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Abstract. We present the Dynamic Priority (DP) parallel task scheduler for Hadoop.
It allows users to control their allocated capacity by adjusting their spending over
time. This simple mechanism allows the scheduler to make more efficient deci-
sions about which jobs and users to prioritize and gives users the tool to optimize
and customize their allocations to fit the importance and requirements of their
jobs. Additionally, it gives users the incentive to scale back their jobs when de-
mand is high, since the cost of running on a slot is then also more expensive.
We envision our scheduler to be used by deadline or budget optimizing agents on
behalf of users.
We describe the design and implementation of the DP scheduler and experimental
results. We show that our scheduler enforces service levelsmore accurately and
also scales to more users with distinct service levels than existing schedulers. In
addition, our scheduler implementation is smaller and lesscomplex than existing
schedulers and it does not rely on job-specific heuristics, while still providing
preemption and work conservation efficiently. The economicmechanism enables
cost driven scheduling across Hadoop clusters potentiallyoperated from different
sites and administrative domains.

1 Introduction

Large compute clusters have become increasingly easier to program because of simpli-
fied parallel programming models such as MapReduce. At the same time, the costs for
deploying and operating such clusters are significant enough that users have a strong
incentive to share them. However, MapReduce was initially designed for small teams
where resource contention can be resolved using FIFO scheduling or through social
scheduling.

In this paper, we examine different task-scheduling methods for shared Hadoop (an
open source implementation of MapReduce) clusters. As a result of our analysis of
Hadoop scheduling, we have developed the Dynamic Priority (DP) scheduler, a novel
scheduler that extends the existing FIFO and fair-share schedulers in Hadoop. This
scheduler plug-in allows users to purchase and bid for capacity or quality of service
levels dynamically. The capacity allotted, represented byMap and Reduce task slots,
is proportional to the spending rate a user is willing to pay for a slot and inversely
proportional to the aggregate spending rate of all existingusers. When running a task
on the alloted slot, that same spending rate is deducted fromthe user’s budget.

This simple mechanism allows the DP scheduler to make more efficient decisions
about which jobs and users to prioritize and gives users the ability to optimize and



customize their allocations to fit the importance and requirements of their jobs. Addi-
tionally, it gives users the incentive to scale back their jobs when demand is high, since
the cost of running on a slot is then also more expensive. We envision the DP scheduler
to be used by deadline or budget optimizing agents on behalf of users. In comparison
to existing schedulers, the DP implementation is simpler because it does not rely on
heuristics, while still providing preemption and being work-conserving.

We present the design and implementation of the DP schedulerand experimental
results. We show that our scheduler enforces service levelsmore accurately and also
scales to more users with distinct service levels than existing schedulers. We also show
how the dynamics of budgets and spending rates affects job completion time. The DP
scheduler enables cost-driven scheduling across Hadoop clusters potentially operated
from different sites and administrative domains.

This paper is organized as follows. In Section 2 we review thecurrent Hadoop
schedulers. We then describe the design and rationale behind our scheduler implemen-
tation in Section 3. In Section 4 and Section 5 we present and discuss a series of exper-
iments used to evaluate our scheduler. Finally, we relate our work to previous work in
Section 6 and conclude in Section 7.

2 Hadoop MapReduce

Apache Hadoop [27] is an open source version of the MapReduceparallel program-
ming framework [6] and the Google Filesystem [24]. Historically it was developed for
the same reasons Google developed their corresponding protocols, to index and ana-
lyze a huge number of Web pages. Data parallel programming ordata-intensive scal-
able computing (DISC) [2] have since been deployed in a wide range of applications
(e.g., OLAP, data mining, scientific computing, media processing, log analysis and data
warehousing [19]). Hadoop runs on tens of thousands of nodesin production at Yahoo!,
and Google uses their implementation heavily in a wide rangeof production services
such as Google Earth [8].

The MapReduce model allows programmers to focus on designing the application
workflow and how data are filtered and aggregated in the different stages of these work-
flows. The system takes care of common distributed systems tasks such as scheduling,
input partitioning, failover, replication, and distributed sorting of intermediate results.
The main benefits compared to other parallel programming models are the inherent
data-local scheduling, and the ease of use, leading to increased developer productivity
and application robustness.

In the seminal deployment at Google [6] the MapReduce architecture comprises
one master and many workers. The input data is split and replicated in 64 MB blocks
across the cluster. When a job executes, the input data is partitioned among parallel map
tasks and assigned to slots on idle worker nodes by the masterwhile considering data
locality. Similarly, the master schedules reduce tasks on idle worker nodes that read
the intermediate output from the map tasks. Between the map and the reduce phases
of the execution the intermediate map data are shuffled across the reduce nodes and a
distributed sort is performed. This ensures that all data with a given key are guaranteed
to be redirected to the same reduce node, and in the reduce processing phase all keys



are streamed in a sorted order. Re-execution of a failed taskis supported where the
master reschedules the task. To address the issue of a small number of tasks executing
substantially slower than average and slowing down the overall job completion time,
duplicate backup tasks are speculatively executed and the task that completes first is
used whereas others are discarded.

2.1 Scheduling

In Hadoop all scheduling and allocation decisions are made on a task and node slot
level for both the map and reduce phases. I.e., not all tasks of a job may be scheduled
at once. The reason for not scheduling on a resource (node) level but on a slot level,
is to allow different nodes of different capacity to offer varying numbers of slots and
to increase the benefits of statistical multiplexing. The assumption is that even very
complex jobs can be broken down into primitive tasks that mayrun in parallel on a
commodity compute unit. The schedulers assume that each task in the same job takes
roughly the same amount of time to complete given a slot. If this is not the case some
heuristics may be applied like speculative scheduling.

All tasks are by default scheduled using a FIFO queue. Experience from large de-
ployments at Yahoo! shows that this leads to inefficient allocations and the need for
“social scheduling”. The next generation scheduler in Hadoop, Hadoop on Demand
(HOD), addressed this issue by setting up private MapReduceclusters on demand, man-
aged by the Torque batch scheduling system. This approach failed in practice because
it violated the data locality design of the original MapReduce scheduler, and it became
too high of a maintenance burden to support and configure an additional scheduling
system1. Creating small sub-clusters for processing individual users’ tasks, as in the
HOD case, violates locality because the processing nodes only cover a subset of the
data nodes, and thus more data transfers are needed to stage in and out data to and from
the compute nodes.

To address some of these shortcomings, Hadoop recently added a scheduling plug-
in framework with two additional schedulers that extend rather than replace the original
FIFO scheduler. The additional schedulers implement alternative fair-share capacity
algorithms where separate queues are maintained for separate pools (groups) of users,
and each are given some service guarantee over time. The inter-queue priorities are
set manually by the MapReduce cluster administrator. This reduces the need for social
scheduling of individual jobs but there is still a manual or social process needed to
determine the initial fair distribution of priorities across pools, and once this has been
set all users and groups are limited by the task importance implied by the priority of
their pool. There is no way for users to optimize the usage of their granted allocation
across jobs of different importance, during different job stages, or to respond to run-time
anomalies such as failures or slow nodes. The potential allocation inefficiency arising
from this static setup is the main target for our work.

Previously we studied scheduling of entire virtual-machine-hosted Hadoop clus-
ters in [22]. The general problem addressed there was how to scale up and down a set
of virtual machines running Hadoop workers to complete jobsmore cost-effectively

1 https://cwiki.apache.org/jira/browse/HADOOP-3421



and faster, based on knowledge of job workflow resource requirements. This approach
works well if each user works with a separate data set. However, in case of groups of
people sharing large data sets, it becomes too much of an overhead to load the data into
multiple virtual clusters, and if file system clusters are shared you face the same prob-
lem as with HOD of reduced data locality. Furthermore, Hadoop is very IO intensive
both for file system access and Map/Reduce scheduling, so virtualization incurs a high
overhead. To address these problems we, in this work, focus on the approach of allo-
cating slots in the Hadoop scheduler for different queues dynamically. This approach
works both in a virtual and physical cluster, and it incurs less overhead when sharing
the cluster among a large number of users. Next we describe our scheduler design and
implementation in more detail.

3 Design

The primary design goal of our Hadoop task scheduler is to allow capacity distribution
across concurrent users to change dynamically based on userpreferences. Traditional
priority systems that try to guess user priority are too inaccurate [25], and unregulated
user priorities assume trusted small groups of users. Our scheduler automates capacity
allocation and redistribution in a regulated task slot resource market.

3.1 Mechanism

The core of our design is a proportional share resource allocation mechanism that allows
users to purchase or be granted aqueue priority budget. This budget may be used to
setspending ratesdenoting the willingness to pay a certain amount of the budget per
Hadoop map or reduce task slot per time unit. The time unit is configurable, and referred
to asallocation interval. It is typically set to somewhere between 10 seconds and 1
minute. In each allocation interval the scheduler:

– aggregates all spending ratess from all current users to calculate the Hadoop cluster
price, p,

– for all users, allocates(si/p) × c task slots (both mappers and reducers) to useri,
wheresi, is the spending rate of useri, andc is the aggregate slot capacity of the
cluster,

– for all users, deductssi × ui from budgetb whereui, is the number of slots used
by useri

Users consuming more resources will deplete their budget faster given the same
spending rate. However, they are guaranteed to not pay more than the spending rate per
allocated slot. Thus a user’sbid represents her willingness to pay a certain rate per slot.

It may appear that this model is biased towards users with small jobs who would
be able to outbid users with bigger jobs. However, in the Hadoop MapReduce task
model users with big jobs can effortlessly scale down their jobs to run fewer concurrent
tasks and thereby consume the same amount of resources per time unit as small jobs
but instead run longer. Our model thus sets the right incentives for users to scale back
resource consumption as much as their job deadlines or SLAs allow.



Because we only want to charge each user for the capacity theyuse and reallocate
the unused capacity to other users, (and we want to make sure users actually pay for the
spending rate theybid) we calculate the capacity allocation and the price to pay for slots
for an allocation interval based on the spending rates in theinterval directly preceding
the interval when the slots are consumed. To avoid blocking new arriving users and
having non-running users hold up resources, we only calculate an allocation for a user
if either a job is pending or running for that user.

To adapt more quickly to user demand fluctuations and avoid head of queue block-
ing and starvation issues, we support preemption where taskslots that have been al-
located but are no longer paid for may be reclaimed and allocated to other users. This
works well for most applications since Hadoop automatically puts preempted tasks back
in the pending queue for reallocation when demand, measuredby user spending rates,
allows.

The key feature of this mechanism is that it discourages free-riding and gaming by
users. Users who claim a higher priority will have to pay for it, so they have an incentive
to accurately reveal how important priority is to them. In addition, the variable pricing
allows users with a low budget and low time-sensitivity to run during low demand
periods. These users would otherwise not be able to run at allin a fixed pricing model.
Conversely, at high demand periods, users have a disincentive to run, but resources will
nonetheless be available (for a high price) for users that really need them.

The disadvantage is less capacity predictability and more variation in capacity al-
located to an application. However, the Hadoop MapReduce scheduling framework al-
lows jobs to be split up in finer grained tasks that can run and possibly fail and recover
independently. So the only thing the end users would need to worry about is to get a
good enough average capacity over some time to meet their deadlines.

This introduces the difficulty of making spending rate decisions to meet the SLA
and deadline requirements. It is outside the scope of this paper and the target of future
work to address this particular issue, but the mechanisms presented here opens the door
for innovation in this area, by allowing much more fine grained control over resources
for competing users in a multi-tenancy hosted Hadoop cluster.

Figure 1 depicts how our scheduler components fit into the Hadoop architecture.
Alice is willing to pay $4 per slot, Bob is willing to pay $1.50, and Sam $2. Assuming
that 15 slots are available to these three users in the global(logical) slot table, Alice
will be allocated 8 slots, Bob 3 slots and Sam 4 slots. Exactlyhow these slots are
mapped to physical nodes is not guaranteed. Whenever a slot becomes available the
allocations are recalculated to determine who should get the new slot according to their
granted share. Furthermore, local tasks are attempted first. If that fails, remote rack
tasks are scheduled. There may be opportunities to delay scheduling of some jobs to
achieve a higher ratio of data local tasks. However, in the current implementation we
enforce the shares strictly in each time period. This is not overly restricting because
Hadoop replicates all the data in at least three data blocks by default, which ensure
many opportunities for data local scheduling. Packing a user on a single node versus
distributing the job workload across nodes is another application specific trade-off that
we may address in future implementations.



Fig. 1. Dynamic Priority Scheduler Architecture. This example shows how a max capacity of 15 Map slots gets allocated
proportionally to three users. For example, Alice bids $4 and gets4/(4 + 1.5 + 2) ∗ 15 = 8 slots. The central sched-
uler comprises a Dynamic Priority Allocator and a Priority Enforcer component responsible for accounting and schedule
enforcement respectively.

Possible starvation of low-priority (low-spending) taskscan be mitigated by using
the standard approach in Hadoop of limiting the time each task is allowed to run on
a node. Moreover, our new mechanism also allows administrators to set budgets for
different users and let them individually decide whether the current price of preempting
running tasks is within their budget or if they should wait until the current users run out
of their budget. The fact that Hadoop uses task and slot levelscheduling and allocation
as opposed to job level scheduling also avoids many starvation scenarios.

If there is no contention, i.e. there are enough slots available to run all tasks from
all jobs submitted, the cost for excess resources essentially becomes free because of the
work conserving principle of our scheduler. However, the guarantees of maintaining
these excess resources are reduced. To see why, consider newusers deciding whether to
submit jobs or not. If they see that the price is high they may wait to preempt currently
running jobs, but if the resources are essentially given outfor free they are likely to lay
claim on as many resources they can immediately.

We note that the Dynamic Priority scheduler can easily be configured to mimic the
behavior of the other schedulers. If no queues or users have any credits left the scheduler
reduces to a FIFO scheduler. If all queues are configured withthe same share (spending
rate in our case) and the allocation interval is set to a very large value the scheduler
reduces to the behavior of the static fair-share schedulers.

3.2 Implementation

TheDynamic Priorityscheduler is implemented as a scheduler plugin for the Hadoop
JobTracker service. This allows DP to be a drop-in replacement of the default FIFO



scheduler. The scheduler is split into two components: one for allocation,Dynamic
Priority Allocator, and one for enforcement,Priority Enforcer.

TheDynamic Priority Allocatorimplements dynamic slot allocation, budgeting and
accounting, and provides a remote secure API to manage and monitor budgets and
spending rates.

The Priority Enforcer component is responsible for enforcing the shares of re-
sources calculated by the allocation component. It is responsible for picking pending
tasks from jobs to be scheduled when mapper and reducer slotsopen up in Hadoop
TaskTrackers. It thus implements the same functionality asthe FIFO and fair-share
schedulers. However, these schedulers were not designed tohandle a large number of
queues with constantly varying capacities that are determined on demand from user
input. They do not enforce shares at the granularity and precision that our mechanism
requires and do not support preemption to the extent that we require.

The budgets and spending rates are stored in a storage component that can be file-
based or SQL-based. An XML REST Servlet controls the scheduler. The monitoring
component plugs into the Hadoop Jobtracker Web console. TheWeb console is de-
picted in Figure 2. The numbers displayed next to each queue represent from top to
bottom: current budget, spending rate, resource share, slots used, and slots pending.
The supported APIs are listed in Table 1 and an example XML response for authorized
requests can be seen in Listing 1.1.

Table 1.REST XML API to Manage Scheduler Allocations

HTTP Options Description Authz
price Gets current price None
info=queue Gets queue usage info User
infos Gets usage info for all queuesAdmin
setSpending=spending&queue=queueSet the spending rate for queueUser
addBudget=budget&queue=queue Add budget to queue Admin
addQueue=queue Add queue Admin
removeQueue=queue Remove queue Admin

Listing 1.1. Example XML response for authorized re-
quests
<QueueIn fo>

<h o s t>myhost</ h o s t>
<queue name="queue1">

<budget>99972.0</ budge t>
<s pe nd ing>0 . 11</ s pe nd ing>
<s h a r e>0.008979593</ s h a r e>
<used>1</ used>
<pend ing>43</ pend ing>

</ queue>
</ QueueIn fo>



Fig. 2. MapReduce Administration Monitor.

3.3 Security and Authentication

The existing Unix user and group based security model of Hadoop is too simple to sup-
port a full-fledged multi-tenancy resource market as described above. More specifically,
relying on each user to pick queues and be trustworthy about their identity would de-
feat the accounting and budget enforcement mechanism. As a result, we implemented
a lightweight symmetric key authentication and role-basedauthorization protocol mod-
eled after AWS Query Authentication [1], and OAuth. The advantage is that it is easy
to use from any client and only requires the capability to construct HMAC/SHA1 sig-
natures based on shared secret keys. The existing Hadoop command line clients were
also extended to pass the signatures required to submit jobsto queues being paid for in
job configuration parameters.

4 Evaluation

In this section, we describe experiments run to study the scalability and allocation dy-
namics of our scheduler. There are three sets of experiments. In the first set, we examine
the correlation of spending rates, budgets and performancemetrics. In the second set,
we study how accurately and effectively service levels can be supported. Finally we
measure how well the system adapts to changes in spending rates. Unless otherwise
stated all users are given the same budgets in all experiments. We use the termqueue
interchangeably with the termusersince all users are given a dedicated queue to submit



their jobs on in all of our experiments. Our scheduler allowsqueues to be shared across
users but it should be compared to sharing bank accounts or access to a PC among users,
i.e. sharing security credentials such as passwords, whichis generally frowned upon.

4.1 Setup

We use two testbeds for our evaluation: a 30 node quad-core cluster (referred to as the
big cluster) and a 5 node octo-core cluster (referred to as thesmallcluster). Thesmall
cluster runs on virtual machines, whereas thebig cluster is installed directly on the
hardware. More details of the clusters are shown in Table 2.

For both setups, we allocate one queue per user and run 2-80 users concurrently.
All users run the same benchmark application, the Pi estimator from the Hadoop exam-
ple code base. The Pi application was set up to be able to consume the entire cluster
if run in isolation (i.e. number of job tasks were set to the number of slots available
in the cluster), and thus ran slower when there was contention. The pi precision target
was set to450000000 for the small cluster and500000000 for the big cluster to ensure
that the application was both CPU and data intensive. The ability to fine-tune the CPU
versus data intensity without having to provision a large amount of data was the main
reason we chose the Pi application for our experiments. The fact that all Hadoop appli-
cations conform to the same general internal structure (MapReduce) allows us to treat
the results more generally than with a typical parallel workload. To stress the system,
all users are launched concurrently and submit a continuousstream of jobs. In the initial
2-user experiments we test the FIFO, Fairshare (fair-sharescheduler developed at Face-
book), and Capacity (fair-share scheduler developed at Yahoo!) schedulers and compare
them to the Dynamic Priority scheduler that we developed. The Fairshare and Capac-
ity schedulers were not able to handle the 10-80 queue and user workload reliably so
they were excluded from the larger experiments. To switch between the schedulers dur-
ing the experiment we restarted the JobTracker service resulting in a clean start since
no running job information is persisted in the current version of the JobTracker. The
stream of jobs from the clients is not affected either duringa restart since the clients
will just resubmit jobs when a job is done or fails.

Table 2.Experiment Cluster Setup

Cluster Used in GraphsNodesCores (CPUs)Physical/Virtual OS Disk
big 3-9 30 120(30) Physical CentOS 545TB
small 10-11 5 40(40) Virtual CentOS 5250GB

4.2 Spending Rates, Budgets and Performance

In the first experiment, we start two concurrent user workloads. We give queue1 an
initial budget of 1000 and queue2 10000 credits. The spending rate per Hadoop slot



of queue1 is set to twice the rate of queue2. Since queue1 willthen be allocated twice
as many resources the total spending is expected to be 4 timesthat of queue2 in any
allocation interval.

Figure 3 depicts the budget over time for the two users, and Figure 4 shows the
completion time of their jobs over the same time period. Our scheduler is initially con-
figured to run without preemption and queue1 will thus not seean immediate benefit in
completion time.

We also see that the budget of queue1 runs out at time 05/15-22:00, at which point
the allocation is given over to queue2, and the performance of queue1 degrades signif-
icantly. At time 05/16-14:00 the budgets of queue1 and queue2 are reset to 10000 and
the scheduler is reconfigured to preempt. We now see that the queue1 completion time
is around 3000s for each job in Figure 4 and the spending is about 26-27% more than
queue2 (25% expected) as seen in Figure 3. We do not obtain exactly half the job com-
pletion time when getting twice the amount of resources but about1.8. This is because
we only control the slot capacity not other resources such asHDFS (distributed file sys-
tem) access and cross node bandwidth. We can also see that thehigher spender (queue1)
gets a very stable high performance, oscillating between 3000-3200s completion times
compared to the low priority queue (queue2) which oscillates between 4500-5800s.

Now just looking at Figure 4 at time 05/18-00:00 we reconfigure the cluster to use
the Capacity scheduler. The differentiation in obtained service level is far less although
the capacity configuration is the same, twice as many slots for queue2. We attribute
this to less aggressive preemption, and less granular control over allocations in this
scheduler compared to ours. We can also see that the min/max range variation is greater
for both queues with the capacity scheduler. Queue1 oscillates between 3000-3600s,
and queue2 oscillates between 3600-5500s.

Taking the ratio of minimum performance to maximum performance we get a dif-
ferentiation of about1.5 to be compared to1.8 for our scheduler. At time 05/19-00:00
we had a failed attempt to set up the Fairshare scheduler for this workload. We saw
that all schedulers showed signs of a memory bloat with workload and would eventu-
ally run out of memory. This behavior was most apparent with the Fairshare scheduler
which did not manage to complete a single job. We point out that this bug was not in
any of the schedulers but in the jobtracker framework, so it just surfaces how different
schedulers handle memory in general. So instead at time 05/19-18:00 we reconfigure
the cluster with the standard FIFO scheduler. We can see thatthis scheduler does not
offer any differentiation as expected, and the average performance level is above the
queue1 level and below the queue2 level obtained with the other schedulers.

We note that the capacity scheduler was configured with 60minpreemption. More
frequent preemption caused problems with completing the tasks. Neither the fair-share
nor the FIFO schedulers supported preemption in the versions tested2. However, both
Capacity and Fairshare Queue/Pool capacity was configured the exact same way as with
our scheduler, with the only difference that it was not able to change over time. The
FIFO scheduler was not configured with any priorities, sinceno queue based priorities
could be set.

2 Hadoop 0.20-0.21 code base checked out around May 2009



Fig. 3. 2-user budget dynamics example.The graph shows how the budget (y-axis) evolves over time (x-axis as month/day
and time). The slopes of the curves represent the spending rates of the users over time. Queue/user 1 uses twice the spending
rate of queue/user 2. At the center of the graph the budgets ofboth users are reset to 10000 (time 05/16 14:00).

Fig. 4. 2-users service differentiation trace.The graph shows the completion time over time for jobs submitted by the 2
users in the budget graph in Figure 3. The first half of the timeline corresponds directly to the timeline in the budget graph.
The second half corresponds to experiments with the capacity, fairshare and FIFO schedulers. The first drop in completion
time for queue 1 is correlated with the budget running out. The key result is the clear separation of completion times between
queue 1 and queue 2 seen in the first half compared to the secondhalf of the graph.



We stress that it is not simply an implementation artifact that the capacity and fair-
share schedulers perform poorly in these tests. These schedulers were not designed for
dynamic priorities nor for handling a large number of queuesfrom the outset as our
scheduler was3.

4.3 Allocation Fidelity and Overhead

Now we look at how well we can preserve the differentiation ofservice levels with more
users and queues. Figure 5 shows the completion times obtained for 10 queues when
queuen is given a share ofn/

∑10
i=1 i. We can see that all 10 service levels are enforced

successfully. At time 05/21-10:00 we reconfigure the cluster with the FIFO scheduler.
We note that there is a random distribution of service levelsfor the first job because
there is no preemption. For other jobs the identical servicelevel is given to all jobs.
This experiment showcases that a dynamic non-stationary workload with users entering
and leaving the system may result in random highly variable service levels even with
the FIFO scheduler.

Fig. 5.10-user service differentiation trace.The graph shows completion time for jobs (y-axis) over time (x-axis). The first
half of the graph shows how our scheduler separates the queues’ performance compared to the second half when the FIFO
scheduler was used. Half of the queues obtain better performance and the other half worse than the FIFO case.

In Figure 6 we show the results of an experiment that ran our scheduler with pre-
emption and 80 users first, then the FIFO scheduler and finallyour scheduler without
preemption. Still we see that the 10 service levels are maintained. We do not obtain
more than 10 service levels with this application (Pi estimator). The number of service
levels obtainable depends both on overhead and bottlenecksin the specific applications

3 http://issues.apache.org/jira/browse/HADOOP-4768



run but also on the overall scale of the cluster and the slots available. We also note here
that the preempting version of our scheduler, in the left half of the graph, delivers some-
what more stable service level than the non-preemptive one (after time 05/24-22:00) but
the differences are cosmetic. This experiment again shows that our scheduler shapes the
workflow into the desired service levels quickly.

Fig. 6. Sample of 80-user service differentiation trace.The graph shows completion time (x-axis) over time (y-axis)using
the same setup as in the 2-user graph in Figure 5, but with 80 users. For clarity only a sample of the users are shown. The
results are very similar to the 2-user graph, which shows howour scheduler’s ability to differentiate service levels scales well
in number of queues/users.

We now study the performance fidelity of the granted allocation more carefully.
There is obviously some trade-offs in throughput of the system and the level of pre-
emption enforced since a killed Hadoop task (note not a job) must be restarted from
the beginning. Figure 7 shows the fidelity versus overhead for the two-user experiment.
The ideal line depicts the performance expected if queue1 runs its jobs twice as fast as
queue2, but the average across the queues is the same as for the FIFO case (e.g. optimal
fidelity and maximum throughput). Our dynamic priority scheduler running with pre-
emption comes closest to meeting this ideal, but we can also see that we can improve the
throughput and move closer to the FIFO line if preemption is not turned on. Improved
closeness to ideal here is seen by observing that both the queue1 point and the queue2
point in the graph for the 60s preempt dynprio line are closerto the respective ideal line
points. One could argue that the capacity scheduler achieves the least degradation across
both users while still achieving some differentiation and should therefore be preferred.
This may be the case in fair-share scheduled systems where users do not pay for their
usage. But in a cloud computing scenario where queue1 actually paid twice as much
as queue2 it may no longer hold true. We focus more on differentiating service-levels
that are as close as possible to the capacity you pay for as opposed to achieving some
overall fair outcome in our scheduler.



Fig. 7. 2-user fidelity to granted shares and throughput loss.This graph compares the overhead of differentiating service
levels to using FIFO scheduling. The fairshare scheduler was not included in the results due to reliability issues. However, it
behaves similarly to the capacity share scheduler. The ideal line represents the performance that should have been observed
for the two queues if adhering to the configured capacities while obtaining the same throughput as with the FIFO scheduler.
When comparing the slopes of the dynprio preempt line and thecapacity scheduler line with the ideal line we see that the
slope of the dynprio line is a closer match (one of the goals ofour scheduler).

Figure 8 shows the corresponding graph for the 10 user experiment. We can see that
the extremes (highest and lowest service levels) are far away from the ideal line whereas
service levels 3 through 9 mimic the ideal scenario well. We also show an ideal adjusted
line that has the same service level as the dynamic priority scheduler for the maximum
service level but the same degradation in service levels as the ideal line. We can see
that only service levels 1 and 2 fall outside of the ideal and ideal adjusted lines, which
indicates that our scheduler is a bit biased against users with low spending rates. The
same behavior can be seen in the 80-user experiment depictedin Figure 9. Here we note
that the users are heavily discretized in groups of about 10-15. This is most likely due
to the MapReduce workload chosen which only uses 10 reducers, and thus limits the
reduce phase throughput to 10 service levels.

4.4 Adaptability of Service Levels

We run the final experiments on oursmallcluster and investigate how well we can dy-
namically adjust the service levels. 10 users all run 10 Pi estimator jobs in sequence
and concurrent with all the other users. Usern is given a 4x boost in spending rate for
job n. In Figure 10 we can see that a 3x performance boost is obtained consistently for
all users and jobs regardless of when during the job sequencethe boost kicks in. The
valleys hover around completion times of 300s, whereas the average of non-valley jobs
lies around 900s. Figure 11 shows the same experiment but with preemption turned
off. We can then see that the service levels of the first jobs are random but all other
jobs follow the same pattern as in the preemption case. This shows that we are able to
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converge quickly to a stable state even without preemption.The overhead of preemp-
tion, calculated based on the difference in average job completion time between the two
experiments was less than2.6%.
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Fig. 10. Dynamic priority adjustment with 10 users, with 60s preemption. The graph shows the completion times of jobs
for queues/users who increased their spending rates for their x’th job, where x is the queue number. All boosted jobs obtained
a significant decrease in completion time, showing the agility and dynamic nature of our scheduler.

5 Discussion

Some issues merit additional discussion: preemption, dynamic adjustment, and cur-
rency management.

Whether preemption should be offered or not depends on the types of workloads ex-
pected. For CPU bound, embarrassingly parallel applications that benefit from holding
a slot for a longer duration of time, preemption may be necessary to avoid starvation
effects. On the contrary, for data bound applications that stream small amounts of input
at a time into Map and Reduce tasks that complete within a couple of minutes, preemp-
tion may not add much value. We saw that using preemption incurred a small (2.6%)
overhead in throughput, but allowed the system to adhere to service levels more quickly
and accurately.

Note that preemption in the Hadoop context is somewhat different from the tradi-
tional CPU/scheduling type of preemption. Hadoop preemptions do not suspend and
then resume the task but rather kills the task and forces it tostart over again. It thus
causes a throughput penalty. Care must hence be taken to killthe jobs that will degrade
the throughput the least while still ensuring that starvation and unfairness effects are
minimized.

One feature of the Dynamic Priority scheduler (DP) is that itallows users to change
the priority of jobs during a run. However, it does not require it. Users who prefer not
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Fig. 11. Dynamic priority adjustment with 10 users, without preemption. The graph shows the completion times of jobs
for queues/users who increased their spending rates for their x’th job, where x is the queue number when no preemption was
used. The graph looks almost identical to the preemption graph with only slight deviations for the boosted jobs from user1
and user 10.

to monitor their jobs can let them run as initially configured. The opportunity to change
priorities is most useful to handle unexpected situations like server failures, increases
in load by other users, and the inability of users to predict their own job runtimes. In
the latter case, DP allows users to adjust their spending rates so that the actual running
time of their jobs fits their deadlines.

Since the DP introduces a currency into the system, it requires the system adminis-
trator to manage the overall economy of the system. The basicgoal is to keep a stable
exchange rate between currency and computational work. Users need to be able to ex-
pect that 1 credit will generally get 1 server hour (for example). Of course, prices will
fluctuate, but the average should remain stable. Admins can do this by setting a total
income rate per hour for the system which is equal to the number of servers. The ad-
min then distributes this income among the users. For example, a cluster of 200 servers
would have an income of 4800 credits per day which can be allocated for users. This to-
tal is fixed, regardless of the number of users, so the admin should reserve some amount
for new users. As the admin adds new servers, the total can increase.

If prices start increasing significantly, this indicates that the system is under-provisioned
with respect to its load. The admin should consider adding more servers and/or mov-
ing some users to another system. Conversely, if prices collapse, then the system is
over-provisioned and the admin can add users and/or remove servers.

The admin must be careful with the inevitable demands to increase the income rate
for some users. If some users actually have more important jobs than other users, then
the admin should increase the income rate of the important users while decreasing the
rate for other users such that the total income rate is the same. Otherwise, the system
will enter an inflationary spiral that is difficult to break out of.



6 Related Work

Parallel job scheduling is a well-investigated field both intheory and in practice with ap-
plications beyond computational resource management [17]. Theoretical studies com-
monly assume embarrassingly-parallel jobs which has lead to much of the innovation
in the field to be driven by simulations and experiments [11].The most commonly
deployed scheduling regime is First-Come-First-Served (FCFS) or variations thereof.
FCFS suffers from head of queue blocking and starvation issues. Two popular varia-
tions to address these issues are backfilling [15] and gang scheduling [16] [9]. Many
heuristics and variations have been proposed to improve throughput, e.g. Shortest-Job-
First (SJF), or fairness, e.g. Fair-Share Scheduling. Manyof these classical scheduling
algorithms focus on improving systems metrics such as utilization and average response
time. Some of these systems may however be very inefficient interms of serving the
most important task at the best time from an end-user point ofview. The reason for this
is that priorities are either assigned by the system, or are only valid across jobs for the
same user, as exemplified by the Maui scheduler [13].

Proportional share and Lottery scheduling were proposed in[25] to give users more
direct and dynamic control over capacity allocations for different types of tasks over
time. In previous work this technique has been applied to both cluster node [4] and VM
resource scheduling [14]. To our knowledge our work is the first applying the propor-
tional share mechanism to MapReduce slot scheduling for computational clusters.

Our scheduling approach is closely related to and inspired by economic schedulers,
whereby you bid for resources on a market and receive allocations based on various
auction mechanisms [7, 18, 26, 14, 5, 23, 28, 3]. We do not preclude nor require that our
scheduler budgets are tied to a real currency. Furthermore,we do not assume that there
are competing users who should be given different shares of the resources. Giving all
users the same budget initially but allowing them to spend this budget at different rates
is a valid use case of our scheduler. Many game theory inspired agent scheduling al-
gorithms such as the Best Response algorithm in [10], could be implemented on top
of our scheduler for Hadoop jobs. Meta-scheduling across Hadoop clusters in different
organization is also simplified by exposing different demand based prices for running
jobs in a cluster.

Other work to improve the FIFO and fair share scheduling in Hadoop includes the
LATE scheduler [30]. The main purpose of the LATE scheduler is to predict Hadoop job
progress more accurately and to take overhead into account when launching speculative
tasks. In [29] the work on the LATE scheduler is extended by two new techniques, delay
scheduling and copy-compute splitting, designed to improve data locality and avoid
reduce slot bottlenecks respectively. These techniques are complimentary to our work.
In theory both of these issues are orthogonal to our scheduling mechanism since they
tackle separate problems (not incentives and accountability which are at the core of
our work). In practise, the delayed scheduling technique would require some changes
in how slots are allocated in our scheduler, but since we onlycharge for slots that are
actually used, the general accounting mechanism would staythe same.

MapReduce scheduling has also been explored beyond the traditional data center
domain, such as for Cell [20], GPUs [12], and shared memory architectures [21]. Our



general proportional share MapReduce slot algorithm presented in this paper could thus
potentially also be employed in these other domains.

7 Conclusion

Our experimental results demonstrate that our scheduler scales better than the existing
Hadoop schedulers in the number of queues. Having more queues allows providers to
provide more service levels. The fair-share scheduler could not even handle the exper-
imental workload for two concurrent queues, whereas the capacity scheduler was not
able to handle the workload with ten queues. The Dynamic Priority scheduler handles
up to 80 queues efficiently, which was only limited by the memory capacity of the
experiment client node.

This enhanced scalability is due to the light-weight designof DP. In contrast to the
other schedulers, it does not incur the overhead of heuristics for inferring fair priorities
over time. Instead, DP users directly decide priorities, soit only has to maintain the
budget currently remaining. As of this writing, the capacity scheduler contains 140KB
of non-test source code, the fair-share scheduler 130KB, and DP 55KB.

Furthermore, we have shown that DP adapts service levels dynamically and quickly
even during heavy load, adheres to them more accurately. This was shown by having 10
users with a stream of 10 15min jobs all boost their single high priority jobs accurately
without overhead or notable randomness.

DP also solves the problems of lost data locality and virtualization overhead that we
encountered in our previous work on virtualized MapReduce [22]. The downside is that
we lose some control over tasks that are long-running, and the isolation properties can-
not be enforced as strictly. However, an advantage is that itbecomes easier to provision
commonly used software and data sets in shared test-beds.

Future work includes leveraging the dynamic capacity control in our scheduler to
adaptively change the allocations to meet higher level SLA goals such as deadlines.
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