
Hierarchical Scheduling of DAG Structured

Computations on Manycore Processors with

Dynamic Thread Grouping⋆

Yinglong Xia1, Viktor K. Prasanna2,1 and James Li2

Department of Computer Science1

Ming Hsieh Department of Electrical Engineering2

University of Southern California, Los Angeles, CA 90089, U.S.A.

{yinglonx,prasanna,jamesyli}@usc.edu

Abstract. Many computational solutions can be expressed as directed acyclic

graphs (DAGs) with weighted nodes. In parallel computing, scheduling such

DAGs onto manycore processors remains a fundamental challenge, since syn-

chronization across dozens of threads and preserving precedence constraints can

dramatically degrade the performance. In order to improve scheduling perfor-

mance on manycore processors, we propose a hierarchical scheduling method

with dynamic thread grouping, which schedules DAG structured computations

at three different levels. At the top level, a supermanager separates threads into

groups, each consisting of a manager thread and several worker threads. The su-

permanager dynamically merges and partitions the groups to adapt the scheduler

to the input task dependency graphs. Through group merging and partitioning, the

proposed scheduler can dynamically adjust to become a centralized scheduler, a

distributed scheduler or somewhere in between, depending on the input graph.

At the group level, managers collaboratively schedule tasks for their workers. At

the within-group level, workers perform self-scheduling within their respective

groups and execute tasks. We evaluate the proposed scheduler on the Sun Ultra-

SPARC T2 (Niagara 2) platform that supports up to 64 hardware threads. With

respect to various input task dependency graphs, the proposed scheduler exhibits

superior performance when compared with other various baseline methods, in-

cluding typical centralized and distributed schedulers.

Key words: Manycore processor, hierarchical scheduling, thread grouping

1 Introduction

Given a program, we can represent the program as a directed acyclic graph (DAG) with

weighted nodes, in which the nodes represent code segments, and edges represent de-

pendencies among the segments. An edge exists from node v to node ṽ if the output

from the code segment performed at v is an input to the code segment at ṽ. The weight

of a node represents the (estimated) execution time of the corresponding code segment.

⋆ This research was partially supported by the National Science Foundation under grant number

CNS-0613376. NSF equipment grant CNS-0454407 is gratefully acknowledged.

2 Yinglong Xia1, Viktor K. Prasanna2,1 and James Li2

Such a DAG is called a task dependency graph, and the computations that can be repre-

sented as task dependency graphs are called DAG structured computations [2, 12]. The

objective of task scheduling for DAG structured computations on manycore processors

is to minimize the overall execution time by proper allocation of the tasks to concurrent

threads, while preserving the precedence constraints among the tasks [12, 21].

Scheduling DAG structured computations on manycore processors is a fundamental

challenge in parallel computing nowadays. The trend in architecture design is to in-

tegrate more and more cores onto a single chip to achieve higher performance. Such

architectures are known as manycore processors. Examples of existing manycore pro-

cessors include the Sun UltraSPARC T1 (Niagara) and T2 (Niagara 2), which support

up to 32 and 64 concurrent threads, respectively [16]. The Nvidia Tesla and Tilera

TILE64 are also available. More manycore processors are emerging soon, such as the

Sun Rainbow Falls, IBM Cyclops64 and Intel Larrabee [18]. Such processors are more

interested in how many tasks from a DAG can be completed efficiently over a period of

time rather than how quickly an individual task can be completed.

Our contributions in this paper include: (a) We propose a hierarchical schedul-

ing method which schedules DAG structured computations at three different levels on

manycore systems. (b) We propose a dynamic thread grouping technique to merge or

partition the thread groups at run time, so that the proposed scheduler can dynamically

adjust to become a centralized scheduler, a distributed scheduler or somewhere in be-

tween, depending on the input graph. (c) We implement the hierarchical scheduling

method on the Sun UltraSPARC T2 (Niagara 2) platform. (d) We conduct extensive

experiments to validate the proposed method.

The rest of the paper is organized as follows: In Section 2, we review the background

and related work. Section 3 presents the hierarchical scheduling scheme. We illustrate

experimental results in Section 4 and address the future research in Section 5.

2 Background and Related Work

In this paper, the input to task scheduling is a directed acyclic graph (DAG), where each

node represents a task and each edge corresponds to precedence constraints among

the tasks. Each task in the DAG is associated with a weight, which is the estimated

execution time of the task. A task can begin execution only if all of its predecessors

have been completed [1]. The task scheduling problem is to map the tasks to the threads

in order to minimize the overall execution time on parallel computing systems. Task

scheduling is in general an NP-complete problem [8, 15]. We consider scheduling an

arbitrary DAG with given task weights and decide the mapping and scheduling of tasks

on-the-fly. The goal of such dynamic scheduling includes not only the minimization of

the overall execution time, but also the minimization of the scheduling overhead [12].

The scheduling problem has been extensively studied for several decades [2, 4, 12,

17]. Early algorithms optimized scheduling with respect to the specific structure of

task dependency graphs [7], such as a tree or a fork-join graph. In general, however,

programs come in a variety of structures [12]. Karamcheti and Chien studied hierar-

chical load balancing framework for multithreaded computations for employing var-

ious scheduling policies for a system [10]. Recent research on scheduling DAGs in-

Title Suppressed Due to Excessive Length 3

cludes [20] where the authors studied the problem of scheduling more than one DAG

simultaneously onto a set of heterogeneous resources, and [2] where Ahmad proposed

a game theory based scheduler on multicore processors for minimizing energy con-

sumption. Dongarra et al. proposed dynamic schedulers optimized for some linear al-

gebra problems on general-purpose multicore processors [17]. Scheduling techniques

have been proposed by several emerging programming systems such as Cilk [5], Intel

Threading Building Blocks (TBB) [9], OpenMP [14], Charm++ [6] and MPI micro-

tasking [13], etc. All these systems rely on a set of extensions to common imperative

programming languages, and involve a compilation stage and runtime libraries. These

systems are not optimized specifically for scheduling DAGs on manycore processors.

For example, Dongarra et al. showed that Cilk is not efficient for scheduling workloads

in dense linear algebra problems on multicore platforms [11]. In contrast with these

systems, we focus on scheduling for DAGs on manycore processors.

To design an efficient scheduler we must take into account the architectural char-

acteristics of processors. Almost all the existing manycore processors have relatively

simple cores, compared with general-purpose multicore processors, e.g., AMD Opteron

and Intel Xeon. For example, the pipeline of the UltraSPARC T2 does not support out of

order (OoO) execution and therefore results in a longer delay. However, the fast context

switch of such processors overlaps such delays with the execution of another thread. For

this reason, the UltraSPARC generally shows higher throughput when enough parallel

tasks are available [16].

Directly utilizing traditional scheduling methods such as centralized or distributed

scheduling can degrade the performance of DAG structured computations on manycore

processors. Centralized scheduling has a single thread to allocate tasks, which may not

be able to serve the rest of the threads in time. This leads to starvation of some threads,

especially when the tasks can be completed quickly. On the other hand, distributed

scheduling requires many threads to schedule tasks. This limits the resources for task

execution. In addition, many schedulers accessing shared variables can result in costly

synchronization overhead. Therefore, an efficient scheduling method on manycore pro-

cessors must be able to adapt itself to input task dependency graphs. To the best of

our knowledge, no scheduling algorithm for DAG structured computations has been

proposed specifically on manycore processors such as the UltraSPARC T2.

3 Hierarchical Scheduling

3.1 Organization

The input graph is represented by a list called the global task list (GL). Figure 1(a)

shows a portion of the task dependency graph. Figure 1(b) shows the corresponding

part of the GL. As shown in Figure 1(c), each element in the GL consists of task ID,

dependency degree, task weight, successors and the task meta data (e.g. application spe-

cific parameters). The task ID is the unique identity of a task. The dependency degree of

a task is initially set as the number of incoming edges of the task. During the scheduling

process, we decrease the dependency degree of a task once a predecessor of the task is

processed. The task weight is the estimated execution time of the task. We keep the

task IDs of the successors along with each task to preserve the precedence constraints

4 Yinglong Xia1, Viktor K. Prasanna2,1 and James Li2

of the task dependency graph. When we process a task Ti, we can locate its successors

directly using the successor IDs, instead of traversing the entire list. In each element,

we have task meta data, such as the task type and pointers to the data buffer of the task,

etc. The GL is shared by all the threads.

Fig. 1. (a) A portion of a task dependency graph. (b) The corresponding representation of the

global task list (GL). (c) The data of element Ti in the GL.

We illustrate the components of the hierarchical scheduler in Figure 2. The boxes

with rounded corners represent thread groups. Each group consists of a manager thread

and several worker threads. The manager in Group0 is also the supermanager. The

components inside of a box are private to the group; while the components out of the

boxes are shared by all groups.

The global ready list (GRL) in Figure 2 stores the IDs of tasks with dependency

degree equal to 0. These tasks are ready to be executed. During the scheduling process,

a task is put into this list by a manager thread once the dependency degree of the task

becomes to 0.

Fig. 2. Components of the hierarchical

scheduler.

The local ready list (LRL) in each

group stores the IDs of tasks allocated to

the group by the manager of the group.

The workers in the group fetch tasks

from LRL for execution. Each LRL is as-

sociated with a workload indicator (WI)

to record the overall workload of the

tasks currently in the LRL. Once a task is

inserted into (or fetched from) the LRL,

the indicator is updated.

The local completed task list (LCL)

in each group stores the IDs of tasks com-

pleted by a worker thread in the group.

The list is read by the manager thread in

the group for decreasing the dependency

degree of the successors of the tasks in

the list.

The arrows in Figure 2 illustrate how each thread accesses a component (read or

write). As we can see, GL and GRL are shared by all the managers for both read and

Title Suppressed Due to Excessive Length 5

write. For each group, the LRL is write-only for the manager and read-only for the

workers; while LCL is write-only for the workers and read-only for the manager. WI is

local to the manager in the respective group only.

3.2 Dynamic Thread Grouping

The scheduler organization shown in Figure 2 supports dynamic thread grouping, which

means that the number of threads in a group can be adjusted at runtime. We adjust

groups by either merging two groups or partitioning a group. The proposed organization

ensures efficient group merging and partitioning.

Figure 3(a) illustrates the merging of Groupi and Groupj , i < j. The two groups

are merged by converting all threads of Groupj into the workers of Groupi and merging

WIs, LCLs and LRLs accordingly. Converting threads of Groupj into the workers of

Groupi is straightforward: Managerj stops allocating tasks to Groupj , but performs

self-scheduling as a worker thread. Then, all the threads in Groupj access tasks from

the merged LRL and LCL. To combine WIi and WIj , we add the value of WIj to WIi.

Although WIj is not used after merging, we still keep it updated for the sake of possible

future group partitioning. Merging the lists i.e. LCLs and LRLs is efficient. Note that

both LCL and LRL are circular lists, each having a head and a tail pointer to indicate

the first and last tasks stored in the list, respectively. Figure 3(b) illustrates the approach

to merge two circular lists. We need to update two links only, i.e. the bold arrows shown

in Figure 3(b). None of the tasks stored in the lists are moved or duplicated. The head

and tail of the merged list are Headi and Tailj , respectively. Note that two merged

groups can be further merged into a larger group.

We summarize the procedure in Algorithm 1. Since the queues and weight indica-

tors are shared by several threads, locks must be used to avoid concurrent write. For

example, we lock LRLi and LRLj immediately before Line 1 and unlock them af-

ter Line 3. Algorithm 2 does not explicitly assign the threads in Groupi and Groupj

to Groupk, since this algorithm is executed only by the supermanager. Each thread dy-

namically updates its group information and decides if it should be a manager or worker

(see Algorithm 2).

Groupi and Groupj can be restored from the merged group by partitioning. As a re-

verse process of group merging, group partitioning is also straightforward and efficient.

Due to space limitations, we do not elaborate it here. Group merging and partitioning

can be used for groups with an arbitrary number of threads. We assume the number of

threads per group is a power of two hereinafter for the sake of simplicity.

3.3 Hierarchical Scheduling

Using the proposed data organization, we schedule a given DAG structured computation

at three levels. The top level is called the meta-level, where we have a supermanager to

control group merging/partitioning. At this level, we are not scheduling tasks directly,

but reconfiguring the scheduler according to the characteristics of the input tasks. Such a

process is called meta-scheduling. The supermanager is hosted along with the manager

of Group0 by Thread0. Note that Manager0 can never become a worker as discussed

in Section 3.2.

6 Yinglong Xia1, Viktor K. Prasanna2,1 and James Li2

Fig. 3. (a) Merge Groupi and Groupj . (b) Merge circular lists Listi and Listj . The head (tail)

points to the first (last) tasks stored in the list. The blank elements have no task stored yet.

Algorithm 1 Group merge

Input: Groupi and Groupj .

Output: Groupk = Groupi + Groupj

{Merge LRLi and LRLj}
1: Let LRLj .Head.Predecessor points to LRLi.Tail.Successor
2: Let LRLi.Tail.Successor points to LRLj .Head
3: LRLk.Head = LRLi.Head, LRLk.Tail = LRLj .Tail

{Merge LCLi and LCLj}
4: Let LCLj .Head.Predecessor points to LCLi.Tail.Successor
5: Let LCLi.Tail.Successor points to LCLj .Head
6: LCLk.Head = LCLi.Head, LCLk.Tail = LCLj .Tail

{Merge WIi and WIj}
7: WIk = WIi + WIj

The mediate level is called the group level, where the manager in each group col-

laborates with each other and allocates tasks for the workers in the group. The purpose

of collaborating between managers is to improve the load balance across the groups.

Specifically, the managers ensure that the workload in the local ready lists is roughly

equal for all groups. A manager is hosted by the first thread in a group.

The bottom level is called the within-group level, where the workers in each group

perform self-scheduling. That is, once a worker finishes a task execution and updates

LCL in its group, it fetches a new task, if any, from LRL immediately. Self-scheduling

keeps all workers busy, unless the LRL is empty. Each worker is hosted by a separate

thread.

The hierarchical scheduler behaves between centralized and distributed schedulers,

so that it can adapt to the input task graph. Note that each group consists of a manager

thread and several worker threads. When all the groups are merged into a single group,

the proposed method becomes a centralized scheduler; when multiple groups exist, the

proposed method behaves as a distributed scheduler.

Title Suppressed Due to Excessive Length 7

Fig. 4. The hierarchical relationship between the supermanager, managers and workers, and the

corresponding scheduling schemes.

3.4 Scheduling Algorithm and Analysis

We propose a sample implementation of the hierarchical scheduler presented in Sec-

tion 3.3. Based on the organization shown in Section 3.1, we use the following notations

to describe the implementation: Assume there are P threads, each bound to a core. The

threads are divided into groups consisting of a manager and several workers. GL and

GRL denote the global task list and global ready list, respectively. LRLi and LCLi

denote the local ready list and local completed task list of Groupi, 0 ≤ i < P . dT and

wT represent the dependency degree and the weight of task T , respectively. WIi is the

workload indicator of Threadi. Parameters δM , δ+ and δ− are given thresholds. The

boxes show the statements that access variables shared by all groups.

Algorithm 2 illustrates the framework of the hierarchical scheduler. In Lines 1-3,

thread groups are initialized, each with a manager and a worker, along with a set of

ready-to-execute tasks stored in LRLj , where the overall task weight is recorded in

WIj . A boolean flag fexit in Line 3 notifies if the threads can exit the scheduling iter-

ation (Lines 5-15). rank controls the size of groups: Increasing rank leads to merging

of two adjacent groups; while decreasing rank leads to partitioning of current groups.

rank = 1 corresponds to the minimum group size i.e. two threads per group. Thus, we

have 1 ≤ rank ≤ log P . The group size Q is therefore given by:

Q =
P

2log P−rank
= 2rank (1)

Line 4 in Algorithm 2 starts all the threads in parallel. The threads perform various

scheduling schemes according to their thread IDs. The first thread in each group is a

manager (Line 8). In addition, the first thread in Group0 i.e. Thread 0 performs as the

supermanager (Line 10). The rest of the threads are workers (Line 13). Given thread ID

i, the corresponding group is ⌊i/Q⌋.

Algorithm 3 shows the meta-scheduling method for the supermanager. The algo-

rithm consists of two parts: updating rank (Lines 1-2) and re-grouping (Lines 3-11).

We use a heuristic to update rank: Note that WIj is the computational workload for

Groupj . A large WIj requires more workers for task execution. |LCLj | is the number

of completed tasks and d is the average number of successive tasks. For each completed

task, the manager reduces the dependency degree of the successive tasks and moves

ready-to-execute tasks to LRLj . Thus, (|LCLj | · d) represents the workload for the

scheduler. A larger (|LCLj | ·d) requires more managers for task scheduling. In Line 1,

the ratio r tells us if we need more managers or more workers. If more workers are

8 Yinglong Xia1, Viktor K. Prasanna2,1 and James Li2

Algorithm 2 A Sample Implementation of Hierarchical Scheduler

Input: P threads; Task dependency graph stored in GL; Thresholds δM , δ+ and δ−.

Output: Assign each task to a worker thread

{Initialization}
1: Groupj={Manager: Thread2j , Worker: Thread2j+1}, j = 0, 1, · · · , P/2 − 1
2: Evenly distribute tasks {Ti|Ti ∈ GL and di = 0} across LRLj , WIj =

∑

T∈LRLj
wT ,

∀j = 0, 1, · · · , P/2 − 1
3: fexit =false, rank = 1

{Scheduling}
4: for Thread i = 0, 1, · · · , P − 1 pardo

5: while fexit =false do

6: Q = 2rank

7: if i%Q = 0 then

{Manager thread}
8: Group level scheduling at Group⌊i/Q⌋ (Algorithm 4)

9: if i = 0 then

{Supermanager thread}
10: Meta-level scheduling (Algorithm 3)

11: end if

12: else

{Worker thread}
13: Within-group level scheduling at Group ⌊i/Q⌋ (Algorithm 5)

14: end if

15: end while

16: end for

17: if GL = ∅ then fexit =true

needed, we increase rank in Line 2. In this case, groups are merged to provide more

workers per manager. Otherwise, rank decreases. Line 2 also ensures that rank is valid

by checking the boundary values. d, δ+ and δ− are given as inputs. The re-grouping de-

pends on the value of rank. If rank increases, two groups merge (Line 5); if rank
decreases, the merged group is partitioned (Line 9). The two operators Merge(·) and

Partition(·) are discussed in Section 3.2. Line 12 flips fexit if no task remains in GL.

This notifies all of the threads to terminate (Line 5 in Algorithm 3).

Algorithm 4 shows an iteration of the group level scheduling for managers. Each

iteration consists of three parts: updating WIi (Lines 1-2 and 15), maintaining prece-

dence relationship (Lines 3-8) and allocating tasks (Lines 9-14). Lines 3-8 check the

successors of all tasks in LCLi in batch mode to reduce synchronization overhead. Let

m = 2rank − 1 denote the number of workers per group. In the batch task allocation

part (Lines 9-14), we first fetch m tasks from GRL. Line 12 is an adaptive step of this

algorithm. If the overall workload of the m tasks is too light (
∑

T∈S′ wT < ∆W) or

the current tasks in LRLi is not enough to keep the workers busy (WIi < δM), more

tasks are fetched for the next iteration. This dynamically adjusts the workload distribu-

tion and prevents possible starvation for any groups. In Line 10, the manager inspects a

set of tasks and selects m tasks with relatively more successors. This is a widely used

Title Suppressed Due to Excessive Length 9

heuristic for scheduling [12]. Several statements in Algorithm 4 are put into boxes,

where the managers access shared components across the groups. Synchronization cost

of these statements varies as the number of groups changes.

Algorithm 3 Meta-Level Scheduling for

Supermanager

{Update rank}

1: r =
∑P/Q

j=0
(WIj/(|LCLj | · d)),

rankold = rank
2: rank =

{

min(rank + 1, log P), r > δ+

max(rank − 1, 1), r < δ−

{regrouping}
3: if rankold < rank then

{Combine Groups}
4: for j = 0 to P/(2 · Q) − 1 do

5: Groupj = Merge(Group2j ,

Group2j+1)

6: end for

7: else if rankold > rank then

{Partition Group}
8: for j = P/Q − 1 downto 0 do

9: (Group2j , Group2j+1) =

Partition(Groupj)

10: end for

11: end if

Algorithm 4 Group Level Scheduling for

the Manager of Groupi

{Update workload indicator}
1: ∆W =

∑

T̃∈LCLi
wT̃

2: WIi = WIi − ∆W

{Update precedence relations}
3: for all T ∈ {successors of T̃ , ∀T̃ ∈ LCLi}

do

4: dT = dT − 1
5: if dT = 0 then

6: GRL = GRL ∪ {T}; GL = GL\{T}

7: end if

8: end for

{Batch task allocation}
9: if LRLi is not full then

10: S′ ⇐ fetch m tasks from GRL, if any

11: if
∑

T∈S′ wT < ∆W or WIi < δM

then

12: Fetch more tasks from GRL to S′,

so that
∑

T∈S′ wT ≈ ∆W + δM

13: end if

14: LRLi = LRLi ∪ {S′}
15: WIi = WIi +

∑

T∈S′ wT

16: end if

The workers schedule tasks assigned by their manager (Algorithm 5). This algo-

rithm is a straightforward self-scheduling, where each idle worker fetches a task from

LRLi and then puts the tasks to LCLi after execution. Although LRLi and LCLi are

shared by the manager and worker threads in the same group, no worker accesses any

variables shared between groups.

4 Experiments

4.1 Computing Facilities

The Sun UltraSPARC T2 (Niagara 2) platform was a Sunfire T2000 server with a Sun

UltraSPARC T2 multithreading processor [16]. UltraSPARC T2 has 8 hardware mul-

tithreading cores, each running at 1.4 GHz. In addition, each core supports up to 8

hardware threads with 2 shared pipelines. Thus, there are 64 hardware threads. Each

10 Yinglong Xia1, Viktor K. Prasanna2,1 and James Li2

Algorithm 5 Within-Group Level Scheduling for a Worker of Groupi

Input:

Output:

1: Fetch T from LRLi

2: if T 6= ∅ then

3: Execute task T
4: LCLi = LCLi ∪ {T}
5: end if

core has its own L1 cache shared by the threads within a core. The L2 cache size is

4 MB, shared by all hardware threads. The platform had 32 GB DDR2 memory shared

by all the cores. The operating system was Sun Solaris 11 and we used Sun Studio CC

with Level 4 optimization (-xO4) to compile the code.

4.2 Baseline

To compare the performance of the proposed method, we performed DAG structured

computations using Charm++ [6] Cilk [5] and OpenMP [14]. In addition, we imple-

mented three typical schedulers called Cent ded, Dist shared and Steal, re-

spectively. We evaluated the baseline methods along with the proposed scheduler using

the same input task dependency graphs.

(a) Scheduling DAG structured computations using Charm++ (Charm++): Charm++

runtime system employs a phase-based dynamic load balancing scheme facilitated by

virtualization, where the computation is monitored for load imbalance and computa-

tion objects (tasks) are migrated between phases by message passing to restore balance.

Given a task dependency graph, each task is packaged as an object called chore. Ini-

tially, all tasks with dependency degree equal to 0 are submitted to the runtime system.

When a task completes, it reduces the dependency degree of the successors. Any suc-

cessors with reduced dependency degree equal to 0 are submitted to the runtime system

for scheduling.

(b) Scheduling DAG structured computations using Cilk (Cilk): This baseline

scheduler performed work stealing based scheduling using the Cilk runtime system.

Unlike the proposed scheduling methods where we bound a thread to a core of a mul-

ticore processor and allocated tasks to the threads, we dynamically created a thread for

each ready-to-execute task and then let the Cilk runtime system schedule the threads

onto cores. Although Cilk can generate a DAG dynamically, we used a given task de-

pendency graph stored in a shared global list for the sake of fair comparison. Once a

task completed, the corresponding thread reduced the dependency degree of the suc-

cessors of the task and created new threads for the successors with dependency degree

equal to 0. We used spinlocks for the dependency degrees to prevent concurrent write.

(c) Scheduling DAG structured computation using OpenMP (OpenMP): This base-

line initially inserted all tasks with dependency degree equal to 0 into a ready queue.

Then, using the OpenMP pragma directives, we created threads to execute these tasks

in parallel. During executing the tasks in the ready queue, we inserted new ready-to-

execute tasks into another ready queue for parallel execution in the next iteration. Note

Title Suppressed Due to Excessive Length 11

that the number of tasks in the ready queue can be much greater than the number of

cores. We let the OpenMP runtime system to dynamically schedule tasks to underuti-

lized cores.

(d) Centralized scheduling with dedicated core (Cent ded): This scheduling method

bound each thread to a separate core. One thread was the manager and the rest were

workers. The input DAG was local to the manager. Each worker had a ready task list

shared with the scheduler thread. There was also a completed task list shared by all the

threads. The manager was also in charge of all the activities related to scheduling and

the workers executed assigned tasks only. Pthread mutex locks were used for the ready

task lists and completed task list.

(e) Distributed scheduling with shared ready task list (Dist shared): In this

method, we distributed the scheduling activities across the threads. This method had

a shared global task list and a shared ready task list. Each thread had a local completed

task list. The schedulers integrated into each thread fetched ready-to-execute tasks from

the global task list, and inserted the tasks into the shared ready task list. If the ready

task list was not empty, each thread fetched tasks from the ready task list for execution.

Each thread inserted the IDs of completed tasks into its completed task list. Then, the

scheduler in each thread updated the dependency degree of the successors of tasks in

the completed task list, and fetched the tasks with dependency degree equal to 0 for

allocation. Pthreads mutex locks were used for the global task list and the ready task

list.

(f) Task stealing based scheduling with distributed ready task list (Steal): Al-

though the above baseline Cilk is also a work stealing scheduler, it used the Cilk run-

time system to schedule the threads, each corresponding to a task. On the one hand, the

Cilk runtime system has various additional optimizations; on the other hand, schedul-

ing the threads onto cores incurs overhead due to context switching. Therefore, for the

sake of fair comparison, we implemented the Stealing baseline; we distributed the

scheduling activities across the threads, each having a shared ready task list. The global

task list was shared by all the threads. If the ready task list of a thread was not empty, the

thread fetched a task from it at the top for execution and upon completion updated the

dependency degree of the successors of the task. Tasks with dependency degree equal

to 0 were placed into the top of its ready task list by the thread. When a thread ran out

of tasks to execute, it randomly chose a ready list to steal a task from its bottom, unless

all tasks were completed. The data for randomization were generated offline to reduce

possible overhead due to random number generator. Pthreads spinlocks were used for

the ready task lists and global task list.

4.3 Datasets and Data Layout

We experimented with both synthetic and real datasets to evaluate the performance

of the proposed scheduler. For the synthetic datasets, we varied the task dependency

graphs so that we can evaluate our scheduling method using task dependency graphs

with various graph topologies, sizes, task workload, task types and accuracies in esti-

mating task weights. For the real datasets, we used task dependency graphs for blocked

matrix multiplication (BMM), LU and Cholesky decomposition. In addition, we also

12 Yinglong Xia1, Viktor K. Prasanna2,1 and James Li2

used the task dependency graph for exact inference, a classic problem in artificial in-

telligence, where each task consists of data intensive computations between a set of

probabilistic distribution tables (also known as potential tables) involving both regular

and irregular data accesses [19].

We used the following data layout in the experiments: The task dependency graph

was stored as an array in the memory, where each element represents a task with a task

ID, weight, number of successors, a pointer to the successor array and a pointer to the

task meta data. Thus, each element took 32 Bytes, regardless of what the task consisted

of. The task meta data was the data used for task execution. For LU decomposition,

the task meta data is a matrix block; for exact inference, it is a set of potential tables.

The lists used by the scheduler, such as GRL, LRLs and LCLs, were circular lists,

each having a head and a tail pointer. In case any list was full during scheduling, new

elements were inserted on-the-fly.

4.4 Results

We compared the performance of the proposed scheduling method with two state-of-

the-art parallel programming systems i.e. Charm++[6], Cilk [5] and OpenMP [14]. We

used a task dependency graph for which the structure was a random DAG with 10,000

tasks and there was an average of 8 successors for each task. Each task was a dense

operation, e.g., multiplication of two 30 × 30 matrices. For each scheduling method,

we varied the number of available threads, so that we could observe the achieved scala-

bility. The results are shown in Figure 5. Similar results were observed for other tasks.

Given the number of available threads, we repeated the experiments five times. The re-

sults were consistent; the standard deviation of the results were almost within 5% of the

execution time. In Figure 5(a), all the methods exhibited scalability, though Charm++

showed relatively large overhead. A reason for the significant overhead of Charm++

compared with other methods is that Charm++ runtime system employs message pass-

ing based mechanism to migrate tasks for load balancing (see Section 4.2). This in-

creased the amount of data transferring on the system bus. Note that the proposed

method required at least two threads to form a group. In Figure 5(b) where more threads

were used, our proposed method still showed good scalability; while the performance of

the OpenMP and Charm++ degraded significantly. As the number of threads increased,

the Charm+ required frequent message passing based task migration to balance the

workload. This stessed the system bus and caused the performance degradation. The

performance of OpenMP degraded as the number of threads increase, because it can

only schedule the tasks in the ready queue (see Section 4.2), which limits the paral-

lelism. Cilk showed scalability close to the proposed method, but the execution time

was higher.

We compared the proposed scheduling method with three typical schedulers, a cen-

tralized scheduler, a distributed scheduler and a task-stealing based scheduler addressed

in Section 4.2. We used the same dataset as in the previous experiment, but the matrix

sizes were 50×50 (large) and 10×10 (small) for Figures 6(a) and (b), respectively. We

normalized the throughput of each experiment for comparison. We divided the through-

put of each experiment by the throughput of the proposed method using 8 threads. The

results exhibited inconsistencies for the two baseline methods: Cent ded achieved

Title Suppressed Due to Excessive Length 13

(a) Scalability with respect to 1-8 threads

(b) Scalability with respect to 8-64 threads

Fig. 5. Comparison of average execution time with existing parallel programming systems.

much better performance than Dist shared with respect to large tasks, but signif-

icantly poorer performance with respect to small tasks. Such inconsistencies implied

that the impact of the input task dependency graphs on scheduling performance can

be significant. An explanation to this observation is that the large tasks required more

resources for task execution, but Dist shared dedicated many threads to schedul-

ing, which limits the resources for task execution. In addition, many schedulers fre-

quently accessing shared data led to significant overheads due to coordination. Thus,

the throughput decreased for Dist shared as the number of threads increased. When

scheduling small tasks, the workers completed the assigned tasks quickly, but the single

scheduler of Cent ded could not process the completed tasks and allocate new tasks

to all the workers in time. Therefore, Dist shared achieved higher throughput than

Cent ded in this case. When scheduling large tasks, the proposed method dynami-

cally merged all the groups and therefore became the same as Cent ded (Figure 6(a)).

When scheduling small tasks, the proposed scheduler became a distributed scheduler by

keeping each core (8 threads) as a group. Compared with Dist shared, 8 threads per

group led to the best throughput (Figure 6(b)). Steal exhibited increasing throughput

with respect to the number of threads for large tasks. However, the performance tapered

off when more than 48 threads were used. One reason for this observation is that, as the

14 Yinglong Xia1, Viktor K. Prasanna2,1 and James Li2

number of thread increases, the chance of stealing tasks also increases. Since a thread

must access shared variables when stealing tasks, the coordination overhead increased

accordingly. For small tasks, Steal showed limited performance compared with the

proposed method. As the number of threads increases, the throughput was adversely

affected. The proposed method dynamically changed the group size and merged all the

groups for the large tasks. Thus, the proposed method becomes Cent ded except for

the overhead of grouping. The proposed scheduler kept each core (8 threads) as a group

when scheduling the small tasks. Thus, the proposed method achieved almost the same

performance as Cent ded in Figure 6(a) and the best performance in Figure 6(b).

(a) Performance with respect to large tasks (50×50 matrix

multiplication for each task)

(b) Performance with respect to small tasks (10 × 10 ma-

trix multiplication for each task)

Fig. 6. Comparison with baseline scheduling methods using task graphs of various task sizes.

We experimentally show the importance of adapting the group size to the task de-

pendency graphs in Figure 7. In this experiment, we modified the proposed scheduler

by fixing the group size. For each fixed group size, we used the same dataset in the

previous experiment and measured the performance as the number of threads increases.

According to Figure 7, larger group size led to better performance for large tasks; while

for the small tasks, the best performance was achieved when the group size was 4 or 8.

Title Suppressed Due to Excessive Length 15

Since the optimized group size varied according to the input task dependency graphs, it

is necessary to adapt the group size to the input task dependency graph.

(a) Performance with respect to large tasks (50×50 matrix

multiplication for each task)

(b) Performance with respect to small tasks (10 × 10 ma-

trix multiplication for each task)

Fig. 7. Performance achieved by the proposed method without dynamically adjusting the sched-

uler group size (number of threads per group, thds/grp) with respect to task graphs of various task

sizes.

In Figure 8, we illustrated the impact of various properties of task dependency

graphs on the performance of the proposed scheduler. We studied the impact of the

topology of the graph structure, the number of tasks in the graph, the number of suc-

cessors and the size of the tasks. We modified these parameters of the dataset used in

the previous experiments. The topologies used in Figure 8(a) included a random graph

(Rand), a 8-dimensional grid graph (8D-grid) and the task graph of blocked matrix mul-

tiplication (BMM). Note that we only used the topology of the task dependency graph

for BMM in this experiment. Each task in the graph was replaced by a matrix mul-

tiplication. We evaluate the full BMM as a real-life problem in Figure 13. According

to the results, for most of the scenarios, the proposed scheduler achieved almost linear

speedup. Note that the speedup for 10 × 10 task size was relatively lower than others.

This was because synchronization in scheduling was relatively large for the task de-

16 Yinglong Xia1, Viktor K. Prasanna2,1 and James Li2

pendency graph with small task sizes. Note that we used the speedup as the metric in

Figure 8. By speedup, we mean the serial execution time over the parallel execution

time, when all the parameters of the task dependency graph are given.

(a) Task graph topology (b) Number of tasks in task graph

(c) Number of successors of each task (d) Task size

Fig. 8. Impact of various properties of task dependency graphs on speedup achieved by the pro-

posed method.

In Figure 9, we investigated the impact of task types on scheduling performance.

The computation intensive tasks (Computation) were matrix multiplications, for which

the complexity was O(N3), assuming the matrix size was N × N . In our experiments,

we had N = 50. The memory access intensive tasks (Mem Access) summed an array

of N2 elements using O(N2) time. For the last task type (Mixed), we let all the tasks

with an even ID perform matrix multiplication and the rest sum an array. We achieved

speedup with respect to all task types. The speedup for memory access intensive tasks

was relatively lower due to the latency of memory access.

Figure 10 reflects the efficiency of the proposed scheduler. We measured the execu-

tion time of each thread to check if the workload was evenly distributed, and normalized

the execution time of each thread for the sake of comparison. The underlying graph was

a random graph. We also limited the number of available cores in this experiment to ob-

serve the load balance in various scenarios. Each core had 8 threads. As the number

of cores increased, there was a minor imbalance across the threads. However, the per-

centage of the imbalanced work was very small compared with the entire execution

time.

Title Suppressed Due to Excessive Length 17

For real applications, it is generally difficult to estimate the task weights accurately.

To study the impact of the error in estimated task weight, we intentionally added noise

to the estimated task weight in our experiments. We included noise that added 5%, 10%

and 15% of the real task execution time. The noise was drawn from uniform distribution

using the POSIX math library. According to the results in Figure 11, the impact was not

significant.

Fig. 9. Performance of the proposed method with respect to computation intensive tasks, memory

access intensive tasks and the mix.

Fig. 10. Load balance achieved by the proposed method with respect to various number of avail-

able cores.

In Figure 12, we investigated the overhead of the proposed scheduler. Using the

same dataset used in the previous experiment, we first performed hierarchical schedul-

ing and recorded to which thread a task was allocated. According to such allocation

information, we performed static scheduling to eliminate the overhead due to the pro-

posed dynamic scheduler. We illustrate the execution time in Figure 12. Unlike the

previous experiments, we show the results with respect to execution time to compare

18 Yinglong Xia1, Viktor K. Prasanna2,1 and James Li2

both the scalability and the scheduling overhead for a given number of threads. As we

can see, the overhead due to dynamic scheduling was very small.

Fig. 11. Impact of the error in estimated task weight on speedup achieved by the proposed method.

Fig. 12. Overhead of the proposed scheduling method.

The above experiments were conducted using synthetic datasets, so that we could

control the parameters and then study the impact of various factors to the scheduling

performance. We achieved consistent results for real application datasets too. In Fig-

ure 13, we constructed the task dependency graph according to blocked matrix multi-

plication (BMM), LU decomposition and Cholesky decomposition [17]. For the BMM,

we used a matrix of size 600×600 with block size 50×50. The total number of tasks was

3312. For both the LU and Cholesky decomposition, the matrix size was 1000 × 1000
and block size was 50 × 50. The total number of tasks was 2870. In Figure 14, we

applied the proposed scheduler for parallel exact inference [19]. The task dependency

graph for this problem had 1023 nodes and each node had a potential table of 4096
entries. We manually partitioned the potential tables at different sizes and therefore had

Title Suppressed Due to Excessive Length 19

three datasets. The sizes of the partitioned potential table were 4096, 1024 and 256 for

large, mediate and small tasks, respectively. The proposed scheduler worked well for all

the real applications. Note that we used the metric speedup instead of absolute execu-

tion time or throughput. This is because the absolute performance requires optimization

of both the tasks and the scheduler. We only focused on scheduler design in this paper,

therefore we used the metric of speedup.

Fig. 13. Performance of the proposed scheduler for real applications.

Fig. 14. Performance of the proposed scheduler for exact inference.

5 Conclusion

We proposed a hierarchical scheduling scheme for manycore processors. In our method,

we divided the threads into groups, each having a manager to perform scheduling at the

group level and several workers to perform self-scheduling for the tasks assigned by the

manager. A supermanager was used to dynamically adjust the group size, so that the

20 Yinglong Xia1, Viktor K. Prasanna2,1 and James Li2

scheduler could adapt to the input task dependency graph. We analyzed the proposed

method and demonstrated its advantages for manycore architectures. The experimental

results on the Sun UltraSPARC T2 processors were encouraging, compared with typical

baseline schedulers and existing parallel programming systems. In the future, we plan

to study data layout for high throughput processors to efficiently use the data cache of

the UltraSPARC processors, since the L2 cache is no more than 4 MB, shared by up to

64 hardware threads. We would also like to explore the heuristics for assigning tasks of

various types to a core. For example, interleaving the computationally intensive tasks

with memory access intensive tasks may improve the overall performance.

References

1. I. Ahmad, Y.-K. Kwok, and M.-Y. Wu. Analysis, evaluation, and comparison of algorithms

for scheduling task graphs on parallel processors. In Proceedings of the 1996 International

Symposium on Parallel Architectures, Algorithms and Networks, pages 207–213, 1996.

2. I. Ahmad, S. Ranka, and S. Khan. Using game theory for scheduling tasks on multi-core pro-

cessors for simultaneous optimization of performance and energy. In Intl. Sym. on Parallel

Dist. Proc., pages 1–6, 2008.

3. D. Bader. High-performance algorithm engineering for large-scale graph problems and com-

putational biology. In 4th International Workshop on Efficient and Experimental Algorithms,

pages 16–21, 2005.

4. A. Benoit, M. Hakem, and Y. Robert. Contention awareness and fault-tolerant scheduling for

precedence constrained tasks in heterogeneous systems. Parallel Computing, 35(2):83–108,

2009.

5. R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou.

Cilk: An efficient multithreaded runtime system. Technical report, Cambridge, 1996.

6. Charm++ programming system. http://charm.cs.uiuc.edu/research/charm/.

7. E. G. Coffman. Computer and Job-Shop Scheduling Theory. John Wiley and Sons, New

York, NY, 1976.

8. M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory of

NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

9. Intel Threading Building Blocks. http://www.threadingbuldingblocks.org/.

10. V. Karamcheti and A. Chien. A hierarchical load-balancing framework for dynamic multi-

threaded computations. In Proceedings of the ACM/IEEE Conference on Supercomputing,

pages 1–17, 1998.

11. J. Kurzak and J. Dongarra. Fully dynamic scheduler for numerical computing on multicore

processors. Technical report, 2009.

12. Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed task graphs

to multiprocessors. ACM Computing Surveys, 31(4):406–471, 1999.

13. M. Ohara, H. Inoue, Y. Sohda, H. Komatsu, and T. Nakatani. Mpi microtask for programming

the cell broadband enginetm processor. IBM Systems Journal, 45(1):85–102, 2006.

14. OpenMP Application Programming Interface. http://www.openmp.org/.

15. C. Papadimitriou and M. Yannakakis. Towards an architecture-independent analysis of par-

allel algorithms. In Proceedings of the twentieth annual ACM symposium on Theory of

computing, pages 510–513, 1988.

16. D. Sheahan. Developing and tuning applications on UltraSPARC T1 chip multithreading

systems. Technical report, 2007.

Title Suppressed Due to Excessive Length 21

17. F. Song, A. YarKhan, and J. Dongarra. Dynamic task scheduling for linear algebra algo-

rithms on distributed-memory multicore systems. In International Conference for Hight

Performance Computing, Networking Storage and Analysis, 2009.

18. G. Tan, V. C. Sreedhar, and G. R. Gao. Analysis and performance results of computing

betwenness centrality on ibm cyclops64. Journa of Supercomputing, 2009.

19. Y. Xia, X. Feng, and V. K. Prasanna. Parallel evidence propagation on multicore processors.

In The 10th International Conference on Parallel Computing Technologies, pages 377–391,

2009.

20. H. Zhao and R. Sakellariou. Scheduling multiple DAGs onto heterogeneous systems. In

IEEE International Symposium on Parallel and Distributed Processing (IPDPS), pages 1–

12, 2006.

21. W. Zhu, P. Thulasiraman, R. K. Thulasiram, and G. R. Gao. Exploring financial applications

on many-core-on-a-chip architecture: A first experiment. In Frontiers of High Performance

Computing and Networking, pages 221–230, 2006.

