um

be
r

30m
1h
2h

10
0

10
2

10
40

5000

10000

15000

session length

se
ss

io
ns

 n
um

be
r

30m
1h
2h

10
0

10
1

10
2

10
30

2000

4000

6000

session length

se
ss

io
ns

 n
um

be
r

30m
1h
2h

Fig. 12. Histograms of session lengths generated by Last+Cut (top) and Max+Cut

(bottom) using the SDSC-DS and KTH-SP2 logs (left and right).

proach, where Cut=0, and with a larger session-threshold (60m instead of 20m).
(Note that if the Cut value is 0, then Max+Cut is equivalent to Last+Cut.)

The Arrival approach produces realistic session lengths similar to the Cut
approaches, But in addition, the distribution is smooth with no modes that de-
pend on parameter values. Therefore, it seems that this approach creates the
most sensible distribution of session lengths. We conclude that the Arrival ap-
proach, especially with a relatively long session threshold of 1 hour, is the most
promising approach to delimit sessions.

7 Results with the Arrival Approach

Due to the fact that it is innovative and uncommon to use the Arrival approach
to define sessions in parallel workloads, we present a few details and distributions
of sessions and batches.

First, we present the number of jobs, batches, and sessions in Table 1. In all
of the logs the ratios are very similar. On average, the number of jobs is a little
less than twice the number of batches, and the number of batches is a little less

Log Jobs Batches Sessions

SDSC-SP2 54,051 32,614 18,730
SDSC-DS 85,003 41,679 24,294
KTH-SP2 28,489 16,488 10,303
SDSC-BLUE 223,407 136,460 58,311

Table 1. Number of jobs, batches, and sessions in the main logs.

10
0

10
1

10
2

10
30

0.5

1

number of batches in a session

 c
um

ul
at

iv
e

fr
ac

tio
n

 o
f s

es
si

on
s

KTH

BLUE

SDSC−SP2

SDSC−DS

Fig. 13. CDF of the number of batches in a session.

10
0

10
1

10
2

10
30

0.5

1

number of processes in a batch

 c
um

ul
at

iv
e

fr
ac

tio
n

 o
f b

at
ch

es

KTH

BLUE

SDSC−SP2

SDSC−DS

Fig. 14. CDF of the number of jobs in a batch.

10
0

10
1

10
2

10
30

0.5

1

number of processes in a session

 c
um

ul
at

iv
e

fr
ac

tio
n

 o
f s

es
si

on
s

KTH
BLUE
SDSC−SP2
SDSC−DS

Fig. 15. CDF of the number of jobs in a session.

than twice the number of sessions. Additional data on batches and sessions are
presented in Figure 13, Figure 14, and Figure 15. A very important observation
is that generally more than 50% of the sessions and 75% of the batches contain
only one job. This means that when users work with supercomputers, most of
the time they send out a single job and then stop their interaction with the
computer for a while. However, it is important to note that some sessions have
very many jobs, so the distribution is skewed, and most jobs do not constitute
single-job sessions.

8 Conclusions

A summary of the methods that can be used to identify sessions when analyzing
parallel workloads is given in Table 2.

Approach Issues

Last

Max

}

excessively long sessions

Last+Cut

Max+Cut

}

strong peak at cut value

Arrival peak at threshold value
many zero-length sessions

Table 2. Summary of approaches and their effect on the session length distribution.

The most common approach is to use the Last and Max approaches. These
approaches are based on setting a threshold on think times: if the think time is
long, this is assumed to be a break between sessions. However, these approaches
occasionally cause extremely long sessions, due to the fact that some of the jobs
running on such systems are extremely long.

A possible improvement is to use Last+Cut or Max+Cut. This eliminates
the very long sessions, at the price of producing a strong peak in the distribu-
tion of session length at the value of the cut threshold being used. This is also
undesirable.

The alternative is to use the Arrival approach, as in commonly done in other
domains, such as the analysis of web workloads. In this approach, inter-arrival
times are used. If the inter-arrival is longer than some threshold, a session break
is assumed. The main problem with this approach is that long sessions may not
be identified correctly, and again a peak in the distribution is created at the
value of the threshold being used. However, the size of this peak decreases with
increasing threshold values. We suggest to use a threshold of 1 hour. With such
a threshold the peak in the distribution of session lengths is very small.

The obvious deficiency with the above is that it is based on common sense,
not on data. A desirable avenue for future work is therefore to conduct a user
study in which the actual activity patterns of users are followed, and this is
correlated with their job submittal patterns.

Acknowledgments

Many thanks to all those who have made their workload data available through
the Parallel Workloads Archive.

References

1. M. Arlitt, “Characterizing web user sessions”. Performance Evaluation Rev. 28(2),
pp. 50–56, Sep 2000.

2. D. Downey, S. Dumais, and E. Horvitz, “Models of searching and browsing: Lan-

guages, studies, and applications”. In 20th Intl. Joint Conf. Artificial Intelligence,
pp. 1465–1472, Jan 2007.

3. J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Riodan, “Modeling

of workload in MPPs”. In Job Scheduling Strategies for Parallel Processing, pp.
95–116, Springer Verlag, 1997. Lect. Notes Comput. Sci. vol. 1291.

4. B. J. Jansen, A. Spink, C. Blakely, and S. Koshman, “Defining a session on web

search engines”. J. Am. Soc. Inf. Sci. & Tech. 58(6), pp. 862–871, Apr 2007.

5. U. Lublin and D. G. Feitelson, “The workload on parallel supercomputers: Mod-

eling the characteristics of rigid jobs”. J. Parallel & Distributed Comput. 63(11),
pp. 1105–1122, Nov 2003.

6. D. Mehrzadi and D. G. Feitelson, “On extracting session data from activity logs”.
In 5th Intl. Syst. & Storage Conf., Jun 2012.

7. D. A. Menascé, V. A. F. Almeida, R. Riedi, F. Ribeiro, R. Fonseca, and
W. Meira Jr., “A hierarchical and multiscale approach to analyze E-business work-

loads”. Performance Evaluation 54(1), pp. 33–57, Sep 2003.

8. A. L. Montgomery and C. Faloutsos, “Identifying web browsing trends and pat-

terns”. Computer 34(7), pp. 94–95, Jul 2001.

9. “Parallel workloads archive”. URL http://www.cs.huji.ac.il/labs/parallel/workload/.

10. B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open versus closed: A cau-

tionary tale”. In 3rd Networked Systems Design & Implementation, pp. 239–252,
May 2006.

11. E. Shmueli and D. G. Feitelson, “Using site-level modeling to evaluate the per-

formance of parallel system schedulers”. In 14th Modeling, Anal. & Simulation of

Comput. & Telecomm. Syst., pp. 167–176, Sep 2006.

12. E. Shmueli and D. G. Feitelson, “Uncovering the effect of system performance on

user behavior from traces of parallel systems”. In 15th Modeling, Anal. & Simula-

tion of Comput. & Telecomm. Syst., pp. 274–280, Oct 2007.

13. E. Shmueli and D. G. Feitelson, “On simulation and design of parallel-systems

schedulers: Are we doing the right thing?” IEEE Trans. Parallel & Distributed

Syst. 20(7), pp. 983–996, Jul 2009.

14. E. Shriver and M. Hansen, Search Session Extraction: A User Model of Searching.
Tech. rep., Bell Labs, Jan 2002.

15. C. Silverstein, M. Henzinger, H. Marais, and M. Moricz, “Analysis of a very large

web search engine query log”. SIGIR Forum 33(1), pp. 6–12, Fall 1999.

16. J. Zilber, O. Amit, and D. Talby, “What is worth learning from parallel workloads?

a user and session based analysis”. In 19th Intl. Conf. Supercomputing, pp. 377–
386, Jun 2005.

