
Risk Aware Overbooking for Commercial Grids

Georg Birkenheuer, André Brinkmann, and Holger Karl
{birke, brinkman, holger.karl}@uni-paderborn.de

Paderborn Center for Parallel Computing (PC2),
Universität Paderborn, Germany

Abstract. The commercial exploitation of the emerging Grid and Cloud mar-
kets needs SLAs to sell computing run times. Job traces show that users have
a limited ability to estimate the resource needs of their applications. This offers
the possibility to apply overbooking to negotiation, but overbooking increases the
risk of SLA violations. This work presents an overbooking approach with an in-
tegrated risk assessment model. Simulations for this model, which are based on
real-world job traces, show that overbooking offers significant opportunities for
Grid and Cloud providers.

1 Introduction

Grid, Cloud, and HPC providers need intelligent strategies to optimally utilize their
existing resources, while not violating quality of services (QoS) guarantees negotiated
with the customers and described through service level agreements (SLAs). For the
acceptance test of committing to an SLA, a provider uses runtime estimations as well
as a deadline from the customer. Job traces show that the user’s ability to estimate
runtimes is limited[1]. This leads to a statistical measurable overestimation of runtimes
as well as to underutilized resources, as jobs are tending to end earlier than negotiated.

To increase the resource utilization and therefore the profit of a provider, we pro-
pose to combine overbooking and backfilling techniques for parallel resources in the
acceptance test. This instrument should increase system utilization, while not affecting
already planned jobs. To successfully use overbooking strategies, we have to be able to
calculate the risk of violating SLAs. Our approach uses a history of the distribution of
job execution time estimations and their corresponding real runtimes. The probability
of success (PoS) for overbooking can then be calculated based on the likelihood that
the job finishes within the given runtime.

Scheduling Model We propose a commercial scenario, where a job execution is nego-
tiated between a Grid customer and a provider. For operation, the grid provider uses
a planning based scheduling system. This means that the jobs are not scheduled in a
queue, but added to a plan of jobs, where each job has, if accepted, an assigned start
time, a number of assigned resources, and a maximum duration. The scenario has four
characteristics:

1. the underlying scheduling strategy is FCFS with conservative backfilling
2. the user pay for their submitted jobs proportionally to the computation time they

estimate

3. the customers have to receive their jobs’ results within a given deadline.
4. the monetary penalty inflicted on the system’s owner for missing a job’s deadline

is equal to the price users pay to for a successful execution

Under these assumptions, the our approach evaluates whether schedulers can ex-
ploit automated runtime predictions (along with the fact users typically give inaccurate
runtime estimates) in order to overbook the gaps within the schedule in a manner that
increases the overall profit of the provider.

Technically, the plan of a scheduler has two dimensions, where the width is the
number of nodes in the cluster and the time corresponds to the height. When a job
request enters the system, the scheduler puts the job in this plan as a rectangle between
its release time and deadline. If the job is accepted, it is placed in the schedule and no
other jobs can be assigned to this area (see Figure 1). Therein, the latest start is the
point in time, where all previous jobs ended consuming their whole estimated runtime.
Here the job can start in every case as long the underling resources did not crash. The
earliest possible start time is the time where the job can start if all previous jobs needed
null runtime. This practically means the start of the latest job starting before or the
jobs release time. The job will thus start somewhere in between the earliest and latest
possible start. If the scheduling algorithm cannot place the job according to the resource
and deadline constraints, the job has to be rejected.

New Job

Jo
b

R
1

Jo
b

R
2

Jo
b

R
4

Jo
b

R
5

Jo
b

R
3

new jobs'
relase

latest
start

earliest
possible

start

#nodes

tim
e

Fig. 1: Exemplary job schedule.

This paper is organized as follows: Section 2 presents the related work on over-
booking, scheduling, resource stability assessment, and planning. Section 3 introduces
our methods and instruments to measure the inaccuracy of the users’ runtime estimates.
Section 4 describes how we calculate the probability of success of overbooking a sched-
ule. Section 5 evaluates the proposed methods and algorithms and presents simula-
tion results based on real job traces and the paper finishes with a discussion about the
achieved goals.

2 Related Work

This section presents the technical basics and related work in the area of scheduling
and overbooking. Firstly, it discusses theoretical approaches for planning, followed by
scheduling approaches. Then, the paper introduces related work on machine failures
and risk assessment in Grid and Cluster systems. At last, we discuss related work on
overbooking and its impact on planning and scheduling.

Planning Theory Planning strategies are also known as Strip Packing problem [2]. The
aim is to pack jobs in a way that the height of the strip is minimal while the jobs must
not overlap themselves. Different strategies have been developed, which should pack as
optimal as possible, where optimal packing itself is NP-hard.

Strip Packing distinguishes between offline and online algorithms. Offline algo-
rithms are unusable in our scheduling approach, as jobs are not known in advance.
Approaches usable in our online scheduling environment are bottom-left algorithms,
which try to put a new job as far to the bottom left of the strip as possible [3]. Level
algorithms split the strip horizontally in levels of different sizes [4]. In these levels, ap-
propriate sized jobs can be placed. Shelf algorithms divide the strip vertically in smaller
shelves, which could be used for priority based scheduling [5]. Hybrid algorithms are
combinations of the above-mentioned algorithms [2]. The disadvantage of the presented
scheduling approaches is that jobs in Grid or Cloud environments are connected with
an SLA that contains a strict deadline. Therefore, the approach of strip and shelf al-
gorithms of packing jobs earlier or later is impossible. A usable approach here is the
simple bottom-left algorithm, where the bottom is given by the earliest start time of a
job and a natural ceiling is given by its deadline.

Scheduling Approaches Many scheduling strategies for cluster systems are still based
on first-come first-serve (FCFS). FCFS guarantees fairness, but leads to a poor system
utilization as it might create gaps in the schedule.

Backfilling, in contrast, is able to increase system utilization and throughput [6]. It
has not to schedule a new job at the end of a queue, but is able to fill gaps, if a new
job fits in. The additional requirement for the ability to use backfilling is an estimation
about the runtime of each job. The runtime estimations are, in our scenario, part of the
SLAs. The EASY (Extensible Argonne Scheduling sYstem) backfilling approach can
be used to further improve system utilization. Within EASY, putting a job in a gap is
acceptable if the first job in the queue is not delayed [6]. However, EASY backfilling
has to be used with caution in systems guaranteeing QoS aspects, since jobs in the queue
might be delayed.

Therefore, Feitelson and Weil introduced the conservative backfilling approach,
which only uses free gaps if no previously accepted job is delayed [7]. Simulations show
that both backfilling strategies help to increase overall system utilization and reduce the
slowdown and waiting time of the scheduling system [8]. The work also shows that the
effect of the described backfilling approaches is limited due to inaccurate runtime es-
timations. Several papers analyzes the effect of bad runtime estimations on scheduling
performance.

An interesting effect is that bad estimations can lead to a better performance [9].
Tsafrirs shows an approach to improve scheduling results by adding a fixed factor to
the user estimated runtimes [10].

Effort has been taken to develop methods to cope with bad runtime estimations.
Several approaches tried to automatically predict the application runtimes based on the
history of similar jobs [11–13]. Tsafier et al. present a scheduling algorithm similar
to the EASY approach (called EASY++) that uses system-generated execution time
predictions and shows an improved scheduling performance for jobs’ waiting times
[14]. The approach shows that automatically runtime prediction can improve backfilling
strategies.

The approaches found in literature are not directly applicable to our work. The
algorithms target queuing based systems and provide best effort. Their aim is to im-
prove system utilization and to decrease the slowdown of single jobs. Our approach is
a planning based scheduling scenario with strict deadlines, given by SLAs. We want to
provide an acceptance test, where we have to decide if we can successfully accept an
additional job and thus improve a provider’s profit by overbooking resources.

Machine Failure and Risk Assessment Schroeder [27] and Sahoo [28] have shown that
machine crashes in cluster systems are typically busted and correlated and Iosup and
Nurmi showed that the failures rates of large clusters follows a Weibull distribution best
[31, 32]. The project AssessGrid [29] created instruments for risk assessment and risk
management at all Grid layers. This includes risk awareness and consideration in SLA
negotiation [30] and self-organisation of fault- tolerant actions. The results allow Grid
providers to assess risk and end-users also to know the likelihood of an SLA violation
in order to accurately compare providers SLA offers. The motivation of the research
presented in this paper has its origin in work done by AssessGrid.

Overbooking Overbooking is widely used and analyzed in the context of hotels [15] or
airline reservation systems [16, 17]. However, overbooking of Grid or Cloud resources
differs from those fields of applications. A cluster system can always start jobs if enough
resources are free, while a free seat in an airplane cannot be occupied after the aircraft
has taken off.

Overbooking for web and Internet service platforms is presented in [18]. It is as-
sumed that different web applications are running concurrently on a limited set of nodes.
The difference to our approach is that we assign nodes exclusively. Therefore, it is im-
possible to share resources between different applications, while it is possible to use
execution time length overestimations, which are not applicable for web hosting.

Overbooking for high-performance computing (HPC), cloud, and grid computing
has been proposed in [19, 20]. However, the references only mention the possibility

of overbooking, but do not propose solutions or strategies. In the Grid context, over-
booking has been integrated in a three-layered negotiation protocol [21]. The approach
includes the restriction that overbooking is only used for multiple reservations for work-
flow sub-jobs. Chen et al. [22] use time sharing mechanisms to provide high resources
utilization for average system and application loads. At high load, they use priority-
based queues to ensure responsiveness of the applications. Sulisto et. al [23] try to
compensate no shows of jobs with the use of revenue management and overbooking.
However they do not deal with the fact that jobs can start later and run shorter than
estimated.

Nissimov and Feitelson introduced a probabilistic backfilling approach, where user
runtime estimations and a probabilistic assumption about the real end time of the job
allow to use a gap smaller than the estimated execution time [24]. In the scope of esti-
mating the PoS of putting a job in a gap, the probabilistic backfilling and our overbook-
ing scenario are similar. The difference is that Nissimovs acceptance test is applied to
an already scheduled job and aims to reduce its slowdown, while our approach is used
during the acceptance test at arrival time [24].

We have proposed our ideas for overbooking with focus on a single resource [25,
26] and are extending the algorithms and investigations for parallel resources in this
work.

3 Probability Density Function

The Probability Density Function (PDF) for a job describes the likelihood that a job
ends after exactly x % of its estimated runtime. An example for a PDF is given in
Figure 2, which shows this probability distribution for all jobs submitted to a compute
cluster in 2007.

Building a PDF We assume that a job has an assigned start time, but it can start any-
time after its release time, if the corresponding resources are free earlier. Therefore, all
currently running jobs on the assigned resources have an influence on the real start time
of a new job. Every such job has its own probability density function that describes
its likelihood to end at some point in time. The aim of the following algorithm is to
build a joint PDF, which contains information for a set of jobs. This PDF is the basis to
calculate the probability that this set of jobs ends before the deadline of the last job.

The challenge is that several jobs j1 to jn can end before the start of a new job. The
maximum number n of jobs is equal to the amount of resources required by the job. The
minimum number is zero, when all resources are free at the job’s release time.

The latest point in time, where a job will start is the latest planned finish time of any
job planned on the used resources before.

However, a job is allowed to start earlier if possible. The earliest possible start time
is either the jobs release time or the time where the job can start if all previous need
zero runtime. This is the start time of the latest job starting before. The new job might
start directly after this job’s start, if it ends directly after dispatching, for example due
to a missing input.

0	

0,05	

0,1	

0,15	

0,2	

0,25	

0,3	

0	 20	 40	 60	 80	 100	

pr
ob

ab
ili
ty
	

finish	 at	 x%	 of	 used	 es>mated	 	 >me	

Fig. 2: The PDF derived from all jobs of 2007 in the examined cluster.

An example is given in Figure 1 for a job which requires five resources . We have to
calculate the PDF of all jobs that are scheduled before and can possibly run in the time
between the release and start of the new job.

Deriving PDFs from Job Traces One way to create PDFs is an analysis of the ratio of
real to estimated runtime of historical job traces. Figure 2 shows the Probability Density
Function of an exemplary cluster for 2007.

This work assumes that the user’s estimation accuracy will not change too much
over time. Thus, the past performance of users might be a good estimate for the future.
The more job traces are available, the more information the PDF can contain. This work
did not only calculate a basic PDF for all jobs, but also different PDFs for different
estimated job runtimes.

In Figure 3, we show eight different cumulative distribution functions (CDF) each
for an estimated time range, which are integrated over the corresponding PDFs. The
figure shows that the estimation quality of the users is best for jobs from three to four
hours. As result, we assume that quality of the users’ estimations in our planning based
scheduling also depends on the estimated length of the runtime.

Calculating the joint PDF for a Job We have derived several PDFs for different runtime
estimations. Thus, when a new job arrives in the system, the most appropriate PDF,
according to the estimated runtime, is chosen for the job itself. Unfortunately, the PDF

0,2	

0,3	

0,4	

0,5	

0,6	

0,7	

0,8	

0,9	

1	

1	 100	

CDF	 <	 10	 min	 CDF	 10	 min	 -‐	 1h	 CDF	 1h	 -‐	 2h	 CDF	 2h	 -‐	 3h	

CDF	 3h	 -‐	 4h	 CDF	 4h	 -‐5h	 CDF	 5h	 -‐	 12	 h	 CDF	 ab	 12	 h	

finish	 un;l	 x%	 of	 used	 es;mated	 	 ;me	 	

pr
ob

ab
ili
ty
	

20	 40	 60	 80	

Fig. 3: The CDF for several time slots.

is not a continuous function, but given from traces. In our framework, we have decided
to use discrete steps with one value for each percent step.

For the calculation of the probability that a job ends at time t, it is necessary to
calculate the expected joint probability density function for the execution time distri-
bution for the job and its predecessors. In the case that both PDFs are overlapping, the
expected joint execution time distribution consists of the convolution of the jobs basic
PDF and the calculated PDF of all jobs finishing earlier (see also [26]).

For the simulation, the convolutions are based on discrete values and are stretched
or shrank according to the required number. This is given by the number of steps used
per time unit and the length of the job. In reality the distributions are continuos functions
and the discrete mapping reduces the accuracy. Nevertheless, the convolutions have to
be calculated numerically, as no (reasonable) closed formula exists.

4 Risk Assessment for Overbooking

The aim of this section is to define the statistical model used to calculate the probability
of success (PoS), which is later assigned to every job. The PoS is calculated based on
the statistical runtime overestimations, the estimated runtime for the job, the maximal
available runtime inside the gap, as well as the failure rate of the resource. If the gap is
smaller than the estimated runtime, there is a chance that the job will still be successful,
if it finishes earlier.

The PoS helps the overbooking algorithm to manage and control the underlying
scheduling. An acceptance test has to be applied for each new job to decide whether it
is beneficial to accept this job even when the underlying resources are overbooked.

Table 1: Job scheduling information.

Variable Content
r release time
ω estimated execution time

ddl deadline
s start time
f finish time of the job
n number of nodes

We assume that the system consists out of N resources, where each resource has
the same failure rate λ and repair rate µ. A job j requests n resources and has an earli-
est release time r, an estimated execution time ω, and a deadline ddl. When the job is
placed, the start time s is either its release time or the finish time of the last previous
job. The finish time f is important if the scheduling strategy follows conservative back-
filling, where the job should not delay following jobs. Therefore, the job will be killed
at f = snext.

Calculating the PoS for Overbooking The probability of successfully completing an
overbooked job depends on the probability of resource failures and the probability that
the new job finishes in time. To finish in time means that the job has an execution time
that fits into a gap between flast and snext. For the calculations, we will define a job j as
a tupel [s, r, ω, ddl, n]. The result of the calculation is the probability that a new job is
successful in a given gap.

PoS(jnew) The probability PoS(jnew) depends on the probability Pavailable(s) that the
requested resources are operational at start time s, the probability Pexecutable(jnew) that
the job is able to end within its given maximum execution time, and Psuccess(jnew) which
is given by the machine failure rate λ and the job’s execution time. Therefore,

PoS(jnew) = Pavailable(s) · Pexecutable(jnew) · Psuccess(jnew).

Pavailable(s) The probability that the resource is operational at the start time is

Pavailable(s) = (
MTTF

MTTF + MTTR
)n = (

1
λ

1
λ + 1

µ

)n = (
1

1 + λ
µ

)n

where n is the requested number of resources, MTTF is the mean time to failure 1
λ

and MTTR is the mean time to repair 1
µ . This model assumes that the node failures are

independent, which is a simplification compared to previous work [31, 27]. It has been
shown that node failures are bursty and correlated. However, as a job execution is not

possible even when one of the planned resources fails, we do not include the amount of
other node failures here. In praxis, when the failure rates and behavior of the underling
cluster system is known Pavailable(s) should be analyzed in more detail. However, the
failure analysis is not in scope of this work.

Pexecutable(jnew) The calculation of the probability to successfully executePexecutable(jnew)
is given by the PDF convolution. The result (between 0 and 1) is the PoS of the job. The
higher this value is, the more likely is the success.

If the job jnew has no predecessor it is scheduled at its release time andPexecutable(jnew)
is given by its own execution time distribution and the maximal execution time t of the
job. Pexecutable(jnew) = 1 if the job has its full estimated execution time ω available and
less if the job is overbooked.

If the job jnew has one or more direct predecessors the convolution of the execution
time distribution has always to be computed with the joint distribution of the previous
jobs, which already includes the distributions from all possibly influencing previously
planned jobs.

Pexecutable(jnew) =
∫ t

0

(PDFjobs before ◦ PDFnew job)

Psuccess(jnew) Psuccess(jnew) describes the probability that the job’s resources survive
the execution time. It has been shown that crashes in cluster systems are correlated an
bursty [27, 28] and the failures rates of large clusters follows a Weibull distribution [31,
32]. Following, the definition of Psuccess(jnew) as 1−e−(xβ)k would describe the survival
rate. Here x is the execution time, β > 0 describes the spreading of the distribution,
and k describes the failure rate over time. A value of k < 1 indicates that the failure
rate decreases over time, due to hight infant mortality, k = 1 means the failure rate is
constant, and a value of k > 1 indicates that the failure rate increases with time, e.g.
due to some aging process.

However, the Weilbull distribution describes an aging processes of the resources
over years while the typical jobs are lasting hours to some days. In addition, the failure
rate λ has to be adapted over the day and week/weekend as it is shown that it depends
on the load of the system [27, 28]. As the current workload traces do not contain the
corresponding machine failure traces, we concentrate on the job traces and simplify
the failure rate. We assume a constant failure rate λ for the job execution time x. The
constant failure rate allows us to model the probability that the job’s resources survive
the execution time as the constant failure probability λ, the job’s execution time x, times
the number of requested resources n, and therefore,

Psuccess(jnew) = e−λ·x·n.

Risk an Opportunity of Overbooking Mathematically, the opportunity of overbooking
would be defined by the PoS of the job and the possible income described as fee of the
SLA. On the other hand, there is always a risk accepting an overbooked job. This is
defined as the probability occurrence times the impact of this event. The probability of
the bad effect is the PoF of accepting the job and the impact is described by the penalty
defined in the SLA for a violation.

Accordingly, during SLA negotiation a simple equation can decide whether it is
beneficial to accept an SLA with overbooking or not.

– If(PoS · Charge > PoF · Penalty) accept the SLA,
– else reject the SLA.

This term simply says: Do not accept jobs, where the risk is higher than the opportunity.

Possible Planning Strategies Generally, the scheduler holds a list of all jobs in the
schedule. For each new job jnew arriving in the system, the scheduler computes the PoS
for the execution of this job in every free space in the schedule where the job might be
executed. For the concrete implementation of the scheduling algorithm, several strate-
gies could be applied. A conservative approach could be chosen, where the job is placed
in the gap with the highest PoS, a best-fit approach uses the gap providing the highest
profit, while still ensuring an acceptable PoF and a first fit approach places the job in
the first gap with acceptable PoS.

Implemented First Fit In this paper we will further investigate an overbooking strat-
egy based on first fit. We check all time-slots starting with the release time of the job
where at least the requested amount of resources is available. For each time slot, the
algorithm checks, how long the requested resources will be available. If more resources
than requested are available, the algorithm chooses the first resources according to their
numbers, placing it as left as possible. The algorithm calculates the PoS for placing the
new job in this gap based on the chosen resources, the gap length, and the joint PDF. If
the PoS is higher than the given threshold, the algorithm places the job in the gap. The
approach is thus strongly related to the bottom left first approach in the field of strip
packing algorithms [3].

The Overbooking Process Concluding, the overbooking algorithm follows 5 steps:

1. For every new job
2. Detect the possible places for the job
3. Do for all places beginning with the first

(a) Calculate the joint PDF for the jobs before
(b) Combine the PDF of the jobs before and the actual job’s PDF.
(c) With this PDF, the resource stability, and number of resources, build the PoF
(d) If the PoF is smaller than the threshold, accept the job

4. If no place with suitable PoF has been found, reject the job.

5 Evaluation

This section describes the evaluation of the benefit of our overbooking approach. We
have used four job traces from the parallel workloads archive1 as input, namely SDSC
SP2, KTH, BLUE, and CTC. The presented simulations evaluate the outcomes for con-
servative backfilling and two different overbooking approaches. Firstly, we use a basic
statistical model with one PDF built from past user-estimations and secondly, we use
an extended statistical model with several PDFs for different time slice lengths.

1 Parallel Workloads Archive:
http://www.cs.huji.ac.il/labs/parallel/workload/

Simulation Model Several parameters influence the simulation results. For each test run,
the incoming jobs contain the number of required nodes and an estimated and real job
length. The job submission times and their release times as well as the up and downtime
of the resources have been randomly chosen (see Table 2). Based on this input data, the
strategies have been applied and the results are evaluated.

Simulation Resources: Actually, we chose the number of nodes for the simulation ac-
cording to the size of the cluster system where the traces were from. Thus, the numbers
of nodes in the simulation were 128 nodes for the SDSC trace, 100 for KTH, 144 for
the BLUE trace, and 430 nodes for CTC. The stability of the underlying resources is
not given in the traces. Therefore, the simulation has set the chance to survive a month
for each resource to 95%, which correspondents to λ = 0.000068943 and lasted the
MTTR of 12 hours (µ = 0.08333).

Table 2: Job Creation Model.

Variable Description
req. job length e Chosen from job traces
real job length ω Chosen from job traces

average time between submission o 1 hour
average delay between job submission and release time r 12 hours

deadline ddl r + 5 · e
req. nodes n Chosen from job traces

Charge and Penalty A very important point for the economical adaptability of over-
booking is the ratio of the charge of an SLA to its penalty. The overbooking strategy
has to be more careful, if ratio between penalty and charge is higher while the opportu-
nity becomes bigger for higher charges. The simulation assumes the charge and penalty
are the same and one hour execution time counts as one virtual money unit.

Job Creation Model The jobs arrival times follow an exponential distribution with
given delay to the last job. This delay directly describes the load of the simulation, the
faster the jobs are arriving the higher the possible utilization. The chosen simulation
parameters enforce that more jobs are submitted than the system could successfully
execute. This is done to be able to simulate an environment were overbooking seems to
be promising. The release time of the jobs also follows an exponential distribution with
a mean of 12 hours which is added to the job submission time. Each simulation ends
after the deadline of the last accepted job.

One input parameter of each simulation run is a threshold Pmax that provides the
maximum PoF acceptable by the scheduler for different situations. The overbooking
strategy of accepting jobs is based on the PoF given by the convolution of the execution
time distribution with the distribution of the previous jobs. A job is placed in the first
gap where the calculated PoF is lower than Pmax.

0 10 20 30 40 50 60 70 80 90 100
450

500

550

600

650

700

750

800

Pmax in percent

N
um

be
r o

f J
ob

s

Sum of successful jobs with backfilling
Sum of successful jobs with simple overbooking
Sum of successful jobs with time slice overbooking

Fig. 4: SDSC: Sum of successful jobs.

Use of Different Job Traces We have removed all jobs that do not contain an estimated
runtime as well as a real runtime entry. All jobs except the last 1, 000 trace entries were
used for each setting to learn the jobs’ runtime behavior. Based on this jobs we created,
according to Section 3, a distribution for the simple overbooking approach and several
time slice distributions for the time slice overbooking. Thereafter, we have used the last
1, 000 jobs as simulation input.

SDSC Figures 4 to 7 show the results based on the SDSC SP2 trace. Figures 4 and
5 show the accumulated results of Figures 6, and 7. This means for the jobs Figure 4
contains the successful minus the failed jobs and Figure 5 contains the profit minus the
penalty. For this simulation, 0.5 hours have been chosen as basic random value for the
delay between the jobs. The SDSC cluster system had 128 nodes. From the 60, 000 jobs
of SDSC the first 59, 000 were taken to learn the jobs’ runtime behavior. The simulation
starts with a maximum acceptable PoF for a job of 0.05 and ends with 1. Like in all
following simulation runs, 1000 jobs were submitted to the system.

The backfilling strategy always planed 570 jobs with 2, 600 hours execution time.
Both overbooking strategies have at the beginning a sum of 770 jobs and a bit more
than 2, 600 hours gain. These 770 jobs are the successful jobs minus the failed jobs.

The number of jobs is for both overbooking approaches at the beginning Pmax =
0.05 much better than backfilling and then rapidly shrinking. This has two reasons.
Firstly, for a higher threshold, jobs with more nodes and longer estimated runtimes are
accepted. This circumvented the acceptance of some shorter jobs. Secondly, an increas-
ing amount of jobs failed with the increasing Pmax.

0 10 20 30 40 50 60 70 80 90 100
1000

1500

2000

2500

3000

3500

Pmax in percent

G
ai

n
in

 e
xc

eu
tio

n
ho

ur
s

Gain of backfilling
Gain of simple overbooking
Gain of time slice overbooking

Fig. 5: SDSC: Sum of profit.

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

Pmax in percent

N
um

be
r o

f j
ob

s

Fig. 6: SDSC: Shown is the number of successful and failed jobs.

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

Pmax in percent

Pr
of

it
of

 th
e

st
ra

te
gi

es

Fig. 7: SDSC: Shown is the profit and penalties of successful and failed jobs.

For the gain, which reflects the successful utilization of the resources, the behavior
is a little different. The gain of simple overbooking is at the beginning just a little bit
better than the backfilling approach and shrinks for higher Pmax. This shows that the
quality of the underlying statistical analysis is paramount for a successful overbooking
approach. The profit for the time slice approach increases from Pmax = 0.05 to 0.1
where the sum of successful jobs is falling. This is caused by the fact that the simulation
has accepted some longer jobs including more nodes, which were not chosen in the run
with a lower threshold (0.05). Thereafter, the gain of time slice overbooking is falling as
more resource consuming jobs are accepted. Some of this jobs are failing hand in hand
with the higher accepted risk. This shows that the threshold choice is very important
for successfully applying overbooking. The gain of simple overbooking is worse than
backfilling from a Pmax of 0.1. The time slice overbooking performs better until a Pmax
of 0.3.

For this simulation, Pmax = 0.1 should be chosen to maximize profit. With the
SDSC traces it is possible to increase the profit by 30 % compared to a conservative
backfilling strategy.

All in all, there are many peaks in the figures. This is caused by the fact that with lit-
tle higher PoF threshold an additional job can be accepted that prohibits the acceptance
of some following jobs and vice versa.

KTH Figures 8, 9,10, and 11 show the results based on the KTH trace. For this simula-
tion, 0.1 hours have been chosen as basic random value for the delay between the jobs.

0 10 20 30 40 50 60 70 80 90 100
100

150

200

250

300

350

400

450

500

550

600

Pmax in percent

N
um

be
r o

f J
ob

s

Sum of successful jobs with backfilling
Sum of successful jobs with simple overbooking
Sum of successful jobs with time slice overbooking

Fig. 8: KTH: Sum of successful jobs.

0 10 20 30 40 50 60 70 80 90 100
1500

1000

500

0

500

1000

1500

2000

2500

3000

Pmax in percent

G
ai

n
in

 e
xc

eu
tio

n
ho

ur
s

Gain of backfilling
Gain of simple overbooking
Gain of time slice overbooking

Fig. 9: KTH: Sum of profit.

The KTH cluster had 100 nodes. From the 28, 500 jobs of KTH the first 27, 500 were
taken to learn the jobs’ runtime behavior.

The backfilling strategy always planed 400 jobs with 2, 100 hours execution time.
The simple overbooking strategy has at the beginning also a sum of 400 successful jobs

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

Pmax in percent

N
um

be
r o

f j
ob

s

Fig. 10: KTH: Shown is the number of successful and failed jobs.

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

Pmax in percent

Pr
of

it
of

 th
e

st
ra

te
gi

es

Fig. 11: KTH: Shown is the profit and penalties of successful and failed jobs.

0 10 20 30 40 50 60 70 80 90 100
300

400

500

600

700

800

900

Pmax in percent

N
um

be
r o

f J
ob

s

Sum of successful jobs with backfilling
Sum of successful jobs with simple overbooking
Sum of successful jobs with time slice overbooking

Fig. 12: BLUE: Sum of successful jobs.

with 1, 200 hours gain, while the time slice overbooking has a sum of 600 successful
jobs and 2, 600 hours gain.

The gain of simple overbooking is nearly always worse than the backfilling strat-
egy. This shows that applying overbooking with a simple statistical analysis can have
a severe impact on the providers profit. The sum of successful jobs and gain is falling
rapidly under the backfilling level. Interesting is that the number of successful jobs and
profit is rapidly shrinking from 0.05 to 0.1 and all in all less jobs are accepted. This
means, due to a little higher accepted PoF, jobs with more resource requirements are
accepted and fail. With higher Pmax the amount of successful jobs is increasing again.
This has little effect on the sum of successful jobs as simultaneously the number of
failing jobs is also increasing. However, with the use of an improved statistical analysis
even with a varying behavior of jobs the overbooking can, carefully adapted, increase
the profit. With Pmax = 0.05 the gain of time slice overbooking is better than the back-
filling approach. It is increased by about 23 %. This trace shows that for some user
behaviors on clusters an enhanced statistical analysis should be adapted, to further im-
prove the overbooking result. Using statistical analysis based on applications or users
basis serve this purpose.

BLUE Figures 12, 13,14, and 15 show the results based on the BLUE trace. For this
simulation, 1 hour has been chosen as basic random value for the delay between the
jobs. The BLUE cluster had 144 nodes. From the 243, 000 jobs of BLUE the first
242, 000 were taken to learn the jobs’ runtime behavior.

The backfilling strategy always planed 330 successful jobs with an execution time
gain of 2, 500 hours. Both overbooking strategies have at the beginning a sum of 690

0 10 20 30 40 50 60 70 80 90 100
1500

2000

2500

3000

3500

4000

Pmax in percent

G
ai

n
in

 e
xc

eu
tio

n
ho

ur
s

Gain of backfilling
Gain of simple overbooking
Gain of time slice overbooking

Fig. 13: BLUE: Sum of profit.

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

Pmax in percent

N
um

be
r o

f j
ob

s

Fig. 14: BLUE: Shown is the number of successful and failed jobs.

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Pmax in percent

Pr
of

it
of

 th
e

st
ra

te
gi

es

Fig. 15: BLUE: Shown is the profit and penalties of successful and failed jobs.

successful jobs and 2, 500 hours gain. Overbooking strongly depends on Pmax. For the
first simulation runs with low Pmax the profit and jobs improves with the increasing
Pmax. From a Pmax of 0.2 the sum of successful jobs falls due to less accepted but larger
jobs and from a Pmax of 0.4 also the gain is falling due to the continuous increasing
amount of violated SLAs. Backfilling has more gain than simple overbooking from
Pmax = 0.5 and is better than time slice overbooking from a Pmax = 0.8. For the BLUE
trace and a Pmax = 0.25, the simple overbooking strategy can increase the gain by 50 %
and the time slice overbooking can increase the gain by 55 % .

CTC Figures 16, 17, 18, and 19 show the results based on the CTC trace. For this
simulation, 0.1 hours have been chosen as basic random value for the delay between the
jobs. The CTC cluster had 430 nodes. From the 67, 000 jobs of CTC the first 59, 000
were taken to learn the jobs’ runtime behavior.

The backfilling strategy always planed 840 jobs with 7, 700 hours execution time.
Both overbooking strategies have at the beginning a sum of 930 successful jobs and
also 7, 700 hours gain. The gain of the simple overbooking approach is maximal for
Pmax = 0.1 and falls under the gain of backfilling from Pmax = 0.15. The time slice
approach produces a maximal gain for Pmax = 0.15 and is falls under the backfillings’
gain from a Pmax = 0.3. For the CTC trace and a Pmax = 0.1, the simple and time slice
overbooking strategy can increase the gain by 4 %.

CTC with low load Figures 20 and 21 show the results based on the CTC trace with a
low load. For this simulation, 1 hour has been chosen as basic random value for the de-

0 10 20 30 40 50 60 70 80 90 100
750

800

850

900

950

1000

Pmax in percent

N
um

be
r o

f J
ob

s

Sum of successful jobs with backfilling
Sum of successful jobs with simple overbooking
Sum of successful jobs with time slice overbooking

Fig. 16: CTC: Sum of successful jobs.

0 10 20 30 40 50 60 70 80 90 100
5500

6000

6500

7000

7500

8000

Pmax in percent

G
ai

n
in

 e
xc

eu
tio

n
ho

ur
s

Gain of backfilling
Gain of simple overbooking
Gain of time slice overbooking

Fig. 17: CTC: Sum of profit.

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

1000

Pmax in percent

N
um

be
r o

f j
ob

s

Fig. 18: CTC: Shown is the number of successful and failed jobs.

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

Pmax in percent

Pr
of

it
of

 th
e

st
ra

te
gi

es

Fig. 19: CTC: Shown is the profit and penalties of successful and failed jobs.

0 10 20 30 40 50 60 70 80 90 100
930

935

940

945

950

955

960

965

970

975

Pmax in percent

N
um

be
r o

f J
ob

s

Sum of successful jobs with backfilling
Sum of successful jobs with simple overbooking
Sum of successful jobs with time slice overbooking

Fig. 20: CTC with low load: Sum of successful jobs.

lay between the jobs. The backfilling strategy always planed 978 jobs with 8, 000 hours
execution time, thus nearly every incoming SLA. We skip the figures for profit/penalty
and success/failed jobs here as nothing happens.

The overbooking approaches accept at the beginning less jobs than the backfilling
approach. The reason for this behavior is that the risk of machine outages is also calcu-
lated in the PoF calculation; this means that for long running jobs including many cores
there is a chance that the job might fail due to a machine outage. When the thresh-
old is very low the machine does not accept some of this jobs even if the machine is
empty. With a threshold of more than 0.1 the overbooking is similar to backfilling. As
no more jobs can be accepted, even accepting high risk, the overbooking profit does not
decrease.

6 Discussion

This work aims to increase a providers profit in a commercial scenario, by applying
overbooking to resource planning. In the evaluation section we simulated the approach
based on job traces from the parallel workload archive.

The simulation underlines that overbooking, carefully applied, provides a good op-
portunity for a grid provider to further increase its profit. For instance:

– With the SDSC traces and a threshold of Pmax = 0.1 the profit is increased by 30 %
compared to a conservative backfilling strategy.

0 10 20 30 40 50 60 70 80 90 100
7650

7700

7750

7800

7850

7900

7950

8000

8050

Pmax in percent

G
ai

n
in

 e
xc

eu
tio

n
ho

ur
s

Gain of backfilling
Gain of simple overbooking
Gain of time slice overbooking

Fig. 21: CTC with low load: Sum of profit.

– With KTH and Pmax = 0.05 the profit is increased by 23 %.
– With BLUE and Pmax = 0.3 the profit is increased by 55 %.
– With CTC and a Pmax = 0.15 the profit is increasing by 4 %

In addition, the evaluation shows that the performance of the time slice overbooking
is nearly always better than the simple overbooking. This shows that the quality of the
underlying statistical analysis is paramount for a successful overbooking approach.

Where with some traces the profit is increasable by over 50 %, for others only very
little additional profit is possible. An improved statistical analysis might still allow to
increase the profit, however when the jobs of users in a cluster system (nearly) always
fully use then estimated runtime the application of overbooking is not profitable. In
addition, the last evaluation shows that the application of overbooking makes sense in
cluster systems with high load only.

7 Conclusion

This paper has motivated the idea of using overbooking to increase the ability to ac-
cept more SLAs in Grid, Cloud or HPC environments. As overbooking increases the
probability of SLA violations, mechanisms for assessing the risk have been shown. The
evaluation shows that the additional profit depends on the load of the system, the ac-
curacy of the underlying runtime estimations, and the given real runtime distributions.
The additional profit varies depending on the accuracy of the statistical analysis and the
load of the system up to over 50 % of additional gain.

For future work it is interesting to determine if there are user and application spe-
cific distributions that would allow to increase the quality of the risk estimations for
overbooking. Additionally we plan to examine the abilities of using virtualization tech-
niques. This would allow to migrate jobs that took more time as their original gap length
allows. If enough other resources are available at the end of a job’s gap, the job is moved
to these resources, thus an SLA violation might be prevented. Finally, we want to find
a heuristic, which can estimate the PoF for a job without the CPU time-consuming
convolution of PDF distributions.

References

1. Cirne, W., Berman, F.: A comprehensive model of the supercomputer workload. In: 4th
Workshop on Workload Characterization, Citeseer (2001)

2. Hopper, E., Turton, B.: A review of the application of meta-heuristic algorithms to 2D strip
packing problems. Artificial Intelligence Review 16(4) (2001) 257–300

3. Berkey, J., Wang, P.: Two-dimensional finite bin-packing algorithms. Journal of the Opera-
tional Research Society (1987) 423–429

4. Ntene, N., van Vuuren, J.: A survey and comparison of level heuristics for the 2D oriented
strip packing problem. Discrete Optimization (2006)

5. Baker, B., Schwarz, J.: Shelf algorithms for two-dimensional packing problems. SIAM
Journal on Computing 12 (1983) 508

6. Feitelson, D., Jette, M.: Improved utilization and responsiveness with gang scheduling.
Proceedings of the Job Scheduling Strategies for Parallel Processing: IPPS’97 Workshop,
Geneva, Switzerland, April 5 (1997)

7. Feitelson, D., Weil, A.: Utilization and predictability in scheduling the ibm sp2 with back-
filling. Proceedings of the 12th International Parallel Processing Symposium (Jan 1998)

8. Mu’alem, A., Feitelson, D.: Utilization, predictability, workloads, and user runtime estimates
in scheduling the ibm sp 2 with backfilling. IEEE Transactions on Parallel and Distributed
Systems 12(6) (2001) 529–543

9. Zotkin, D., Keleher, P.: Job-length estimation and performance in backfilling schedulers. In
Proceedings of the Eighth IEEE International Symposium on High Performance Distributed
Computing (HPDC) (Jan 1999)

10. Tsafrir, D., Feitelson, D.: The dynamics of backfilling: solving the mystery of why increased
inaccuracy may help. Proceedings of the IEEE International Symposium on Workload Char-
acterization (2006)

11. Gibbons, R.: A historical application profiler for use by parallel schedulers. Proceedings of
the Job Scheduling Strategies for Parallel Processing (JSSPP): IPPS’97 Workshop (1997)

12. Smith, W., Foster, I., Taylor, V.: Predicting application run times using historical information.
Proceedings of the Job Scheduling Strategies for Parallel Processing (JSSPP) (Jan 1998)

13. Tsafrir, D., Etsion, Y., Feitelson, D.: Modeling user runtime estimates. Proceedings of the
Job Scheduling Strategies for Parallel Processing (JSSPP) (2005)

14. Tsafrir, D., Etsion, Y., Feitelson, D.: Backfilling using system-generated predictions rather
than user runtime estimates. IEEE Transactions on Parallel and Distributed Systems (TPDS)
(2007) 789–803

15. Liberman, V., Yechiali, U.: On the hotel overbooking problem-an inventory system with
stochastic cancellations. Management Science 24(11) (1978) 1117–1126

16. Subramanian, J., Jr, S.S., Lautenbacher, C.: Airline yield management with overbooking,
cancellations, and no-shows. Transportation Science 33(2) (1999) 147–167

17. Rothstein, M.: Or and the airline overbooking problem. Operations Research 33(2) (1985)
237–248

18. Urgaonkar, B., Shenoy, P.J., Roscoe, T.: Resource overbooking and application profiling
in shared hosting platforms. In: Proceedings of the 5th Symposium on Operating System
Design and Implementation (OSDI). (2002)

19. Andrieux, A., Berry, D., Garibaldi, J., Jarvis, S., MacLaren, J., Ouelhadj, D., Snelling, D.:
Open issues in grid scheduling. UK e-Science Report UKeS-2004-03 (2004)

20. Hovestadt, M., O.Kao, Keller, A., Streit, A.: Scheduling in hpc resource management sys-
tems: Queuing vs. planning. Proceedings of the Job Scheduling Strategies for Parallel Pro-
cessing (JSSPP) (2003)

21. Siddiqui, M., Villazón, A., Fahringer, T.: Grid allocation and reservation - grid capacity
planning with negotiation-based advance reservation for optimized qos. In: Proceedings
of the ACM/IEEE SC2006 Conference on High Performance Networking and Computing.
(2006) 103

22. Chen, M., Wu, Y., Yang, G., Liu, X.: Efficiently rationing resources for grid and p2p comput-
ing. In: Proceedings of the IFIP International Conference Network and Parallel Computing
(NPC). (2004) 133–136

23. Sulistio, A., Kim, K.H., Buyya, R.: Managing cancellations and no-shows of reservations
with overbooking to increase resource revenue. In: Proceedings of the 8th IEEE International
Symposium on Cluster Computing and the Grid (CCGrid). (2008) 267–276

24. Nissimov, A., Feitelson, D.: Probabilistic backfilling. JSSPP 2007 (Jan 2007)
25. Birkenheuer, G., Hovestadt, M., Kao, O., Voss, K.: Overbooking in planning based schedul-

ing systems. In: Proceedings of the 2008 International Conference on Grid Computing and
Applications (GCA), Las Vegas, Nevada, USA (may 2008)

26. Birkenheuer, G., Brinkmann, A., Karl, H.: The gain of overbooking. In: Proceedings of the
14th Workshops on Job Scheduling Strategies for Parallel Processing (JSSPP), Rome, Italy
(may 2009)

27. Schroeder, B., Gibson, G.: A large-scale study of failures in high-performance computing
systems. In: Proc. of the 2006 international Conference on Dependable Systems and Net-
works (DSN06), Citeseer (2006)

28. Sahoo, R., Squillante, M., Sivasubramaniam, A., Zhang, Y.: Failure data analysis of a large-
scale heterogeneous server environment. In: Dependable Systems and Networks, 2004 In-
ternational Conference on. (2004) 772–781

29. Birkenheuer, G., Djemame, K., Gourlay, I., Hovestadt, M., Kao, O., Padgett, J., Voss., K.:
Introducing risk management into the grid. In: in Proceedings of the 2nd IEEE Interna-
tional Conference on e-Science and Grid Computing (e-Science’06) Amsterdam, Nether-
lands: IEEE Computer Society: p. 28. (2006)

30. Djemame, K., Padgett, J., Gourlay, I., Voss, K., Battre, D., Kao, O.: Economically enhanced
risk-aware grid sla management. In: in Proceedings of eChallenges e-2008 Conference,
Stockolm, Sweden. (2008)

31. Iosup, A., Jan, M., Sonmez, O., Epema, D.: On the dynamic resource availability in grids.
In: Proceedings of the 8th IEEE/ACM International Conference on Grid Computing, IEEE
Computer Society (2007) 26–33

32. Nurmi, D., Brevik, J., Wolski, R.: Modeling machine availability in enterprise and wide-area
distributed computing environments. Lecture Notes in Computer Science 3648 (2005) 432

