Dynamic Proportional Share Scheduling in Hadoop

Thomas Sandholm, Kevin Lai
{thomas. e. sandhol m kevin. | ai }@p. com

Hewlett-Packard Laboratories, Palo Alto, CA 94304, USA

Abstract. We present the Dynamic Priority (DP) parallel task schedoleHadoop.
It allows users to control their allocated capacity by afiljgstheir spending over
time. This simple mechanism allows the scheduler to makeerafiicient deci-
sions about which jobs and users to prioritize and givessubertool to optimize
and customize their allocations to fit the importance andirements of their
jobs. Additionally, it gives users the incentive to scalelbtheir jobs when de-
mand is high, since the cost of running on a slot is then alsperegpensive.
We envision our scheduler to be used by deadline or budgihiaptg agents on
behalf of users.

We describe the design and implementation of the DP schealutexperimental
results. We show that our scheduler enforces service levets accurately and
also scales to more users with distinct service levels tkatieg schedulers. In
addition, our scheduler implementation is smaller anddessplex than existing
schedulers and it does not rely on job-specific heuristidslenstill providing
preemption and work conservation efficiently. The econaméchanism enables
cost driven scheduling across Hadoop clusters potentipkyated from different
sites and administrative domains.

1 Introduction

Large compute clusters have become increasingly easieotwam because of simpli-
fied parallel programming models such as MapReduce. At time $ine, the costs for
deploying and operating such clusters are significant emshigt users have a strong
incentive to share them. However, MapReduce was initiadlgighed for small teams
where resource contention can be resolved using FIFO stihgdur through social
scheduling.

In this paper, we examine different task-scheduling mettiodshared Hadoop (an
open source implementation of MapReduce) clusters. As wtresour analysis of
Hadoop scheduling, we have developed the Dynamic PridbiB) (scheduler, a novel
scheduler that extends the existing FIFO and fair-sharedsdbrs in Hadoop. This
scheduler plug-in allows users to purchase and bid for égpac quality of service
levels dynamically. The capacity allotted, represented/layp and Reduce task slots,
is proportional to the spending rate a user is willing to payd slot and inversely
proportional to the aggregate spending rate of all existisgys. When running a task
on the alloted slot, that same spending rate is deductedtfieraser’s budget.

This simple mechanism allows the DP scheduler to make mdicéesft decisions
about which jobs and users to prioritize and gives users iilgyato optimize and

customize their allocations to fit the importance and rexquents of their jobs. Addi-

tionally, it gives users the incentive to scale back thdisjavhen demand is high, since
the cost of running on a slot is then also more expensive. Wisien the DP scheduler

to be used by deadline or budget optimizing agents on behalars. In comparison

to existing schedulers, the DP implementation is simplexahbee it does not rely on
heuristics, while still providing preemption and being Waonserving.

We present the design and implementation of the DP schedntéexperimental
results. We show that our scheduler enforces service levefe accurately and also
scales to more users with distinct service levels thaniegischedulers. We also show
how the dynamics of budgets and spending rates affects joipledion time. The DP
scheduler enables cost-driven scheduling across Hadosters potentially operated
from different sites and administrative domains.

This paper is organized as follows. In Section 2 we reviewdheent Hadoop
schedulers. We then describe the design and rationaledebirscheduler implemen-
tation in Section 3. In Section 4 and Section 5 we present @udisk a series of exper-
iments used to evaluate our scheduler. Finally, we relatevouk to previous work in
Section 6 and conclude in Section 7.

2 Hadoop MapReduce

Apache Hadoop [27] is an open source version of the MapRepaiadlel program-
ming framework [6] and the Google Filesystem [24]. Histalig it was developed for
the same reasons Google developed their correspondingcpist to index and ana-
lyze a huge number of Web pages. Data parallel programmitnig@r-intensive scal-
able computing (DISC) [2] have since been deployed in a wésthge of applications
(e.g., OLAP, data mining, scientific computing, media pesieg, log analysis and data
warehousing [19]). Hadoop runs on tens of thousands of nagesduction at Yahoo!,
and Google uses their implementation heavily in a wide rasfgaroduction services
such as Google Earth [8].

The MapReduce model allows programmers to focus on degighaapplication
workflow and how data are filtered and aggregated in the éiffiestages of these work-
flows. The system takes care of common distributed systesks tich as scheduling,
input partitioning, failover, replication, and distrilaat sorting of intermediate results.
The main benefits compared to other parallel programmingefsaare the inherent
data-local scheduling, and the ease of use, leading toesetedeveloper productivity
and application robustness.

In the seminal deployment at Google [6] the MapReduce achite comprises
one master and many workers. The input data is split andcagpli in 64 MB blocks
across the cluster. When a job executes, the input datatisquegd among parallel map
tasks and assigned to slots on idle worker nodes by the maktker considering data
locality. Similarly, the master schedules reduce tasksdée worker nodes that read
the intermediate output from the map tasks. Between the mdphe reduce phases
of the execution the intermediate map data are shuffled sithesreduce nodes and a
distributed sort is performed. This ensures that all dath wigiven key are guaranteed
to be redirected to the same reduce node, and in the reducessing phase all keys

are streamed in a sorted order. Re-execution of a failedisaskpported where the
master reschedules the task. To address the issue of a smdien of tasks executing
substantially slower than average and slowing down theathvj@b completion time,
duplicate backup tasks are speculatively executed andcattkethat completes first is
used whereas others are discarded.

2.1 Scheduling

In Hadoop all scheduling and allocation decisions are mada task and node slot
level for both the map and reduce phases. l.e., not all tafskgato may be scheduled
at once. The reason for not scheduling on a resource (nogkd)dat on a slot level,
is to allow different nodes of different capacity to offeryag numbers of slots and
to increase the benefits of statistical multiplexing. Theuagption is that even very
complex jobs can be broken down into primitive tasks that mayin parallel on a
commodity compute unit. The schedulers assume that eaclintédse same job takes
roughly the same amount of time to complete given a slot.i$f inot the case some
heuristics may be applied like speculative scheduling.

All tasks are by default scheduled using a FIFO queue. Expeé from large de-
ployments at Yahoo! shows that this leads to inefficientcatons and the need for
“social scheduling”. The next generation scheduler in Hgdddadoop on Demand
(HOD), addressed this issue by setting up private MapReclusters on demand, man-
aged by the Torque batch scheduling system. This approdet fa practice because
it violated the data locality design of the original MapRedwscheduler, and it became
too high of a maintenance burden to support and configure ditiathl scheduling
system!. Creating small sub-clusters for processing individuarsistasks, as in the
HOD case, violates locality because the processing nodgscomer a subset of the
data nodes, and thus more data transfers are needed torstagkdut data to and from
the compute nodes.

To address some of these shortcomings, Hadoop recently adstigheduling plug-
in framework with two additional schedulers that extentieathan replace the original
FIFO scheduler. The additional schedulers implementradtare fair-share capacity
algorithms where separate queues are maintained for $egeals (groups) of users,
and each are given some service guarantee over time. Thequeee priorities are
set manually by the MapReduce cluster administrator. Tédsices the need for social
scheduling of individual jobs but there is still a manual ocial process needed to
determine the initial fair distribution of priorities a@® pools, and once this has been
set all users and groups are limited by the task importanpéiech by the priority of
their pool. There is no way for users to optimize the usagdeif igranted allocation
across jobs of differentimportance, during different jtdmes, or to respond to run-time
anomalies such as failures or slow nodes. The potentiatatimn inefficiency arising
from this static setup is the main target for our work.

Previously we studied scheduling of entire virtual-maehimsted Hadoop clus-
ters in [22]. The general problem addressed there was hoeate sp and down a set
of virtual machines running Hadoop workers to complete jotige cost-effectively

Yhttps://cwiki.apache.org/jiral browse/ HADOOP- 3421

and faster, based on knowledge of job workflow resource reménts. This approach
works well if each user works with a separate data set. Howevease of groups of
people sharing large data sets, it becomes too much of aheaeto load the data into
multiple virtual clusters, and if file system clusters ararsil you face the same prob-
lem as with HOD of reduced data locality. Furthermore, Hamdizovery 10 intensive
both for file system access and Map/Reduce scheduling, s@liration incurs a high
overhead. To address these problems we, in this work, focuseapproach of allo-
cating slots in the Hadoop scheduler for different queuasdyically. This approach
works both in a virtual and physical cluster, and it incurssleverhead when sharing
the cluster among a large number of users. Next we describgcbeduler design and
implementation in more detail.

3 Design

The primary design goal of our Hadoop task scheduler is twmatiapacity distribution
across concurrent users to change dynamically based ompreferences. Traditional
priority systems that try to guess user priority are too cuaate [25], and unregulated
user priorities assume trusted small groups of users. Gwedsder automates capacity
allocation and redistribution in a regulated task slot vese market.

3.1 Mechanism

The core of our design is a proportional share resourcealmtmechanism that allows
users to purchase or be grantedueue priority budgetThis budget may be used to
setspending rateslenoting the willingness to pay a certain amount of the bugge
Hadoop map or reduce task slot per time unit. The time undidigurable, and referred

to asallocation interval It is typically set to somewhere between 10 seconds and 1
minute. In each allocation interval the scheduler:

— aggregates all spending ratefsom all current users to calculate the Hadoop cluster
price, p,

— for all users, allocate&s; /p) x c task slots (both mappers and reducers) to user
wheres;, is the spending rate of usérandc is the aggregate slot capacity of the
cluster,

— for all users, deducts; x u; from budgeth whereu;, is the number of slots used
by user:

Users consuming more resources will deplete their budgterfagiven the same
spending rate. However, they are guaranteed to not pay imanehe spending rate per
allocated slot. Thus a usel¥d represents her willingness to pay a certain rate per slot.

It may appear that this model is biased towards users withl ot who would
be able to outbid users with bigger jobs. However, in the tepddlapReduce task
model users with big jobs can effortlessly scale down thodisjto run fewer concurrent
tasks and thereby consume the same amount of resourcespeurtit as small jobs
but instead run longer. Our model thus sets the right inecestior users to scale back
resource consumption as much as their job deadlines or Sllava a

Because we only want to charge each user for the capacityuseesnd reallocate
the unused capacity to other users, (and we want to make seirg actually pay for the
spending rate thelyid) we calculate the capacity allocation and the price to paglfis
for an allocation interval based on the spending rates inntieeval directly preceding
the interval when the slots are consumed. To avoid blockmg arriving users and
having non-running users hold up resources, we only cdkala allocation for a user
if either a job is pending or running for that user.

To adapt more quickly to user demand fluctuations and avad bé&queue block-
ing and starvation issues, we support preemption whereslask that have been al-
located but are no longer paid for may be reclaimed and akdd® other users. This
works well for most applications since Hadoop automatyqailits preempted tasks back
in the pending queue for reallocation when demand, measqyreder spending rates,
allows.

The key feature of this mechanism is that it discouragesritBeg and gaming by
users. Users who claim a higher priority will have to pay foso they have an incentive
to accurately reveal how important priority is to them. ldgidn, the variable pricing
allows users with a low budget and low time-sensitivity tem uring low demand
periods. These users would otherwise not be able to run mt alffixed pricing model.
Conversely, at high demand periods, users have a disimedatiun, but resources will
nonetheless be available (for a high price) for users ttedlyraeed them.

The disadvantage is less capacity predictability and mare@tion in capacity al-
located to an application. However, the Hadoop MapRedueedsding framework al-
lows jobs to be split up in finer grained tasks that can run arssiply fail and recover
independently. So the only thing the end users would needbtoyvabout is to get a
good enough average capacity over some time to meet theltides

This introduces the difficulty of making spending rate diecis to meet the SLA
and deadline requirements. It is outside the scope of thpempand the target of future
work to address this particular issue, but the mechanisesepted here opens the door
for innovation in this area, by allowing much more fine graimentrol over resources
for competing users in a multi-tenancy hosted Hadoop dluste

Figure 1 depicts how our scheduler components fit into theodpdarchitecture.
Alice is willing to pay $4 per slot, Bob is willing to pay $1.58nd Sam $2. Assuming
that 15 slots are available to these three users in the glldzatal) slot table, Alice
will be allocated 8 slots, Bob 3 slots and Sam 4 slots. Exdutiy these slots are
mapped to physical nodes is not guaranteed. Whenever aestotries available the
allocations are recalculated to determine who should getélwv slot according to their
granted share. Furthermore, local tasks are attemptedIfitbiat fails, remote rack
tasks are scheduled. There may be opportunities to deladathg of some jobs to
achieve a higher ratio of data local tasks. However, in threect implementation we
enforce the shares strictly in each time period. This is nvetly restricting because
Hadoop replicates all the data in at least three data blogkdefault, which ensure
many opportunities for data local scheduling. Packing a asea single node versus
distributing the job workload across nodes is another apptin specific trade-off that
we may address in future implementations.

Global
Slot Table

Workers
e

8 TaskTracker
Map
Slots
Reduce
Slots

- OO
Wl

Fig. 1. Dynamic Priority Scheduler Architecture. This examplevsadow a max capacity of 15 Map slots gets allocated
proportionally to three users. For example, Alice bids $d gets4/(4 + 1.5 + 2) = 15 = 8 slots. The central sched-
uler comprises a Dynamic Priority Allocator and a Prioritgf@cer component responsible for accounting and schedule
enforcement respectively.

Possible starvation of low-priority (low-spending) tagsien be mitigated by using
the standard approach in Hadoop of limiting the time eack igsllowed to run on
a node. Moreover, our new mechanism also allows adminisgdd set budgets for
different users and let them individually decide whetherdhrrent price of preempting
running tasks is within their budget or if they should waitilithe current users run out
of their budget. The fact that Hadoop uses task and slot #fedduling and allocation
as opposed to job level scheduling also avoids many starvatienarios.

If there is no contention, i.e. there are enough slots availeo run all tasks from
all jobs submitted, the cost for excess resources esdgit@omes free because of the
work conserving principle of our scheduler. However, thargmtees of maintaining
these excess resources are reduced. To see why, consideseevdeciding whether to
submit jobs or not. If they see that the price is high they mait W preempt currently
running jobs, but if the resources are essentially giverfautee they are likely to lay
claim on as many resources they can immediately.

We note that the Dynamic Priority scheduler can easily béigored to mimic the
behavior of the other schedulers. If no queues or users mgveredits left the scheduler
reduces to a FIFO scheduler. If all queues are configuredthdétsame share (spending
rate in our case) and the allocation interval is set to a vanye value the scheduler
reduces to the behavior of the static fair-share schedulers

3.2 Implementation

The Dynamic Priorityscheduler is implemented as a scheduler plugin for the Hadoo
JobTracker service. This allows DP to be a drop-in replacgrotthe default FIFO

scheduler. The scheduler is split into two components: enafiocation,Dynamic
Priority Allocator, and one for enforcemerRyiority Enforcer.

TheDynamic Priority Allocatoiimplements dynamic slot allocation, budgeting and
accounting, and provides a remote secure APl to manage anidambudgets and
spending rates.

The Priority Enforcer component is responsible for enforcing the shares of re-
sources calculated by the allocation component. It is nesipte for picking pending
tasks from jobs to be scheduled when mapper and reducercglets up in Hadoop
TaskTrackers. It thus implements the same functionalityghasFIFO and fair-share
schedulers. However, these schedulers were not desigrethtde a large number of
queues with constantly varying capacities that are detechon demand from user
input. They do not enforce shares at the granularity andgicgcthat our mechanism
requires and do not support preemption to the extent thatgeine.

The budgets and spending rates are stored in a storage centybat can be file-
based or SQL-based. An XML REST Servlet controls the scleedlihe monitoring
component plugs into the Hadoop Jobtracker Web console WWéite console is de-
picted in Figure 2. The numbers displayed next to each quepiesent from top to
bottom: current budget, spending rate, resource shans, séed, and slots pending.
The supported APIs are listed in Table 1 and an example XMphaese for authorized
requests can be seen in Listing 1.1.

Table 1.REST XML API to Manage Scheduler Allocations

HTTP Options Description Authz
price Gets current price None
info=queue Gets queue usage info User
infos Gets usage info for all queug&\dmin
setSpendingspendin@queue=queU¢Set the spending rate for queUser
addBudgetbudge&queuexjueue |Add budget to queue Admin
addQueuegueue Add queue Admin
removeQueuegueue Remove queue Admin

Listing 1.1. Example XML response for authorized re-
quests

<Queuelnfo
<hostnyhost</host>
<gqueue name=queuel">
<budger»99972.&/budger
<spending-0.1k/spending
<share-0.008979593/share>
<used1</used>
<pending-43</pending>
</queue
</ Queuelnfo

opencirrus-1270 Hadoop Map/Reduce Administration

State: RUNNING

Started: Sun May 24 22:26:24 PDT 2009

Version: 021 0-dev, r733898

Compiled: Fri Jan 16 17:03:14 PST 2008 by hadoopsandholm
Identifier: 200905242226

Cluster Summary (Heap Size is 902.69 MB/963 MB)

‘Maps ‘ Reduces ‘ Total Submissions | Nodes ‘ Map Task Capacity | Reduce Task Capacity ‘ Avg. Tasks/Node ‘ Blacklisted Nodes ‘
ElE 423 [|21 |54 [10.00 lo

Scheduling Information Budget Remaining

Queue Name | Scheduling Information /
default null / Spending Rate Bid
100000 4~

queuet 3.08642E-4 ¢——u—_| .
0 \\ Capacity Share (0..1)
0l

9998 203 \

001 Running Tasks
queue10 0.0030864198

1

322

9998.023 Pending Tasks

0011
queueld 00033950617
1

322

Fig. 2. MapReduce Administration Monitor.

3.3 Security and Authentication

The existing Unix user and group based security model of Hpd®too simple to sup-
port a full-fledged multi-tenancy resource market as dbsdrabove. More specifically,
relying on each user to pick queues and be trustworthy abeirtidentity would de-
feat the accounting and budget enforcement mechanism. ésudt,rwe implemented
a lightweight symmetric key authentication and role-bamtiorization protocol mod-
eled after AWS Query Authentication [1], and OAuth. The atege is that it is easy
to use from any client and only requires the capability tostaret HMAC/SHAL sig-
natures based on shared secret keys. The existing Hadoapamine clients were
also extended to pass the signatures required to submitgahgues being paid for in
job configuration parameters.

4 Evaluation

In this section, we describe experiments run to study thiakitidy and allocation dy-
namics of our scheduler. There are three sets of experinienle first set, we examine
the correlation of spending rates, budgets and performanatecs. In the second set,
we study how accurately and effectively service levels carsigpported. Finally we
measure how well the system adapts to changes in spendisy khtless otherwise
stated all users are given the same budgets in all expesiméfet use the termueue
interchangeably with the teromsersince all users are given a dedicated queue to submit

their jobs on in all of our experiments. Our scheduler allowsues to be shared across
users but it should be compared to sharing bank accountsessto a PC among users,
i.e. sharing security credentials such as passwords, vidgénerally frowned upon.

4.1 Setup

We use two testbeds for our evaluation: a 30 node quad-coséecl(referred to as the
big cluster) and a 5 node octo-core cluster (referred to asrial cluster). Thesmall
cluster runs on virtual machines, whereas g cluster is installed directly on the
hardware. More details of the clusters are shown in Table 2.

For both setups, we allocate one queue per user and run 2eg8 eancurrently.
All users run the same benchmark application, the Pi estinfiedm the Hadoop exam-
ple code base. The Pi application was set up to be able to c@nthe entire cluster
if run in isolation (i.e. number of job tasks were set to theniher of slots available
in the cluster), and thus ran slower when there was conterifioe pi precision target
was set tat50000000 for the small cluster an800000000 for the big cluster to ensure
that the application was both CPU and data intensive. THeyatai fine-tune the CPU
versus data intensity without having to provision a largeant of data was the main
reason we chose the Pi application for our experiments. dtteliat all Hadoop appli-
cations conform to the same general internal structure Réajpice) allows us to treat
the results more generally than with a typical parallel viaekd. To stress the system,
all users are launched concurrently and submit a continsioeiam of jobs. In the initial
2-user experiments we test the FIFO, Fairshare (fair-ss@reduler developed at Face-
book), and Capacity (fair-share scheduler developed atfalschedulers and compare
them to the Dynamic Priority scheduler that we develope@ Fairshare and Capac-
ity schedulers were not able to handle the 10-80 queue amdvaskload reliably so
they were excluded from the larger experiments. To switdtvéen the schedulers dur-
ing the experiment we restarted the JobTracker servicdtirggin a clean start since
no running job information is persisted in the current vansof the JobTracker. The
stream of jobs from the clients is not affected either duangstart since the clients
will just resubmit jobs when a job is done or fails.

Table 2.Experiment Cluster Setup

Cluster|Used in GraphgNodesCores (CPUs)Physical/Virtual |OS Disk
big 3-9 30 120(30) Physical CentOS $45TB
small |10-11 5 40(40) Virtual CentOS $250GB

4.2 Spending Rates, Budgets and Performance

In the first experiment, we start two concurrent user worttodVe give queuel an
initial budget of 1000 and queue2 10000 credits. The spendite per Hadoop slot

of queuel is set to twice the rate of queue2. Since queueiheill be allocated twice
as many resources the total spending is expected to be 4 tiraeef queue2 in any
allocation interval.

Figure 3 depicts the budget over time for the two users, agdrEi4 shows the
completion time of their jobs over the same time period. @hesluler is initially con-
figured to run without preemption and queuel will thus notaseenmediate benefit in
completion time.

We also see that the budget of queuel runs out at time 05/08-2% which point
the allocation is given over to queue2, and the performahge@uel degrades signif-
icantly. At time 05/16-14:00 the budgets of queuel and gewe reset to 10000 and
the scheduler is reconfigured to preempt. We now see thautiged completion time
is around 3000s for each job in Figure 4 and the spending ist% more than
queue?2 (25% expected) as seen in Figure 3. We do not obtaitlyekalf the job com-
pletion time when getting twice the amount of resources botél .8. This is because
we only control the slot capacity not other resources su¢fHsS (distributed file sys-
tem) access and cross node bandwidth. We can also see thagtikespender (queuel)
gets a very stable high performance, oscillating betwe®®-3&200s completion times
compared to the low priority queue (queue?2) which oscitldtetween 4500-5800s.

Now just looking at Figure 4 at time 05/18-00:00 we reconfggtire cluster to use
the Capacity scheduler. The differentiation in obtainadtise level is far less although
the capacity configuration is the same, twice as many slatgdeue2. We attribute
this to less aggressive preemption, and less granularaiomter allocations in this
scheduler compared to ours. We can also see that the minégngg variation is greater
for both queues with the capacity scheduler. Queuel ossllaetween 3000-3600s,
and queue?2 oscillates between 3600-5500s.

Taking the ratio of minimum performance to maximum perfoncegawe get a dif-
ferentiation of about.5 to be compared tt.8 for our scheduler. At time 05/19-00:00
we had a failed attempt to set up the Fairshare schedulehi®miorkload. We saw
that all schedulers showed signs of a memory bloat with veadkland would eventu-
ally run out of memory. This behavior was most apparent withFairshare scheduler
which did not manage to complete a single job. We point ouittthia bug was not in
any of the schedulers but in the jobtracker framework, sesit urfaces how different
schedulers handle memory in general. So instead at tim@d®B10 we reconfigure
the cluster with the standard FIFO scheduler. We can seéhisascheduler does not
offer any differentiation as expected, and the averageopmdnce level is above the
queuel level and below the queue? level obtained with thersithedulers.

We note that the capacity scheduler was configured with 6@m@amption. More
frequent preemption caused problems with completing thlestaNeither the fair-share
nor the FIFO schedulers supported preemption in the vessesied. However, both
Capacity and Fairshare Queue/Pool capacity was confighieezkact same way as with
our scheduler, with the only difference that it was not ablehange over time. The
FIFO scheduler was not configured with any priorities, sinceueue based priorities
could be set.

2 Hadoop 0.20-0.21 code base checked out around May 2009

10000

2000

2000

7000

6000

5000

4000

3000

2000

1000

0
0515
12:00

Budget

Budget
depleted

~/

Budgets
replenished

Gueuel ———
queue?

05/15
18:00

0516
00:00

05116
06:00

05116
12:00

0517
12:00

0517
18:00

0516 0517 0817
1800 00:00 0600

Fig. 3. 2-user budget dynamics exampléie graph shows how the budget (y-axis) evolves over timax{g-as month/day
and time). The slopes of the curves represent the spendiegotthe users over time. Queue/user 1 uses twice the sgendi
rate of queue/user 2. At the center of the graph the budgétstbfusers are reset to 10000 (time 05/16 14:00).

2000

7000

5000

5000

4000

Completion Time (s)

- Capacity o 1
DP no preempt il ,
i —>_. Fair 1

" i
I U 2‘ - v‘«*yﬁ.;ﬁ
3000 | g
|
2000 i OTO T T N
ou| Queue2 no DPpreempt -
| budget
0815 0546 0516 0517 05M7 0518 0518 0818 0519 0520 0520 05721
12:00 00:00 12:00 00:00 1200 00:00 12:00 00:00 12:00 00:00 1200 00:00

Fig. 4. 2-users service differentiation tracEhe graph shows the completion time over time for jobs sueahiby the 2
users in the budget graph in Figure 3. The first half of the liimeecorresponds directly to the timeline in the budget brap
The second half corresponds to experiments with the capéaiitshare and FIFO schedulers. The first drop in compietio
time for queue 1 is correlated with the budget running oue Réy result is the clear separation of completion times betw
queue 1 and queue 2 seen in the first half compared to the shatiraf the graph.

We stress that it is not simply an implementation artifaet the capacity and fair-
share schedulers perform poorly in these tests. These dengdvere not designed for
dynamic priorities nor for handling a large number of quefiem the outset as our
scheduler wag.

4.3 Allocation Fidelity and Overhead

Now we look at how well we can preserve the differentiatiorervice levels with more
users and queues. Figure 5 shows the completion times ebtéin 10 queues when
queuen is given a share af/ "2 i. We can see that all 10 service levels are enforced
successfully. At time 05/21-10:00 we reconfigure the clusitith the FIFO scheduler.
We note that there is a random distribution of service lef@ighe first job because
there is no preemption. For other jobs the identical serlégel is given to all jobs.
This experiment showcases that a dynamic non-stationameax with users entering
and leaving the system may result in random highly variabigise levels even with
the FIFO scheduler.

Job Trace
60000 T T T T T

50000 -

queued
gqueued =
queuelld —=—

40000 -

30000 -

20000 -

10000 -

0
05/20 05/20 061 0521 05421 0521 0521 0521 0522 0822 0622 0622
16:00 2000 0000 0400 0800 1200 1600 2000 0000 0400 OQRO00 1200

DP FIFO

Fig. 5. 10-user service differentiation tracehe graph shows completion time for jobs (y-axis) over timexis). The first
half of the graph shows how our scheduler separates the giygerformance compared to the second half when the FIFO
scheduler was used. Half of the queues obtain better peafazenand the other half worse than the FIFO case.

In Figure 6 we show the results of an experiment that ran duedialer with pre-
emption and 80 users first, then the FIFO scheduler and finalyscheduler without
preemption. Still we see that the 10 service levels are mimedl. We do not obtain
more than 10 service levels with this application (Pi estarjaThe number of service
levels obtainable depends both on overhead and bottleivetties specific applications

Shttp://issues. apache. org/jiral browse/ HADOOP- 4768

run but also on the overall scale of the cluster and the slatitadle. We also note here
that the preempting version of our scheduler, in the leftdfehe graph, delivers some-
what more stable service level than the non-preemptiveaiier time 05/24-22:00) but
the differences are cosmetic. This experiment again shoat®tir scheduler shapes the
workflow into the desired service levels quickly.

Job Trace
50000

45000
40000 - L =
35000 |-
30000 |

25000

Completion Time (s}

20000 f mo-mo——————E—A
15000
10000 -

RPN

5000 |

05/22 0523 05/23 05/23 0523 05/24 0524 05/24 05/24 0525 0525 0525 05/25
1800 0000 0600 12:00 1800 0000 0600 12:00 1800 0000 0800 1200 18:.00

DP w/ preempt FIFO DP w/o preempt

Fig. 6. sample of 80-user service differentiation trathe graph shows completion time (x-axis) over time (y-axisng

the same setup as in the 2-user graph in Figure 5, but with &8 .uBor clarity only a sample of the users are shown. The
results are very similar to the 2-user graph, which showsdavscheduler’s ability to differentiate service levelalss well

in number of queues/users.

We now study the performance fidelity of the granted allasatinore carefully.
There is obviously some trade-offs in throughput of the eysand the level of pre-
emption enforced since a killed Hadoop task (note not a jobtrbe restarted from
the beginning. Figure 7 shows the fidelity versus overheath®two-user experiment.
The ideal line depicts the performance expected if queued ita jobs twice as fast as
queue2, but the average across the queues is the same asFtif@hcase (e.g. optimal
fidelity and maximum throughput). Our dynamic priority sdoker running with pre-
emption comes closest to meeting this ideal, but we can aksthat we can improve the
throughput and move closer to the FIFO line if preemptionastarned on. Improved
closeness to ideal here is seen by observing that both theefjymint and the queue2
pointin the graph for the 60s preempt dynprio line are cltséne respective ideal line
points. One could argue that the capacity scheduler achikedeast degradation across
both users while still achieving some differentiation ahdwdd therefore be preferred.
This may be the case in fair-share scheduled systems wherg dis not pay for their
usage. But in a cloud computing scenario where queuel cpetl twice as much
as queue?2 it may no longer hold true. We focus more on diffexéimg service-levels
that are as close as possible to the capacity you pay for assegpo achieving some
overall fair outcome in our scheduler.

Fidelity vs Overhead

5000 r
dynprio (non-preempt) —+—
dynprio (605 preempt) -—--—

DP Preempt capaciw‘(fin(rm praenmnn) ,E,,

—] ideal

5000 -

4000 | \
P
*

3000 I

—_—

Avg Completion Time (s}

2000

1000 -

Capacity

0 I L
queust queuez

Fig. 7. 2-user fidelity to granted shares and throughput I8sis graph compares the overhead of differentiating servic
levels to using FIFO scheduling. The fairshare schedulsrved included in the results due to reliability issues. Heaveit
behaves similarly to the capacity share scheduler. The lidearepresents the performance that should have beemaase
for the two queues if adhering to the configured capacitieifevaibtaining the same throughput as with the FIFO scheduler
When comparing the slopes of the dynprio preempt line anddpacity scheduler line with the ideal line we see that the
slope of the dynprio line is a closer match (one of the goatsuofscheduler).

Figure 8 shows the corresponding graph for the 10 user expati We can see that
the extremes (highest and lowest service levels) are fay & the ideal line whereas
service levels 3 through 9 mimic the ideal scenario well. We ahow an ideal adjusted
line that has the same service level as the dynamic priarftgduler for the maximum
service level but the same degradation in service levelb@a#deal line. We can see
that only service levels 1 and 2 fall outside of the ideal atehl adjusted lines, which
indicates that our scheduler is a bit biased against uséislovi spending rates. The
same behavior can be seen in the 80-user experiment depicteplire 9. Here we note
that the users are heavily discretized in groups of about3.0Fhis is most likely due
to the MapReduce workload chosen which only uses 10 redusedsthus limits the
reduce phase throughput to 10 service levels.

4.4 Adaptability of Service Levels

We run the final experiments on osimall cluster and investigate how well we can dy-
namically adjust the service levels. 10 users all run 10 Binesor jobs in sequence
and concurrent with all the other users. Uaés given a 4x boost in spending rate for
jobn. In Figure 10 we can see that a 3x performance boost is oldtaimesistently for
all users and jobs regardless of when during the job sequbedeoost kicks in. The
valleys hover around completion times of 300s, whereaswbemge of non-valley jobs
lies around 900s. Figure 11 shows the same experiment batpréemption turned
off. We can then see that the service levels of the first jobsrandom but all other
jobs follow the same pattern as in the preemption case. Hiowsthat we are able to

Job Throughput
60000 T

T
prio —+—
fifo -

ideal ---*---
ideal adjusted &

50000

40000

30000

Avg Completion Time (s)

20000

10000

Fig. 8. 10-user fidelity to granted shares and throughput I@8ss graph compares the overhead of differentiating servic
levels to using FIFO scheduling for the experiment with 1@rsguser 1-10 denoted on x-axis). The ideal adjusted line
corresponds to the ideal (no overhead and perfect diffiertéort) line with the same minimal completion time as obserin

the experiments. Only users 1 and 2 (with the lowest slota@gpaleviate significantly from the ideal lines.

Fidelity vs Overhead

60000 T T
dynprio (non-preempt) —+—
dynprio (5min preempt) -
fifo ------
ideal &
50000 ideal adjusted 4

40000

30000

Avg Completion Time (s)

20000

10000

Fig. 9. 80-user fidelity to granted shares and throughput IG4ss graph compares the overhead of differentiating servic
levels to using FIFO scheduling for the experiment with 88raguser 1-80 denoted on x-axis). As in the 10-user graph the
top 80 percent of the users (with highest spending rates apalcity) obtain completion times within the ideal linegt

side of graph).

converge quickly to a stable state even without preempfibe. overhead of preemp-
tion, calculated based on the difference in average job tetiop time between the two
experiments was less thar6%.

Job Trace

1400

1200 |

1000

800

600

Completion Time (s)

200

0 I I I I I I I I I
11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 13:45 14:00 14:15
Finish Time

Fig. 10. bynamic priority adjustment with 10 users, with 60s pregemptThe graph shows the completion times of jobs
for queues/users who increased their spending rates foxttiejob, where x is the queue number. All boosted jobs oied
a significant decrease in completion time, showing thetggilid dynamic nature of our scheduler.

5 Discussion

Some issues merit additional discussion: preemption, mynadjustment, and cur-
rency management.

Whether preemption should be offered or not depends on fes tyf workloads ex-
pected. For CPU bound, embarrassingly parallel applicatibat benefit from holding
a slot for a longer duration of time, preemption may be nexrgs® avoid starvation
effects. On the contrary, for data bound applications ttratsn small amounts of input
at a time into Map and Reduce tasks that complete within alemfpninutes, preemp-
tion may not add much value. We saw that using preemptiorriada small (2.6%)
overhead in throughput, but allowed the system to adherertice levels more quickly
and accurately.

Note that preemption in the Hadoop context is somewhatréiffiefrom the tradi-
tional CPU/scheduling type of preemption. Hadoop preeomgtido not suspend and
then resume the task but rather kills the task and forcesstax over again. It thus
causes a throughput penalty. Care must hence be taken tiokjtibs that will degrade
the throughput the least while still ensuring that stanratind unfairness effects are
minimized.

One feature of the Dynamic Priority scheduler (DP) is thatldws users to change
the priority of jobs during a run. However, it does not requtr Users who prefer not

Job Trace
1400

T T
queuel —+—
queue2 -
queue3 ---*---

1200 | queue4d & 4

queues

. queueb
R queue7 ---e---

queue8 -4 |
queue9 -4~
e gueue%o ——

1000

800

Completion Time (s)

200

0 I I I I
18:15 18:30 1845 19:00 19:15 19:30 19:45 20:00 20:15 20:30 20:45

Finish Time

Fig. 11. Dynamic priority adjustment with 10 users, without preeiomtThe graph shows the completion times of jobs
for queues/users who increased their spending rates fioixttiejob, where x is the queue number when no preemption was
used. The graph looks almost identical to the preemptioptgvéth only slight deviations for the boosted jobs from user
and user 10.

to monitor their jobs can let them run as initially configur&tie opportunity to change
priorities is most useful to handle unexpected situatidees derver failures, increases
in load by other users, and the inability of users to predietrtown job runtimes. In
the latter case, DP allows users to adjust their spendieg &t that the actual running
time of their jobs fits their deadlines.

Since the DP introduces a currency into the system, it require system adminis-
trator to manage the overall economy of the system. The Ilgasitis to keep a stable
exchange rate between currency and computational worksUised to be able to ex-
pect that 1 credit will generally get 1 server hour (for exéahypOf course, prices will
fluctuate, but the average should remain stable. Admins oahid by setting a total
income rate per hour for the system which is equal to the numbservers. The ad-
min then distributes this income among the users. For exarapluster of 200 servers
would have an income of 4800 credits per day which can beatkaicfor users. This to-
tal is fixed, regardless of the number of users, so the admindheserve some amount
for new users. As the admin adds new servers, the total caeeise.

If prices start increasing significantly, this indicatestttine system is under-provisioned
with respect to its load. The admin should consider addingenservers and/or mov-
ing some users to another system. Conversely, if priceams#], then the system is
over-provisioned and the admin can add users and/or renaovers.

The admin must be careful with the inevitable demands teese the income rate
for some users. If some users actually have more importasttftan other users, then
the admin should increase the income rate of the importarswshile decreasing the
rate for other users such that the total income rate is the s@therwise, the system
will enter an inflationary spiral that is difficult to break toof.

6 Related Work

Parallel job scheduling is a well-investigated field botthi@ory and in practice with ap-
plications beyond computational resource management Théoretical studies com-
monly assume embarrassingly-parallel jobs which has leaduch of the innovation
in the field to be driven by simulations and experiments [Ttjle most commonly
deployed scheduling regime is First-Come-First-ServeeHE) or variations thereof.
FCFS suffers from head of queue blocking and starvatioressstwo popular varia-
tions to address these issues are backfilling [15] and gamedsiting [16] [9]. Many
heuristics and variations have been proposed to improeadfnput, e.g. Shortest-Job-
First (SJF), or fairness, e.g. Fair-Share Scheduling. Mdrlgese classical scheduling
algorithms focus on improving systems metrics such azatithn and average response
time. Some of these systems may however be very inefficiet@rims of serving the
most important task at the best time from an end-user powiegf. The reason for this
is that priorities are either assigned by the system, or alewalid across jobs for the
same user, as exemplified by the Maui scheduler [13].

Proportional share and Lottery scheduling were proposghifto give users more
direct and dynamic control over capacity allocations fdfedent types of tasks over
time. In previous work this technique has been applied tb bhister node [4] and VM
resource scheduling [14]. To our knowledge our work is the fipplying the propor-
tional share mechanism to MapReduce slot scheduling fopotettional clusters.

Our scheduling approach is closely related to and inspiysetbnomic schedulers,
whereby you bid for resources on a market and receive altotabased on various
auction mechanisms [7, 18, 26, 14,5, 23, 28, 3]. We do notpdeaor require that our
scheduler budgets are tied to a real currency. Furthermarep not assume that there
are competing users who should be given different shardseofesources. Giving all
users the same budget initially but allowing them to speigiidhdget at different rates
is a valid use case of our scheduler. Many game theory irgpigent scheduling al-
gorithms such as the Best Response algorithm in [10], coeliriplemented on top
of our scheduler for Hadoop jobs. Meta-scheduling acrostoba clusters in different
organization is also simplified by exposing different dechaased prices for running
jobs in a cluster.

Other work to improve the FIFO and fair share scheduling ind¢tg includes the
LATE scheduler [30]. The main purpose of the LATE scheddéoipredict Hadoop job
progress more accurately and to take overhead into accdwert l@unching speculative
tasks. In[29] the work on the LATE scheduler is extended by ew techniques, delay
scheduling and copy-compute splitting, designed to im@rdata locality and avoid
reduce slot bottlenecks respectively. These techniquesamnplimentary to our work.
In theory both of these issues are orthogonal to our schegluliechanism since they
tackle separate problems (not incentives and accourtiahitiich are at the core of
our work). In practise, the delayed scheduling techniquelevoequire some changes
in how slots are allocated in our scheduler, but since we ohérge for slots that are
actually used, the general accounting mechanism wouldistagame.

MapReduce scheduling has also been explored beyond theamnadl data center
domain, such as for Cell [20], GPUs [12], and shared memarfyigectures [21]. Our

general proportional share MapReduce slot algorithm prteslén this paper could thus
potentially also be employed in these other domains.

7 Conclusion

Our experimental results demonstrate that our scheduddesbetter than the existing
Hadoop schedulers in the number of queues. Having more quiogvs providers to
provide more service levels. The fair-share schedulerdcnat even handle the exper-
imental workload for two concurrent queues, whereas thaagapscheduler was not
able to handle the workload with ten queues. The DynamiaiBrischeduler handles
up to 80 queues efficiently, which was only limited by the meyncapacity of the
experiment client node.

This enhanced scalability is due to the light-weight desifjBP. In contrast to the
other schedulers, it does not incur the overhead of heesifdr inferring fair priorities
over time. Instead, DP users directly decide prioritiesitsmly has to maintain the
budget currently remaining. As of this writing, the capaaitheduler contains 140KB
of non-test source code, the fair-share scheduler 130KdBD&55KB.

Furthermore, we have shown that DP adapts service levelndigally and quickly
even during heavy load, adheres to them more accuratelywads shown by having 10
users with a stream of 10 15min jobs all boost their singlé Ipigority jobs accurately
without overhead or notable randomness.

DP also solves the problems of lost data locality and virzaéibn overhead that we
encountered in our previous work on virtualized MapRed2@&.[The downside is that
we lose some control over tasks that are long-running, amésthiation properties can-
not be enforced as strictly. However, an advantage is tha&icibmes easier to provision
commonly used software and data sets in shared test-beds.

Future work includes leveraging the dynamic capacity arnitr our scheduler to
adaptively change the allocations to meet higher level SbhAlgisuch as deadlines.

References

. Amazon elastic compute cloublt t p: / / aws. amazon. coni ec2,2008. Retrieved March 6, 2008.
. R.E. Bryant. Data-intensive supercomputing: The casBf8C. Technical Report CMU-CS-07-128, Carnegie Mellon
University, 2007.

3. R.Buyya, M. Murshed, D. Abramson, and S. Venugopal. SaliregilParameter Sweep Applications on Global Grids:
A Deadline and Budget Constrained Cost-Time OptimisatidgoAthm. Software: Practice and Experience (SPE)
Journal 35(5):491-512, April 2005.

4. B. N. Chun and D. E. Culler. Market-based proportionabuese sharing for clusters. Technical Report CSD-1092,
University of California at Berkeley, Computer Science iBion, January 2000.

5. B.N. Chun and D. E. Culler. User-centric performance ysiglof market-based cluster batch scheduler®rateed-
ings of the 2nd IEEE International Symposium on Cluster Qging and the Grigl2002.

6. J. Dean and S. Ghemawat. MapReduce: Simplified data miagesn large clusters. 18ymposium on Operating
System Design and Implementati@d04.

7. C. Ernemann and R. Yahyapour. Applying economic schedutiethods to grid environment&rid resource man-
agement: state of the art and future trengages 491-506, 2004.

8. Fay Chang and Jeffrey Dean and Sanjay Ghemawat and Wilsdsi€h and Deborah A. Wallach and Mike Burrows
and Tushar Chandra and Andrew Fikes and Robert E. GrubetatBég A Distributed Storage System for Structured
Data. InSymposium on Operating System Design and Implement2006.

9. D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn. Raiab scheduling - a status report. JSSPP 2004pages
1-16. Springer Verlag, 2004.

10. M. Feldman, K. Lai, and L. Zhang. A price-anticipatingaarce allocation mechanism for distributed shared alsiste
In Proceedings of the ACM Conference on Electronic CommeQes.

N -

12.

13.

14.

15.

16.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

. E. Frachtenberg and U. Schwiegelsolinb Scheduling Strategies for Parallel Processing: 13tiernational Work-

shop, JSSPP 2007, Seattle, WA, USA, June 17, 2007, Revigexs Paecture Notes in Computer Scienag)apter
New Challenges of Parallel Job Scheduling. Springer PhibiisCompany, Incorporated, 2008.

B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mar#apReduce framework on graphics processors.
In PACT '08: Proceedings of the 17th international conferenneParallel architectures and compilation techniques
pages 260-269, New York, NY, USA, 2008. ACM.

D. Jackson, Q. Snell, and M. Clement. Core algorithmé&@ftaui scheduler. Ifth International Workshop on Job
Scheduling Strategies for Parallel Processipgges 87-102, 2001.

K. Lai, L. Rasmusson, E. Adar, S. Sorkin, L. Zhang, and BHAberman. Tycoon: an implemention of a distributed
market-based resource allocation systémlitiagent and Grid System&(3):169-182, Aug. 2005.

D. Lifka. The ANL/IBM SP scheduling system . In D. Feitabsand L. Rudolph, editordob Scheduling Strategies
for Parallel Processingpages 295-303. Springer-Verlag, 1995.

J. K. Ousterhout. Scheduling techniques for concursgatems. In3rd International Conference on distributed
Computing Systempages 22-30, 1982.

. M. Pinedo.Scheduling: Theory, Algorithms, and Syste®gringer Science, third edition, 2008.
. R. M. Piro, A. Guarise, and A. Werbrouck. An economy-lbaaecounting infrastructure for the datagrid. GiRRID

'03: Proceedings of the 4th International Workshop on Grish@puting page 202, Washington, DC, USA, 2003. IEEE
Computer Society.

. http://wiki.apache.org/hadoop/PoweredBy, 2009.
. M. M. Rafique, B. Rose, A. R. Butt, and D. S. Nikolopoulosell@r: A framework for supporting mapreduce on

asymmetric cell-based clusteiRarallel and Distributed Processing Symposium, Interoraal, 0:1-12, 2009.

C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, akdzyrakis. Evaluating MapReduce for multi-core and
multiprocessor systems. IHRPCA'07: IEEE 13th International Symposium on High Perfarmoe Computer Architec-
ture, pages 13-24, 2007.

T. Sandholm and K. Lai. Mapreduce optimization usingul@gd dynamic prioritization. ISIGMETRICS '09:
Proceedings of the eleventh international joint conferean Measurement and modeling of computer systpages
299-310, New York, NY, USA, 2009. ACM.

T. Sandholm, K. Lai, and S. Clearwater. Admission cdiira computational market. I6CGrid '08: Proceedings of
the 8th International Symposium on Cluster Computing aed3Hhd, 2008.

Sanjay Ghemawat and Howard Gobioff and Shun-Tak Leunige Google File System. IACM Symposium on
Operating Systems Principle2003.

C. A. Waldspurger. Lottery and Stride Scheduling: MExiProportional-Share Resource Management. Technical
Report MIT/LCS/TR-667, 1995.

C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Keptaart) W. S. Stornetta. Spawn: A Distributed Computational
Economy.Software Engineerindl8(2):103-117, 1992.

T. White.Hadoop: The Definitive GuideD’Reilly, 2009.

R. Wolski, J. S. Plank, T. Bryan, and J. Brevik. G-comraeidarket formulations controlling resource allocation
on the computational grid. IlPDPS '01: Proceedings of the 15th International ParalleldaDistributed Processing
Symposium (IPDPS’01page 10046.2, Washington, DC, USA, 2001. IEEE ComputeieSoc

M. Zaharia, D. Borthakur, J. S. Sarma, K. EImeleegy, ®n&ér, and |. Stoica. Job scheduling for multi-user mapre-
duce clusters. Technical Report UCB/EECS-2009-55, HtattEngineering and Computer Sciences University of
California at Berkeley, 2009.

M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I.i&0 Improving MapReduce performance in heterogeneous
environments. INOSDI'08: 8th USENIX Symposium on Operating Systems Desighnaplementation 2008.

