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Abstract. A crucial step in DNA sequence analysis is mapping short se-
quences generated by next-generation instruments to a reference genome.
In this paper, we focus on efficient online scheduling of multi-user paral-
lel short sequence mapping queries on a multiprocessor system. With the
availability of parallel execution models, the problem at hand becomes a
moldable task scheduling problem where the number of processors needed
to execute a task is determined by the scheduler. We propose an online
scheduling algorithm to minimize the stretch of the tasks in the system.
This metric provides improved fairness to small tasks compared to flow
time metric and suits well to the nature of the problem. Experimental
evaluation on two workload scenarios indicate that the algorithm results
in significantly smaller stretch compared to a recent algorithm and it is
more fair to small sized tasks.

1 Introduction

The rate of increase in DNA sequence information have greatly exceeded the
expectations due to the emergence of next-generation sequencing instruments,
including Roche’s (454) GS FLX Genome Analyzer, Illumina’s Solexa IG se-
quencer, and Applied Biosystem’s SOLiD system, which are capable of sequenc-
ing more than one billion bases a day. The massive volumes of generated data
pose new computational and analytical challenges that need to be addressed
rapidly to keep up with the pace of the advancements in sequencing technology.

In many genome-wide and targeted studies, such as whole-genome resequenc-
ing, transcriptome analysis, small RNA analysis, targeted sequencing, DNA
methylation and ChIP sequencing, one of the first steps to analyze the generated
data sequences (reads) is to map them to a reference genome. This computa-
tionally intensive process involves mapping hundreds of millions of short reads
generated in a typical run of a high throughput sequencing system to a refer-
ence genome that consists of up to three and a half billion bases. Since next
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generation sequencing instruments usually generate reads as short as 35-50 base
pairs, more specialized mapping algorithms such as MapReads [2], RMAP [21],
MAQ [15], SOAPv2 [16] or Bowtie [13], have been introduced and shown to be
more efficient than traditional local alignment algorithms BLAST, FASTA and
their variants [1, 19, 26] for this particular problem. Even with these new algo-
rithms, however, the mapping process takes days on a single computer which
becomes a bottleneck in the application workflow given that the goal is to be
able to sequence the entire human genome in 15 minutes by the year 2013 [5].
As a natural step to speed up the mapping process, several parallelization tech-
niques have been proposed in our recent work [4] which apply to many short
sequence mapping algorithms, i.e., those based on hashing or indexing the ref-
erence genome.

In this work, we consider online scheduling of multiple parallel short sequence
mapping tasks in a multi-user environment. The methods introduced in [4] de-
scribe several ways of distributing the reads and the genome data onto the pro-
cessors of a cluster to parallelize short sequence mapping process. Furthermore
for each method, a cost model is provided to estimate the parallel execution
time for a given number of reads and a given reference genome size. Using these
cost models, it is possible to determine the best parallelization method and the
estimated execution time for each short sequence mapping task on a given num-
ber of processors. Therefore, in the considered scheduling problem, the number
of processors to be used for executing a task is decided by the scheduler based
on the current load and availability in the system. In scheduling literature, such
tasks are said to be moldable parallel tasks1 as opposed to rigid parallel tasks
which require the number of processors a task will use to be provided by the
user.

In this paper, we propose an algorithm to schedule moldable tasks that arise
in parallel short sequence mapping. Due to the large variety of task sizes and
the availability of accurate execution time estimates, we focus on minimizing the
stretch of the tasks in the system which is defined as the time a task spends in
the system normalized by its execution time. Compared to the commonly used
flow time (average turnaround time) metric, stretch provides fairness to all tasks
in the system by including the execution time of the tasks in its definition. This
objective was first studied for sequential tasks without preemption [3] and later
with preemption [14] in the context of bag-of-tasks applications. To the best of
the authors knowledge, this work is the first to consider the minimization of the
stretch objective in moldable task scheduling without preemption.

The rest of this paper is organized as follows. In Section 2, we provide back-
ground information about parallel short sequence mapping. Sections 3 and 4
present moldable task scheduling and a brief discussion of two recent studies.
We give details of the proposed scheduling algorithm for moldable tasks in Sec-

1 They were originally called malleable tasks [25]. Feitelson et al. [9] made the distinc-
tion between constant number of processors and variable number of processors by
using moldable for the former case and malleable for the latter one. However, they
were still called malleable in more recent works.



tion 5. Then, we report results from our experimental studies in Section 6 and
conclude in Section 7.

2 Parallel Short Sequence Mapping

The short sequence mapping problem asks for identifying the matching locations,
possibly with some mismatches, of short input sequences (reads) on a reference
genome. There are many mapping algorithms in the literature [2, 13, 15, 16, 21],
most of which use a hash or an index table to store all consecutive same sized
sub-sequences of either the reference genome or the query sequences to increase
efficiency of the mapping process. The use of such data structures (i.e. hash or
index), makes the problem less data dependent and enables accurate estimation
of execution times by only taking global properties of the input problem into
account.

A hashing based short sequence mapping algorithm consists of two major
steps [4]. In the first step, a hash table is constructed by computing a hash
value for each sub-sequence of the reference genome having length equal to read
length. The execution time of this step can be modeled as cgG , where cg is the
time needed to compute a hash value for a single sub-sequence and G is the size
of the reference genome. In the second step, reads are matched to the genome by
looking up their corresponding hash values in the hash table. When a fixed sized
hash table is used, average number of collisions during table look-up depends
on the number of entries in the table, which is proportional to genome size G .
Therefore, the time required to process all reads can be modeled as (cr+ccG)R ,
where R is the number of reads, cr is the constant work needed to process a
single read, and cc is a constant to capture additional work to resolve collisions.
Then, the total execution time can be modeled as: cgG+ (cr + ccG)R .

As discussed in [4], straightforward methods to parallelize a mapping algo-
rithm is to partition the reads and/or the reference genome to the processors of
a cluster. This way, parallel execution time would be expressed as follows:

cg
G

Ng
+ (cr + cc

G

Ng
)
R

Nr
(1)

where Ng and Nr respectively are the number of parts the genome and the
reads are divided. For a cluster with m processors, Ng × Nr ≤ m should be
satisfied.

In addition to partitioning the reads and the genome, a new technique to
assign reads and the genome to the processors is also introduced in [4]. In this
method, called Suffix Based Assignment (SBA), each processor is assigned a
set of suffixes and is only held responsible for matching reads to the genome
sequences that end in those suffixes. Each suffix consists of one or more nu-
cleotide symbols. For example, if a processor is assigned the suffix AC, it is
only responsible for matching reads that end in AC (e.g. ACCGTTAAC) to the
genome sequences that also end in AC. Although SBA allows better parallelism,
it comes with the cost of extra scan operations to compare sequences against



the suffixes assigned to each processor. We represent the cost of checking the
suffix of a genome and a read sequence by cgs and crs , respectively. Moreover,
we use Ns to denote the number of suffix groups to be considered. An example
of suffix groups for Ns = 2 would be {A, C} and {G, T}. SBA can be applied
in combination with reads and genome partitioning and can be considered as
a new dimension for parallelism. Then, under perfect load balance, the parallel
execution time can be formulated as follows

cgs
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G

NgNs
+ crs

R

Nr
+ (cr + cc
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NgNs
)

R

NrNs
(2)

where Ng×Nr×Ns ≤ m and Ns > 1. Remark that if Ns = 1, there is no need
to do suffix checking, hence with cgs = 0 and crs = 0 Equation (2) reduces to
Equation (1).

Please note that, by using tree-based one-to-all data distribution scheme,
data distribution time, which includes distribution of input sequences and pos-
sibly reference genome to the processors of the parallel machine, becomes neg-
ligible in comparison to actual mapping computations. Therefore, it is omitted
in these formulas. Furthermore, our earlier work [4] shows that these estimates
are accurate.

3 Moldable Task Scheduling

3.1 Problem formulation and properties

In this section we discuss details about online scheduling of parallel short se-
quencing mapping tasks in a multi-user environment. We consider a typical on-
line setting, where n independent tasks are dynamically submitted to a cluster of
m identical processors. Arrival time of task i to the system is denoted by ri . We
use the notation pi,j to represent the execution time of task i on j processors.
Information about arrival or execution time of the tasks are not available to the
scheduler until submission. The scheduling problem we consider is to decide the
number of processors πi to be allocated for each task i and the time σi when
the execution of task will start on the system. The completion time Ci of task
i is Ci = σi + pi,π

i
.

In the short sequence mapping problem considered in this paper, each task i
corresponds to a mapping request of Ri reads on a genome of size Gi . Therefore,
for each task i and each number of processors j ≤ m , pi,j is computed using
Equation (2) by replacing G with Gi and R with Ri . The values for Nr ,
Ng and Ns are chosen such that the total execution time predicted by this
equation is minimized for the given values of Gi , Ri and j . In short sequence
mapping, storing the genome in a hash table implies high memory requirement
that prevents two tasks to be executed simultaneously on the same processor.
Thus, preemption is not allowed. Monotony of computation time and absence of
super-linear speedup are common assumptions in moldable scheduling. One can
check that they are valid for the parallel short sequence mapping tasks.



3.2 Objective functions

The general objective in online scheduling is to execute all submitted tasks with-
out delaying their execution too much in the system. A desired property of a
scheduler is to avoid starvation while ensuring an overall good response time.

The most studied objective functions in moldable task scheduling are based
on aggregation of completion time (makespan) of the tasks, such as the min-
imization of maximum completion time and minimization of average comple-
tion time. A common technique to optimize completion time is to use dual-
approximation [12, 17]. This technique consists of choosing a target value for the
objective and then to decide the most efficient number of processors a task should
use to finish before the targeted completion time. Such number of processors is
commonly called the canonical number of processors. A major disadvantage of
using completion time in the objective function is the requirement of a time
origin, which does not suit well to online scheduling problems.

A commonly used metric in online scheduling that does not require a time
origin is the flow time (also known as turnaround time). Flow time of a task
i is the time the task spends in the system and is calculated as Fi = Ci − ri .
Two related objective functions are the minimization of maximum flow time

(Fmax = maxi Fi ) and the minimization of the average flow time (
∑

i
Fi

n ). The
former is especially well known for preventing starvation and is usually optimized
by using the first-come first-serve (FCFS) ordering. Examples of flow minimiza-
tion can be found in [7, 20, 24]

Since the flow time metric does not take the size of the tasks into account,
objective functions that utilize this metric tend to create schedules in which
small tasks spend as much time in the system as the large tasks. This results
in small tasks waiting in the system queue longer than the large tasks, hence
introduces unfairness against small tasks. To avoid this situation, the stretch
metric can be used to replace flow time in the objective function. The stretch of
a task is defined as the time spent by the task in the system normalized by its
processing time. This metric has been studied for online scheduling of rigid tasks
with preemption in [18] and for sequential task scheduling without preemption
in [3] and then with preemption in [14]. However, to the best of the authors’
knowledge, it has never been used nor defined in online moldable scheduling
without preemption. We use the processing time of the task on one processor for
normalization and the stretch of a task i is si = Ci−ri

pi,1
. Corresponding objective

functions for stretch are the minimization of maximum stretch (S = maxi si )

and the average stretch (
∑

si

n ).
Using an adversary technique, one can prove that in an online setting it is not

possible to get an approximation algorithm for the minimization of maximum
or average stretch objectives without preemption even if the system is composed
of a single processor. Adversary technique works by dynamically constructing
the instance that worsens the performance the most by taking advantage of the
decisions of the algorithm. In this case, the idea is to first feed one long task
to the scheduler. Once the execution of that task starts, the adversary submits



a bunch of much smaller tasks to the system. Since these small tasks cannot
start before the execution of the first task completes, the stretches of the small
tasks are as large as the ratio between the execution time of the smallest task
to that of the largest task. Such analysis is usually only useful for designing
approximation algorithms. However, Section 6 indicates that similar effects also
appear in practice.

In the job scheduling literature, objective functions similar to stretch have
also been used. A commonly used objective function is the slowdown of a rigid
task, which is the time the task spends in the system divided by its processing
time. Since the task is rigid, the processing time is the actual execution time
of the task. As a result, the slowdown always greater than one. Stretch can be
considered as an extension of slowdown for the moldable tasks model.

A variant of the slowdown objective function is Bounded slowdown (BSLD) [10],
which is used to avoid over-emphasizing the significance of small tasks. In this
objective function, the processing time of the tasks are assumed to be greater
than a given constant. Since this may resut in some taks to have a slowdown less
than 1, the slowdown values between 0 and 1 are rounded up to 1. Due to the
rounding, BSLD is not appropriate for the moldable task model, as the stretch
or slowdown values of interest for this model can be less than 1.

Another closely related objective function is the Xfactor [23], which is defined
as queuingtime+pi,1

pi,1
. Xfactor is always greater than one and it does not take into

account the number of processors used to execute a task.

3.3 Backfilling strategies

In most scheduling algorithms, tasks are scheduled as soon as possible in the
order of their arrival times. This approach tends to create holes in the sched-
ule, which can later be utilized using a conservative or an aggressive backfilling
strategy. In conservative backfilling, a task is scheduled in the first hole that
can accommodate the task. If no such hole exists, the task is scheduled at the
end of the schedule. In aggressive backfilling, a task is scheduled in the first
hole that has enough number of available processors. If this creates a conflict,
the task in conflict that has the largest start time is rescheduled. This approach
provides a much better utilization of the cluster by reducing the number and size
of the holes in the schedule. However, it tends to reschedule large tasks several
times, causing longer delays for them. More details on backfilling strategies can
be found in [22].

4 Analysis of Existing Solutions

4.1 The fair-share scheduling algorithm

The fair-share scheduling algorithm has been proposed in [24] and refined in [20]
to optimize the average turnaround time. The basic principle of the original
algorithm is to greedily schedule tasks one by one to minimize their completion



time using aggressive backfilling. However, this approach leads to scheduling
each task to execute in parallel using all processors in the system. Since efficiency
usually decreases with the number of processors, tasks spend too much time in
the system using this approach. To avoid such scenarios, the fair-share algorithm
limits the maximum number of processors that can be allocated to each task.
This limit is called the fair-share limit, and finding a good value for the fair-
share limit is the motivation behind the mentioned studies. The fair-share limit
of a task i was first set to the ratio of work associated with the task to the
total work associated with all tasks pending in the system. Using this limit is
stated to be fair since it allocates more processors to larger tasks while limiting
the maximum allocation by the weight of the tasks. It was shown that using
a fair-share limit of

√
pi,1∑

k

√
pk,1

leads to better results. However, this value was

reported to be too restrictive and multiplied by an overbooking factor to allow
the scheduler to consider a larger number of possibilities [20].

The fair-share algorithm induces starvation due to aggressive backfilling
which can delay all the tasks but the first to be executed. Therefore, the tasks
are partitioned in multiple queues based on the their sizes. Ensuring that the
first task of each queue is never delayed reduces starvation. To further reduce
starvation, the Xfactor of a task is introduced: Xfactor(i) = t+pi,1−ri

pi,1
, where

t is the current time. A task whose Xfactor exceeds a certain threshold is no
longer allowed to be rescheduled by the aggressive backfilling technique.

4.2 Iterative moldable scheduling algorithm

The fair-share algorithm provides fairly good performance but requires tun-
ing many parameters. In [20], Sabin et al. proposed a parameter-free iterative
scheduling technique which is reported to outperform the fair-share algorithm
and its variants.

The fundamental idea in the algorithm is to make all tasks rigid, i.e., decide
the number of processors to be allocated for each task. Then, the tasks are
scheduled using a conservative backfilling technique. The order in which the task
are considered for backfilling is not given in [20]. In the following we assume that
tasks are considered in the FCFS order.

The question of how many processors to allocate for each task is addressed
using a simple principle. The algorithm starts by allocating one processor to each
task and computing the corresponding schedule. Then, the task that would have
the most reduction in its processing time by using an extra processor is found.
Subsequently, an additional processor is assigned to that task and a new schedule
is computed. If the new schedule has a better average turnaround time, then the
extra processor allocation is confirmed and the process is repeated iteratively.
Otherwise, the algorithm rolls back to the previous allocation state and never
tries to assign an additional processor to this task again.

The algorithm implicitly assumes that the processing time of a task strictly
decreases with the number of processors. However, this assumption may not hold
in practice. For example, it is fairly common that parallel algorithms require a



number of processors which is a power of two. Similarly, in the short sequence
mapping problem the values of Nr , Ng and Ns in Equation (2) have to be
integer. If the number of processors m is prime, it is likely that the optimal
partitioning scheme uses at most m − 1 processors, which induces steps in the
speedup function.

Improvements to the algorithm: Existence of steps in the speedup func-
tion results in early termination of the iterative scheme in the algorithm of Sabin
et al. [20]. To remedy this situation, we propose the following modification. If
task i is allocated x processors, instead of considering its execution on x + 1
processors, we consider its execution on x + k processors (k ≥ 1) such that
pi,x−pi,x+k

k is maximal. If the speedup function is convex, this modification be-
haves the same as the original algorithm. If the speed up function is not convex,
the modification allows to skip the allocation sizes that would lead to low effi-
ciency (and thus skips steps). Throughout the paper, we refer to this variant of
the algorithm as the improved iterative algorithm.

5 Deadline Based Online Scheduling

In this work, we propose an algorithm called Deadline Based Online Scheduling
(DBOS) with the goal of minimizing the stretch of the tasks in the system.
Throughout the section, we consider a typical system where the scheduler is
invoked when a task enters or exits the system. Using the DBOS algorithm, the
scheduler computes a new schedule for all tasks pending in the system queue.
Tasks that have already started execution are kept running.

The outline of the DBOS algorithm is presented in Algorithm 1. The main idea
in the algorithm is to compute the “best” achievable maximum stretch, denoted
by S , using a binary search within lines 2–14. At each iteration of the binary
search, a new schedule is computed by calling the MoldableEDF (for Moldable
Earliest Deadline First) procedure using the current value of S . If the returned
schedule is not feasible, S is increased. Otherwise it is decreased to find a tighter
bound for maximum stretch. Since there is no apriori upper bound on S , the
algorithm starts with computing one in lines 2–6.

Once the “best” feasible value of S is found, it is multiplied by an online
factor ρ . The reason for relaxing the S value is to increase the efficiency of
the system as well as to leave potentially more processors to the tasks that will
arrive in the future. Furthermore, this helps improving the performance in the
adversary scenario discussed in Section 3.2. The online factor ρ is the key to the
online aspect of the DBOS algorithm.

In lines 20–30 of Algorithm 1, the details of the MoldableEDF procedure is
given. Given a value of S , MoldableEDF starts by computing a deadline Di =
ri + pi,1S for each task i (lines 21–22). This reduces the problem to scheduling
the tasks before their deadlines. Then, the tasks are scheduled greedily in non-
decreasing order of their deadlines. For each task i , the smallest number of
processors j that allows the task to finish before its deadline Di without moving
any previously scheduled task is determined. Finally, task i is scheduled to start



Algorithm 1 Deadline Based Online Scheduling Algorithm
1: procedure DBOS(INPUT: ρ , OUTPUT: π∗ , σ∗ )
2: LB ← 0, S ← 1
3: while Not Feasible (π, σ ) do . Compute an initial feasible maximum stretch
4: S ← 2S
5: (π, σ)←MoldableEDF (S)
6: UB ← S
7: while UB 6= LB do . Find the best maximum stretch using a binary search
8: S ← UB+LB

2

9: (π, σ)←MoldableEDF (S)
10: if Feasible (π, σ) then
11: (π∗, σ∗)← (π, σ)
12: UB ← S
13: else
14: LB ← S
15: (πρ, σρ)←MoldableEDF (ρS) . Relax S by a factor of ρ if it is feasible
16: if Feasible (πρ, σρ) then
17: (π∗, σ∗)← (πρ, σρ)
18: return (π∗, σ∗)
19:
20: procedure MoldableEDF(S )
21: for all i ≤ n do . Compute a deadline for each task
22: Di ← ri + pi,1S
23: Construct initial processor allocation using information about running tasks
24: for all task i in non-decreasing Di order do
25: for all j from 1 to m do
26: x← earliest time that j processors are available for pi,j units of time
27: if x+ pi,j ≤ Di then
28: πi ← j ; σi ← x
29: Exit inner for loop
30: return (π, σ)

as soon as possible on j processors. If it is not possible to schedule task i before
Di , the constructed schedule is labeled as infeasible. Remark that the core of
the deadline scheduling algorithm from line 23 to line 29 is generic. It could be
used for a classical scheduling problem of moldable tasks with deadline.

The algorithm has several interesting properties. First of all, if MoldableEDF
was an exact algorithm, then the optimal maximum stretch would be found.
The deadline scheduling problem as well as the maximum stretch optimization
problem are NP-Complete [11]. However, it is likely that if an approximation
algorithm for the deadline scheduling problem was known, it would lead to an
approximation algorithm for the maximum stretch optimization problem.

MoldableEDF is a greedy algorithm and is not optimal as it can fail to find
the best feasible solution. However, the MoldableEDF is based on two principles
that make it efficient. First, the tasks are considered in non-decreasing order of
deadlines. This principle, called Earliest Deadline First, leads to optimality in
single processor deadline scheduling problems and provides guaranteed approx-



Sequencing machine Number of reads

454 GS FLX Genome Analyzer 1 million
Solexa IG sequencer 200 million
SOLiD system 400 million

Genome Size (bases)

E. Coli 4.6 million
Yeast 15 million
A. Thaliana 100 million
Mosquito 280 million
Rice 465 million
Chicken 1.2 billion
Human 3.4 billion

Table 1. (Left) Sequencing machines and the number of reads each of them produces
in a single run. (Right) Genomes and their sizes.

imation for the sequential task scheduling problem on an arbitrary number of
processors. Second, the algorithm allocates the minimum number of processors
that ensures a task matches its deadline. This decision maximizes the processor
availability for the other tasks in the system, hence helps keeping the system
efficiency high. Moreover, it helps avoiding local optima due to presence of steps
in the speedup function. This principle is similar to the canonical number of
processors used in makespan optimization.

6 Experiments

Execution time of short sequence mapping tasks vary significantly depending
on the size of the reference genome and the number of reads to be mapped
(see Table 1). For instance, a targeted sequence analysis involves mapping a
few million reads to a genome segment of a few hundred thousand bases and
can be carried out in a couple of minutes. On the other hand, a whole-genome
resequencing application requires mapping hundreds of millions of reads and may
take a few hours for mosquito and a few days for human genome. In this section,
we report on the simulation results of the DBOS algorithm on a 512-processor
cluster using two workload scenarios that reflect such variety in task execution
times. The first scenario is based on a log file from a supercomputing center and
is included to assess the performance of the algorithm on well known data. The
second scenario is designed to simultate the load of a cluster dedicated for short
sequence mapping tasks.

In the first scenario, we used a real log file (SDSC Par 96 in [8]) of parallel jobs
submitted to the San Diego Supercomputing Center (SDSC). This file contains
information about a task’s arrival time, runtime on the system and the number
of processors used for its execution. We considered the first 5, 000 tasks, and
similar to [20], we used the Downey model [6] to estimate the scalability of
the tasks. The Downey model requires two parameters for each task: maximum
parallelism and variance of parallelism of the task. The value of the maximum
parallelism is randomly selected between p and 512, where p is the recorded
number of processors used to execute the task in the log file. The value of the
variance of parallelism is randomly selected between 0 and 2 which is a realistic



range for this parameter [6]. Since the Downey model is stochastic, 10 different
instances were generated.

In the second scenario, each workload consists of 5,000 parallel short sequence
mapping tasks and each task arrives at the cluster with an inter-arrival time
chosen from a exponential distribution of parameter λi . We varied λi to obtain
6 different load conditions, where load is defined as the ratio of the sum of
sequential processing times of all tasks to the time that elapsed between the
arrival of the first and the last task. In other words, for a load of l , if all tasks
were executed sequentially, then total computing power of l processors would
be used to execute the tasks over the time for which the activity on the cluster
is simulated. Therefore, in our tests, if the load is larger than 512, the cluster
is clearly overloaded. However, due to non-linear scalability of the tasks and
random arrival times, it is very likely that the cluster gets overloaded even for
load values less than 512. A task in this scenario represents a mapping operation
of short sequences generated by one of the sequencing machines to one of the
genomes listed in Table 1. The sequencing machine and the genome associated
with a task is chosen randomly and the parallel execution time of the task is
computed using the formulas from Section 2. The sequential processing time of
the generated tasks vary between 30 seconds and 22 days.

Results of the DBOS algorithm are presented in comparison to the iterative
algorithm of Sabin et al. [20] which was described in Section 4.2.

6.1 Downey model

First we present aggregate results from 10 runs using Downey model on the
SDSC log file. Since 5,000 tasks are scheduled in each run, we had scheduling
information about 50,000 tasks in 10 runs. In Figure 1(a), the flow time of these
50,000 tasks are shown in increasing flow time order for DBOS and the iterative
algorithms (the improved version of the iterative algorithm is not presented here
as it is equivalant to the original iterative algorithm since there are no steps in
speedup functions of the Downey model). Figure 1(b) shows the corresponding
chart with stretch on the y-axis. Due to wide variation of flow times and stretch
values, log scale is used in the y-axis of both charts. These results show that
on the average DBOS provides a better flow time and stretch compared to the
iterative algorithm. Recall that if a task has a stretch greater than 1, it means
that the time it spends in the system is greater than its sequential execution time.
In other words, the speedup gain due to parallel execution is lost. The iterative
algorithm resulted in more than 23% of the tasks to have stretch greater than
1, whereas the corresponding quantity was only 6% for DBOS with ρ = 1. The
results improved even further when the value of ρ is increased to 1.5. In that
case, only 1% of the tasks had a stretch greater than 1. In Figure 1(c), the
percentage of tasks with stretch greater than 1 is shown for different task-size
groups. The results indicate that the iterative algorithm results in a relatively
unfair schedule by penalizing smaller tasks more in terms of their stretch. For
example, 34% of the tasks in the smallest task-size group have a stretch larger
than 1. DBOS results in a more fair schedule, where less than 7% and 1% of the
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Fig. 1. Comparison of DBOS and the iterative algorithm on the SDSC/Downey work-
load. The y-axis is in log scale for (a) and (b). The lower is the better in all figures.

tasks had a stretch greater than 1 even for the smallest tasks with ρ = 1 and
ρ = 1.5, respectively.

Note that larger tasks can afford longer delays without much degradation in
their stretch. However, smaller jobs suffer more especially when the cluster is
overloaded. This is similar to the worst case online scenario on a single processor
as mentioned in Section 3.2, in which a very short task arrives just after a
very long task is scheduled. Existence of some tasks getting a stretch over 100
in our experiments is the proof that such phenomenon appears also in practice.
Nevertheless, if a value larger than 1 is used for the online factor ρ this behavior
occurs rarely.

6.2 The Short Sequence Mapping Application

In the second set of experiments we considered workloads consisting of short
sequence mapping tasks as described in the second scenario above. We gener-
ated 6 different load cases and for each case we generated 20 workloads. Since
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Fig. 2. Impact of the online factor ρ on the performance. The y-axis is in log scale for
(a), (b) and (d). The lower is the better in all figures.

the instance generation will not provide the same load when run with the same
parameters, we considered a range of load values around a targeted load value
(and tuned the λi parameter to reach this load). The 6 load cases in the ex-
periments correspond to the following ranges of load values: 100-115, 200-230,
330-360, 150-500, 500-570 and 640-710. Note that in the last two cases the cluster
is overloaded (as the load is greater than the number of processors). These cases
are included to see the performance of the algorithm in extreme load conditions.

We started with assessing the impact of the online factor ρ of the DBOS
algorithm and used values of ρ chosen from the set {1, 1.1, 1.3, 1.5} . Recall that
the parameter ρ allows to take the online characteristics of the problem into
account by relaxing the instant maximal stretch to improve overall efficiency.
In Figure 2(a), average stretch achieved by the DBOS algorithm with different
ρ values are given under different load cases. For each load case and for each
ρ value, the average stretch values are shown sorted. Figure 2(b) displays the
corresponding results for maximum stretch values. In Figure 2(c), the percentage



of tasks with stretch greater than 1 is shown for different task-size groups using
the aggregate results from all 20 workloads that have load in the 330-360 range.

The results in Figure 2 suggest that both average and maximum stretch
improves significantly with ρ until ρ = 1.3, after which the improvement is
marginal. In general, using a ρ value greater than 1 results in an increase in
the stretch of the tasks with extremely small stretch and a decrease in the
stretch of the tasks with extremely large stretch (results were similar to those
in Figure 1(b), hence omitted). Therefore, using larger ρ values helps reducing
the variance of stretch as well as the average and maximum stretch. As seen
in Figure 2(c), small sized tasks benefit the most from larger ρ values, as they
are more likely to get large stretch values due to cases similar to the worst-case
scenario described in Section 3.2. As the load in the system increases, there are
far more tasks in the system and the online factor becomes less effective as it
is no longer sufficient to keep a portion of the processors available for the tasks
that will arrive in the future. Figures 2(a) and 2(b) illustrate that the online
factor has very little impact in the two extreme load cases, where load is greater
than 500.

In order to determine a reasonable range of values for the online parameter
ρ , we computed the average stretch for different ρ values under different load
conditions. The results of this experiment are given in Figure 2(d), where each
point is the average over 20 instances of similar loads. Since the variance of
average stretch values is low, (see Figure 2(a)), the standard deviation is omitted
in this figure for clarity. The results show that the optimal value of ρ depends
on the load of the system. The average stretch quickly drops when ρ increases
as more room is created for small tasks. Then it slowly increases as all the tasks
get delayed and some machines of the cluster are left idle. The shape of the curve
allows easy estimation of the optimal ρ with a gradient method. Moreover, note
that the average stretch has small variation around the optimal ρ value. For
instance, for a load between 330 to 360, the optimal ρ value is 2.4 and all
ρ values between 1.6 and 3.8 result in average stretch values within 20% of
the optimal. Therefore, fine tuning of the ρ value is not essential as long as
unreasonable values are avoided. In the rest of the experiments, the value of ρ
is set to 1.5 which is a reasonable value for underloaded cluster scenarios.

In Figure 3 the results of the DBOS algorithm on short sequence mapping
workloads are presented in comparison to the two variants of the iterative algo-
rithm mentioned in Section 4.2: the original algorithm in [20], and the improved
version for non-convex speedup function. These two variants lead to different
results due to steps in the speedup curves of the short sequence mapping tasks.
Results in Figure 3(a) show that the improved version leads to around 50%
improvement in flow time; steps in speedup curves prevent the original version
from using available parallelism. On the overloaded cases, the two versions are
comparable since there are more tasks in the queue and both algorithms use all
available processors. If the average flow time is the target metric in an appli-
cation, our proposed improvement should be used in the iterative algorithm to
handle non-convex speedup curves.
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Fig. 3. Comparison of DBOS and the iterative algorithm on short sequence mapping
application workloads.

However, under-utilization of the cluster in the original iterative algorithm
results in better stretch values. Indeed, the improved algorithm tends to utilize
all processors in the cluster, thus tasks entering the system are delayed and get
large stretch values. The original version results in many processors to remain
idle, therefore, tasks that enter the system are scheduled immediately and ob-
tain small stretch values. However, note that if the application had required the
number of processors to be a power of two, the original iterative algorithm would
never schedule a task on more than two processors, hence would not get a stretch
better than 0.5. This is worse than the improved version which reaches an av-
erage stretch of 0.3. On the other hand, if the first step in the speedup curve
appears on a large number of processors, the behavior of the original iterative
algorithm converges to that of the improved one.

As clearly seen in Figure 3, DBOS achieves better stretch than both variants of
the iterative algorithm. The difference is especially larger for low load conditions,
where more than 70% improvement is achieved relative to the original iterative
algorithm. The performance of the original iterative algorithm is comparable
with DBOS only under the cases where the cluster had a load greater than 400.
DBOS outperforms the revision of the iterative algorithm up to 85% on low load
cases.

In terms of flow time, DBOS achieves better results than the iterative algo-
rithm under low and medium load and worse results only in overloaded cluster
conditions. Results in Figure 3 leads to the conclusion that DBOS achieves a
balance between inefficient over-parallelism as in the case of improved iterative
algorithm, and under-utilization of the cluster as in the case of original iterative
algorithm. Therefore, except for extreme load conditions, it usually gives the
best stretch and flow time among the considered algorithms.

The scheduling overhead of both DBOS and the iterative algorithm are low
and mainly depends on the number of tasks in the queue. On a regular desktop
(2.4Ghz Intel Core2 processor, 2GB of memory), our unoptimized implementa-



tion of DBOS and the iterative algorithm take about 20 to 30 seconds to schedule
5000 tasks. Despite a greedy algorithm would deliver the schedules faster, the
computation times of the benchmarked algorithms are far from being prohibitive
since the execution of tasks in a cluster can last for hours and since the scheduling
process does not interfere with tasks already being executed.

7 Conclusion

The most computationally demanding step in DNA sequence analysis is mapping
sequences generated by next-generation sequencing instruments to a reference
genome. In this paper, we investigated online scheduling of multiple parallel
short sequence mapping tasks in a multi-user environment. Availability of ac-
curate estimates of parallel execution times of short sequence mapping queries
allows using the moldable task model in the scheduling process. Existing stud-
ies mainly focus on optimizing the average flow time of tasks, which produces
schedules unfair against small tasks. In the context of sequential tasks, one of
the proposed solutions to address the fairness issue was the use of stretch metric.
To the best of our knowledge, the work presented in this paper is the first that
uses the stretch metric for moldable task scheduling without preemption. Exper-
iments on two different workload scenarios, one based on the log of a production
batch system and one reflecting realistic use-case scenario of the short sequence
mapping application, showed that the proposed DBOS algorithm provides better
schedules than the compared algorithms in terms of the stretch metric while
improving the flow time on many cases. The results demonstrated that DBOS
achieves a balance between inefficient over-parallelism and under-utilization of
the cluster, two competing issues regarding online task scheduling.
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