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Abstract. In this paper, we address job scheduling in Distributed Com-
puting Infrastructures, that is a loosely coupled network of autonomous
acting High Performance Computing systems. In contrast to the common
approach of mutual workload exchange, we consider the more intuitive
operator’s viewpoint of load-dependent resource reconfiguration. In case
of a site’s over-utilization, the scheduling system is able to lease resources
from other sites to keep up service quality for its local user community.
Contrary, the granting of idle resources can increase utilization in times
of low local workload and thus ensure higher efficiency. The evaluation
considers real workload data and is done with respect to common service
quality indicators. For two simple resource exchange policies and three
basic setups we show the possible gain of this approach and analyze the
dynamics in workload-adaptive reconfiguration behavior.

1 Introduction

The use of High Performance Computing (HPC) in research, development, and
production has become a typical part of day-to-day work since its emergence
in the late 1980s; the operation of batch-oriented, large-scale Massively Parallel
Processing systems is a commodity service for users in many universities, research
centers, and medium-to-large enterprises.

Such systems are typically acquired with respect to the demand of the local
user communities. Naturally, this demand is subject to constant change: the
usage of HPC systems in research is typically bound to fixed publication dates,
and industrial applications depend on the amount of orders or certain—internal
and external—projects. Hence, the load of such systems fluctuates over time,
a fact that obviously does not comply with the goal of its operator, namely
permanent high utilization. In static environments, this leads to two undesirable
situations: Either the system is underutilized, which harms the expected return
on investment of the HPC system or, in case of over-utilization, the users are
forced into unacceptable delays due to a large backlog of work.

From an operator’s point of view, the natural way to cope with this tension
would be a dynamic reconfiguration of their system in an on-demand fashion:
For example, if the user-generated workload grows due to a conference deadline
or a project deliverable, the operator would add additional resources to his local



system until the backlog shrinks again. On the other hand, he could offer idle
parts of the system to other parts of his organization, such as different depart-
ments in an enterprise or cooperating institutes within a network of universities.
While such an approach ensures that the system is well-utilized—a fundamental
performance benchmark for most operators and their institutions—over time, it
also delivers a higher level of service quality to the users due to the adaptiveness
to their workload.

The technical foundation for Distributed Computing Infrastructures (DCIs)
that are capable of providing such service has been laid during the late 1990s
with the emergence of Grid Computing[9]. In this area, a plethora of research
has been conducted with respect to sensible workload distribution. Due to the
architectural nature of Grid Computing, much effort has been put into mech-
anisms for the delegation of workload between participating compute centers.
However, while being accepted as a basis for very large research projects such as
the LHC, Grid Computing is not very wide-spread in the commercial domain and
still—due to its stems in academic HPC infrastructures and its strong tailoring
to their organizational architectures—comprises a high level of complexity.

Over the last two years, this technical foundation has been largely simpli-
fied and commoditized: With the widespread offering of Cloud Computing ser-
vices and IaaS1, system administrators can provision additional resources, e.g.
compute, storage, and even networking, on-demand without having to make a
permanent investment into extending the local facilities.

The availability of such technology in conjunction with the demand for adap-
tive reconfiguration of DCI environments open new challenges in the manage-
ment of such systems. With respect to automated capacity planning, the efficient
and situation-adaptive scheduling of incoming workload raises interesting ques-
tions:

– Is it beneficial for the system owner to invest into an expansion, or would
it be sufficient to ”lease” a certain amount of resources for a fixed period of
time?

– Can the temporary give-away of local resources to befriend departments
within a larger company provide both better overall utilization while at the
same time ensuring user satisfaction?

– How does the meaning of classic utilization metrics change in such dis-
tributed, regularly self-reconfiguring systems?

In this paper, we attempt a first step towards addressing these issues: We
assume a simplified DCI scenario with identical resources and investigate the
performance of two algorithmic approaches to the leasing and granting of re-
sources between autonomous HPC systems. Herein, we establish mechanisms
for situation-based decision making on the distributed management level and
evaluate the dynamics of system reconfiguration.

Although scheduling decision making happens mostly on the management
level, it comprises to very different aspects in realization: a selection policy to find
1 Infrastructure as a Service.



adequate partner sites for resource leasing in a distributed scenario as well as the
development of decision policies for resource request and delegation respectively.
While the former aspect is rather technically addressing balancing behavior on a
global level, the latter emphasizes site performance for a local user community.

In order to investigate local behavior, we focus on minimum-sizes scenarios
with only two sites and ignore the issue of load balancing on a global level. We
evaluate these setups using workload data from three real-world HPC traces,
analyze the behavior of resource leases and grants, and find improvements for
both user- and provider-related metrics as basis and motivation for further re-
search in resource delegation approaches. Nevertheless, the authors are aware of
the fact that these first ideas have to be extended towards scalable heuristics
that are capable to deal with mutable partner in a larger DCI.

The remainder of the paper is organized as follows: Section 2 gives an over-
view of existing approaches to scheduling in DCI environments. This is followed
by a formal description of the DCI environment and the resulting scheduling
problem in Section 3. Section 4 details our two-layered scheduling architecture
while the proposed scheduling policies are then described in Section 5. We present
a performance evaluation of our strategies in Section 6 and conclude the paper
in Section 7.

2 Background

Automated capacity planning and workload scheduling in DCI systems is a well-
covered research topic and stems back to classic parallel machine scheduling
problems.

In recent years, a remarkable amount of effort has been put into workload dis-
tribution among autonomously acting HPC centers within the broader context
of Grid Computing: Scenarios that assume such federated environments often
imply centralized scheduling services [10]. For example, Ernemann et al. [3] show
advantages of hierarchical scheduling in general by considering the AWRT ob-
jective. Further, Kurowski et al. [15] identify multiple objectives for efficient job
scheduling in Grids and propose a strategy based on prediction mechanisms and
resource reservation. For decentralized environments, only few results that sup-
port the delegation of workload have been published. England and Weissman [1]
give an estimation of costs and benefits of load sharing relying on synthetic work-
loads only. Grimme et al. [11] analyze the prospects of collaborative job sharing
and compare their results to the non-cooperative scenario of the same machines.
Recent works of Fölling et al. [7, 8] propose a fuzzy-based, evolutionary opti-
mized exchange policy for a fully decentralized scenario which shows robustness
even in changing environments and automatically adapts to the current local
load.

With the elasticity of IaaS-supported DCI environments, a new kind of flex-
ibility challenges current scheduling approaches due to the inherent reconfigura-
bility of machines and the resulting changes in scheduling responsibilities. Up to
now, this aspect—especially with respect to classic HPC workloads with parallel



jobs—has only occasionally been discussed in research: Since the complexity of
operating such systems in the large scale and the feasibility of provisioning and
reconfiguring them on-demand hampered the realization for production environ-
ments, discussion focused on rather low-level computer hardware. For example,
Kota et al. [14] consider the problem of scheduling and mapping of tasks onto
reconfigurable logic units for a given application introducing a concept of pa-
rameterized modules. Their approach is a typical example of scheduling in the
context of reconfigurable hardware that involves varying sizes of available hard-
ware. Subramaniyan et al. [18] transferred similar ideas to the HPC context and
analyzed the dynamic scheduling of large-scale HPC applications in parallel re-
configurable computing environments. They assess the performance of several
common HPC scheduling heuristics that can be used by an automated job man-
agement service to schedule application tasks on parallel reconfigurable systems.
However, their approach is limited to a single HPC system and does not involve
the interaction of multiple autonomous partners in a DCI environment.

The reconfigurability of a HPC center within a larger DCI environment obvi-
ously provides inherent support of multi-site computing on the capacity planning
and workload distribution level. In multi-site computing, jobs can be executed
beyond site boundaries, effectively running parts of the job at distinct locations.
Naturally, additional problems with respect to data availability and network
performance arise here. Nevertheless, Ernemann et al. [2] identify improvements
for the AWRT objective assuming hierarchical centralized scheduling structures
in multi-site computing. Further, Zhang et al. [20] provide an overview of ex-
isting multi-site computing approaches and present an adaptive algorithm that
incorporates also common local scheduling heuristics. Recently, Iosup et al. [13]
proposed a delegated matchmaking method, which temporarily binds resources
from remote sites to the local environment.

All approaches assume an additional scheduling layer on top of classic LRMS
which coordinates the underlying resources in a hierarchical fashion but their
architectures imply that local sites have to (partially) cede their autonomy for
the benefit of coordinated DCI scheduling on a higher level.

Further, Weissmann and Grimshaw [19] presented an approach for decentral-
ized DCI systems which introduces all basic policies to exchange jobs between
autonomous sites. However, their policies are based on an unrestrictive informa-
tion model between the sites which allows a local scheduler to query detailed
information about the system states of potential delegation targets. This in-
cludes also queries on estimated start times at foreign sites for specific jobs. As
in real DCI systems such information are usually treated confidential, it requires
new heuristics that even yield acceptable scheduling performance when only
local information is accessible for decision making. Moreover, their scheduling
approaches are only considered theoretically without performance measurement
on workload data. Thus, with respect to the work at hand, their results cannot
be used for the matter of comparison.



3 Problem Formulation

In HPC systems, job scheduling is an online problem regardless of the assumed
machine configurations. Users submit parallel jobs over time while neither their
submission time nor the precise processing time are known in advance. We fur-
ther consider independent2 jobs that are neither malleable nor moldable. Each
job j is characterized by its degree of parallelism mj , its processor indepen-
dent processing time pj and its estimated processing time pj , see Feitelson et
al. [5]. pj is provided by the user at submit time and originally was intended to
recognize erroneous jobs and abort them if they take longer than the user ex-
pected. Scheduling heuristics, however, also use pj for making better decisions.
The number of required processors mj is available at the release time rj of job
j.

The DCI environment we consider in our work consists of K loosely coupled
HPC sites. Each site k owns mk identical processors such that every parallel job
can be executed on each subset of local processors. Although existing studies for
heterogeneous DCI environments show that the processing time of jobs depends
on both the application structure and the target architecture, see for example
Sabin et al. [16], the list of top-performing HPC installations3 proves almost
homogeneity in terms of processors families and architectures. Therefore, we
additionally assume identical processors among all sites.

During its execution phase, each job requires exclusive access to mj ≤ mk

processors. As users submit their jobs locally, the corresponding site has to
guarantee that every submitted job can—regardless of the availability of remote
systems—be executed. Therefore, jobs that require more than the total number
of locally available processors (mj > mk) are rejected. Further, all jobs run to
completion without the possibility of being preempted, since the majority of
HPC applications and systems does not support this. As such, the completion
time within the schedule S at site k is denoted by Cj(Sk).

In our system model, we further allow multi-site execution, that is each job
can be executed on any subset of processors within the whole DCI environment.
This is typically possible4 for embarrassingly parallel jobs that comprise many
sequential, independent invocations of the same application. Examples for this
application class are parameter sweeps—tools that repeatedly process the same
input data, with varying parameter settings—or SPMD5-style programs. Iosup
et al. [12] have shown that this class is the most widely spread kind of jobs in
productive grids and DCI environments. Although distributed filesystem access
and network latency may impair the execution speed of such applications in a
multi-site execution scenario, Ernemann et al.[2] have shown that the significant
improvements in schedule quality often compensate for the inferior performance.
Formally, such a multi-site job j is scheduled on mj|k own resources at the

2 With no dependencies among them, that is.
3 www.top500.org, January 2010.
4 Provided that data availability (for example, via a shared file system) is guaranteed.
5 Single Process, Multiple Data.



submission site k ∈ K and mj-k foreign resources using altogether mj = mj|k +
mj-k resources as defined before.

4 System Model

In our system model, we establish a two-layered architecture at every site,
see Figure 1: The Local Resource Management System (LRMS) is responsible for
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Fig. 1. Resource Brokering within a Computational Grid scenario with independent
sites.

the local allocation of jobs onto resources, while the Distributed Resource Man-
agement System (DRMS) layer realizes the the lease-and-grant mechanism and
policy. Within the latter layer, resource requests are formulated and negotiated
in order to adapt the local system to the current load situation.

4.1 LRMS Layer

The Local Resource Management System (LRMS) layer consists of a waiting
queue and a scheduling algorithm that assigns jobs to processors in its domain.
This local scheduling domain comprises all processors that are exclusively con-
trolled by the LRMS. In contrast to classic settings, this domain is subject to
changes over time: While foreign resources can be logically integrated into the
LRMS and used by the local scheduling algorithm, it is also possible to dele-
gate own resources to foreign scheduling domains, putting them under exclusive
control of the remote RMS. Further, jobs can be prioritized.



Among the variety of LRMS scheduling algorithms, we chose the Extensible
Argonne Scheduling System (EASY) [6] for our analysis as it enjoys widespread
application. On invocation, EASY tries to execute the job j at the head of the
waiting queue, if—with respect tomj—enough processors are currently available.
Otherwise, it tries to ”backfill” a subsequent job in the queue, ensuring that—
based on pj—job j is not delayed. Note, however, that the overall methodology
is not restricted to any kind of local scheduling algorithm.

4.2 DRMS Layer

The DRMS layer is able to extend the local scheduling domain by leasing re-
sources from other sites. In this way, the site is able to gain exclusive control on
foreign resources. We assume that submitted jobs have to pass through this layer
before they can be handled by the underlying LRMS6. For each job, a resource
delegation policy (RDP) decides whether additional resources should be leased
to increase the scheduling performance at the local site or not. If yes, resource
requests are send and negotiated with other partners within the DCI system.
Each request contains the number of desired resources and a timespan for which
the site wants to gain exclusive access to them. Granting sites also apply their
RDP in order to determine whether to accept or decline the request. Decision
making is based on multiple input features such as the users’ job submission
behavior, the current resource usage, and the local backlog. Finally, it is not
allowed to grant already leased resources to a third party.

5 Resource Delegation Policy

At the DRMS level, the resource delegation policy steers the individual nego-
tiation behavior of each participating site within the DCI. We here introduce
two approaches that feature a very simple design, are minimally invasive to the
LRMS, and still achieve good scheduling results. Both are triggered by the sub-
mission of a single job and can be applied under restrictive information policies,
that is without exchange of information between the interacting partners.

The Simple Submission Triggered Resource Delegation (S-STRD) policy tries
to prioritize incoming jobs, if a resource lease for this particular submission can
be acquired. Figure 2 presents the behavior of the policy in a flow chart (left
side) and gives an example for a submitted job (right side). Resource leasing is
attempted every time the currently available resources cannot meet the submit-
ted job’s processor demand. After the submission of a new job to the DRMS,
it is automatically forwarded to and enqueued at the LRMS À. Furthermore,
the DRMS checks whether there are enough idle resources available to directly
execute the job Á. In the positive case, the DRMS leaves further handling to
the LRMS. Otherwise, the DRMS formulates a resource lease request with the

6 This poses no restriction in terms of usability, since the DRMS can act as a proxy
of the LRMS towards the user.
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Fig. 2. Activity diagram and example for the Simple Submission Triggered Resource
Delegation Policy.

number of requested, but locally unavailable resources and the user’s runtime
estimate for the job. This request is then posted to the delegation partners in the
system Â. If the request is granted, the job is prioritized for direct execution Ã.
After completion of the job, which is not necessarily equal to the user estimate,
leased resources are returned to the granting site.

In the example (cf. Figure 2), we assume a waiting queue with three jobs at
Site 1. Further, both sites have scheduled occupations for different timespans. At
time t a new job j with a demand of mj = 4 and pj = 100 is submitted to Site 1.
Since the job cannot be scheduled on local resources directly, Site 1 requests
two additional resources for a timespan of pj from Site 2, which in turn accepts
the request and grants two resources to Site 1. Having a sufficient number of
processors available for the immediate execution of j, S-STRD prioritizes the job
and, on invocation of the LRMS’s scheduling algorithm, it is started immediately
on two local and two remote resources.

The extended version of the algorithm (X-STRD) differs in the repetition of
steps Á−Ã (compare Figure 2): These are applied for each job in the queue
(including the new job), starting at the queue’s head. Obviously, this approach
less penalizes already waiting jobs, since they considered first. Still, this policy
demands extensive inter-site communication due to many additional resource
requests and makes the extended approach less practical for the use in real
scheduling systems. We still evaluate this policy as an extremal case for an



excessive use of resource delegation between the sites to assess the achievable
performance.

6 Performance Evaluation

We estimate the quality of the proposed mechanisms by means of simulation.
In order to quantify the performance, we apply common performance indicators
for job scheduling in parallel machine and DCI environments and adapt them
to reconfigurable machine environments accordingly. Moreover, we use recorded
(non-synthetic, that is) workload traces as input to our simulations to ensure
realistic results. Finally, we discuss the implications from the simulation results
for three distinct scenarios.

6.1 Quality Measures

From the quantitative side, we look at three common metrics:
The Average Weighted Response Time (AWRT) basically denotes for all users

how long they have to wait for their jobs to complete on the average.

AWRTk =

∑
j∈τk

pj ·mj · (Cj(S)− rj)∑
j∈τk

pj ·mj
(1)

It is computed for all jobs j ∈ τk that have been submitted to site k, see Equa-
tion 1. It is widely agreed that a short AWRT is the best way to describe
the average performance a provider can offer users for job execution. Follow-
ing Schwiegelshohn and Yahyapour [17], we weight the response time of each
job with its resource consumption (pj ·mj). This ensures that neither splitting
nor combination of jobs can influence the objective function in a beneficial way.
Note that we calculate mj = mj|k +mj-k in order to incorporate the execution
of jobs on remote resources.

The Squashed Area7 (SAk) reflects the overall resource usage of all submitted
jobs per participating site k. In a scenario where jobs are partially executed on
remote sites, we have to refine the original metric as follows:

SAk =
∑
j∈τk

pj ·mj|k +
∑
l/∈τk

pl ·ml|k (2)

SAk is determined as the sum both local (j ∈ τk) and foreign (l /∈ τk) jobs’
resource consumption fractions (pj ·. . . and pl ·. . .) that are executed on resources
belonging to site k (mj|k and ml|k), see Equation 2.

SAλ
k =

∑
j∈τk

pj ·mj-k (3)

7 This metric sometime also called Total Work.



To further measure the amount of work running on leased processors from within
the DCI environment, we define the ”leased” Squashed Area SAλ

k as the sum of
local (j ∈ τk) jobs’ resource consumption fractions (pj · . . .) that are executed
on resources not belonging to site k (mj-k), see Equation 3.

The Utilization (Uk) describes the ratio between overall resource usage avail-
able resources after the completion of all and measures how efficiently the pro-
cessors of site k are used over time.

st(Sk) = min
{

min
j∈τk

{Cj(Sk)− pj},min
l/∈τk

{Cl(Sk)− pl}
}

, and (4)

Cmax,k = max
{

max
j∈τk

{Cj(Sk)},max
l/∈τk

{Cl(Sk)}
}
. (5)

It refers to the timespan relevant from the schedule’s point of view, delimited
by the start time of the first job, see Equation 4, to the end time of the last job,
see Equation 5, in schedule Sk. Note that both points in time consider local jobs
(j ∈ τk) and fractions of delegated jobs (l /∈ τk).

Uk =
SAk

mk · (Cmax,k − st(Sk))
(6)

Uk, formally defined in Equation 6, often serves as a quality measure from the
site provider’s point of view.

6.2 Input Data

The Parallel Workloads Archive8 provides job submission and execution record-
ings on real-world HPC system site, each of which containing information on
relevant job characteristics like estimated and real processing time, release date,
resource demand, and others. We applied pre-filtering steps to the original data
in order to remove partially erroneous information: we discard jobs with invalid
release dates (rj < 0), processing times (pj ≤ 0), resource requests (mj ≤ 0) as
well as unsatisfiable resource demands on the submitted site (mj > mk).

Table 1. Workload characteristics of the used input data, including AWRT in seconds,
U in %, and Cmax in seconds for single site execution with EASY.

Identifier #Jobs mk AWRT U Cmax Setup 1 Setup 2 Setup 3

KTH-11 28479 100 75157.63 68.72 29363626 X X

CTC-11 77199 430 52937.96 65.70 29306682 X X

SDSC05-11 74903 1664 54953.84 60.17 29357277 X X

We select three traces for our evaluation: The KTH trace which contains
records from a 100 processor IBM RS/6000 SP system at the Swedish Royal
8 http://www.cs.huji.ac.il/labs/parallel/workload/.



Institute of Technology in Stockholm, the CTC trace from a 430 processor
IBM RS/6000 SP system at the Cornell Theory Center in Ithaca, NY, and
a log recorded 2005 at the San Diego Supercomputer Center in La Jolla, CA
(SDSC05).

Since the original workloads cover unequal periods, we shorten all original
workloads to the largest common lenght, namely eleven months. Additionally,
we assume identical timezones and therefore similarize the diurnal rhythm of
job submission: In geographically dispersed DCI scenarios, different timezones
may induce positive scheduling effects as idle machines can be used by jobs
from peak loaded sites in accordance with day-time differences, see Ernemann
at al. [4]. Here, we cannot benefit from timezone shifts in our scenario. As such,
the results will likely improve in time-shifted environments.

Finally, we simulate the workload on their original machine configuration
with an non DCI-aware LRMS that uses the EASY algorithm and take the results
as reference for local-only scheduling, see Section 4.1. Relevant characteristics of
the examined traces and the corresponding results for AWRT, Utilization, and
Cmax are listed in Table 1. During the course of this paper, we will refer to this
non-cooperative case for the matter of comparison.

6.3 Performance Results

We investigate three scenarios (cf. Table 1): The first scenario comprises the
small KTH machine with 100 processors and the mid-sized CTC machine with
430 processors. Further, we evaluate a scenario with the small KTH machine and
the large-scale HPC system SDSC05 with 1664 processors and combine further
CTC and SDSC05. For all scenarios, we apply the two discussed strategies. The
results of all evaluations are shown in Table 2.

Almost all results show an improvement in AWRT compared to local execu-
tion, which indicates that both partners benefit from their cooperation. Figure 3
depicts the improvements obtained in three scenarios for both policies. The S-
STRD strategy yields good results, improving the AWRT of the smaller part-
ner for at least 15% in all scenarios. As expected, small partners benefits from
the enormous resource potential provided by large partners. However, simula-
tions show that large partners also profit from cooperation with small partners.
Although this improvement is marginal for the SDSC05 site, the increase of
utilization, see Table 2, indicates a compact schedule and thus better resource
usage.

Besides AWRT comparison, we analyze the reconfiguration behavior at both
sites. Figure 4 exemplary shows the dynamics of both systems for Setup 1 and
the S-STRD policy. Obviously, the local resource configurations are subject to
continuous changes while—on the average—they nearly keep their size, see Fig-
ure 5. During the simulated workload period, KTH occasionally grants all its
resources to the larger site, but also quadruples its original size through leases.
In the latter case, the reconfiguration almost switches the original sizes of the
setup. This impressively demonstrates the potential of a workload-triggered re-



Table 2. Evaluation results for both strategies S-STRD and X-STRD for the given
three scenarios. Values for AWRT, U, and Cmax are shown as well as their improvements
in %, the absolute amount of mutually exchanged resources as leased Squashed Area
SAλ

k , and the average queue length Q̄.

S-STRD-Broker

Metrics Setup 1 Setup 2 Setup 3

Workload KTH-11 CTC-11 KTH-11 SDSC05-11 CTC-11 SDSC-11

AWRTk 62055.37 51444.91 58432.61 54738.92 45062.71 54635.66
Uk 65.22 66.46 62.63 60.54 63.37 60.80
Cmax,k 29363626 29332185 29363626 29353826 29328089 29335555

∆AWRTk 17.43 2.82 22.25 0.39 14.88 0.58
∆Uk -5.09 1.15 -8.86 0.62 -3.54 1.05

SAλ
k 573141728 413432502 630674342 383713739 1768336330 1493028875

Q̄ 4.08 8.06 2.31 17.07 3.07 13.22

X-STRD-Broker

Metrics Setup 1 Setup 2 Setup 3

Workload KTH-11 CTC-11 KTH-11 SDSC05-11 CTC-11 SDSC-11

AWRTk 56115.99 50851.43 52253.12 55729.64 40940.23 52990.40
Uk 64.40 66.65 56.88 60.86 62.71 60.98
Cmax,k 29363626 29332185 29363626 29364647 29306682 29339742

∆AWRTk 25.34 3.94 30.48 -1.41 22.66 3.57
∆Uk -6.28 1.44 -17.22 1.16 -4.55 1.34

SAλ
k 640012760 442455083 682003341 250461072 2105350162 1722880873

Q̄ 4.48 10.17 1.82 18.62 2.93 14.53

configuration where the user visible provider domains remain stable: resources
adapt to submitted workload but offer an accustomed environment to users.

Finally, we investigate X-STRD and identify larger benefits for all smaller
sites. Compared to the application of S-STRD we can also show AWRT im-
provements for larger sites. However, we observe a deterioration in AWRT for
the Setup 2 compared to uncooperative processing, see Figure 3(b). This behav-
ior is due to unbalanced exchange of resources indicated by SAλ

k for the second
setup in Table 2: While the small KTH site is able to increase its resource capac-
ity, the larger site’s requests are frequently rejected for S-STRD leading to higher
utilization and increased AWRT. Thus, we conclude that the extended strategy
can yield better results for all participating sites but is less robust against large
discrepancies in machine size: In X-STRD, continuous workload submission re-
sults in frequent traversals of the complete queue. As a consequence, this gives
small sites more opportunities to gain additional resources from the larger site
to execute long waiting jobs. The opposite is not necessarily true, as the resource
capacity of a small site restricts the larger site’s chances.
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Fig. 3. Improvements in AWRT for all setups and both policies.

7 Conclusion and Future Work

In this work we approached the topic of collaboration in distributed computing
infrastructures from a new and more operator-centric perspective: the delegation
of resources between partner sites. In order to adapt to fluctuating local user de-
mand while constantly offering high service quality, cooperating HPC providers
are enabled to mutually lease resources from other partners or grant them to
him. To this end, we devised a delegation layer above the local management layer
of each site and two delegation policies which combine negotiation capabilities
with scheduling decisions making. This ensures both independent acting sites in
a decentralized scenario as well as a situation-aware delegation behavior while
leaving the local management systems largely untouched.

For evaluating the proposed collaboration scenario, we investigated several
two-site setups consisting of different-sized installation by simulatively feeding
them with real-world workload data. Both delegation policies demonstrated their
potential realizing an enormous increase in service quality for almost all partici-
pating sites, with less robustness of second delegation approach against extremal
differences in site size, leading to degradation of service quality in specific cases.

Moreover, we were able to show the dynamics of site reconfiguration in the
proposed scenario: The sites frequently changed their configuration in order to
fit their workload. In fact, the fluctuations in site configurations ranged from
completely granting all resources to leases that multiply the site’s own size. This
impressively demonstrates the hidden potentials of collaboration in DCIs and
should motivate operators to provide locally idle resources in order to benefit
from cooperation in terms of service quality and effective resource usage.

Our next steps will be twofold: On the one hand, we will consider several
restrictions in our current model: Since in practice multi-site execution of jobs
might be prohibited, more powerful heuristics should yield good schedules with-
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(b) CTC

Fig. 4. Continuous reconfiguration of both KTH and CTC sites during workload pro-
cessing.

out spreading jobs among site boundaries. This is, the have to decide between
either local or remote execution.

On the other hand, advanced heuristics should be applicable under limited
information exchange. To this end, they should favor a collaborative and/or
partner-specific adaptive behavior. In this context—besides scalarization issues—
global balancing effects and benefits of the second level partner site selection
strategies have to be evaluated in larger scenarios with multiple participating
sites. Those policies can possibly base on load balancing between multiple part-
ners or cost models for resource delegation.

Finally, non job-specific leases have to be considered, allowing to ”borrow” a
certain amount of resources for a certain timeframe and thus to fully take care
of capacity planning on these resources, as currently delivered by modern IaaS
environments.
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