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Abstract. Virtualization technology has introduced new ways for man-
aging IT infrastructure. The flexible deployment of applications through
self-contained virtual machine images has removed the barriers for mul-
tiplexing, suspending and migrating applications with their entire execu-
tion environment, allowing for a more efficient use of the infrastructure.
These developments have given rise to an important challenge regarding
the optimal scheduling of virtual machine workloads. In this paper, we
specifically address the VM scheduling problem in which workloads that
require guaranteed levels of CPU performance are mixed with workloads
that do not require such guarantees. We introduce a framework to ana-
lyze this scheduling problem and evaluate to what extent such mixed ser-
vice delivery is beneficial for a provider of virtualized IT infrastructure.
Traditionally providers offer IT resources under a guaranteed and fixed
performance profile, which can lead to underutilization. The findings of
our simulation study show that through proper tuning of a limited set
of parameters, the proposed scheduling algorithm allows for a significant
increase in utilization without sacrificing on performance dependability.

Key words: Workload multiplexing, Virtualization, Overbooking, Schedul-
ing

1 Introduction

A current trend in IT infrastructure management is the reliance on virtualization
technology to mitigate the costs of application and IT infrastructure deployment,
management and procurement. Virtualization technology allows one to manage
an application and its execution environment as a single entity, a virtual machine
(VM). It allows for the full configuration of an application and its execution
environment to be captured in a single file, a virtual machine image. These
virtual machine images can be deployed in a hardware-agnostic manner on any
hardware that hosts a compatible virtual machine monitor (VMM) such as Xen
[1] or VMware’s VMM. VM monitors thereby offer flexibility in partitioning the
underlying hardware resources and ensure isolation between the different virtual
machines that are running on the same hardware. Aside from the benefits of



this technology in the context of privately owned data centers, these features
have also fostered the development of a new IT infrastructure delivery paradigm
that is based on outsourcing. The possibility to deploy an entire environment
in a low-cost and hardware-neutral manner has paved the way for cloud [2, 3]
infrastructure as a service (IaaS) providers to open up their large datacenters to
consumers, thereby exploiting significant economies of scale.

One of the most well known providers in this new market is Amazon with
their Elastic Compute Cloud (EC2) [4] offering. As is typical for an IaaS provider,
Amazon offers a discrete number of resource types or instance types as they are
called, with varying performance characteristics. Such an instance type delivers
a guaranteed level of compute capacity. An EC2 small instance type for exam-
ple, contractually delivers a performance that is equivalent to a 2007 Opteron
processor with a 1.0-1.2 GHz clock frequency. The performance guarantees in
this service delivery model are crucial because the use of the compute service is
paid for by the hour, and not by actual compute capacity delivered or used. The
combination of these performance guarantees and the fact that virtual machine
workloads can vary significantly can lead to infrastructure underutilization in ab-
sence of corrective measures. In addition, the ability to buy reserved instances
at EC2 that have a guaranteed level of performance and availability, further in-
creases the chances for underutilization. The recent addition of a spot market [5]
for EC2 instances whereby instance types are dynamically priced and potentially
killed by the provider if their standing bid does not meet the spot price, provides
an indication for this problem of (temporary) underutilization. The addition of
this market mechanism changes the scheduling problem within the datacenter
from one in which a given set of workloads need to be balanced out over the
available hardware, to one in which the change of an admission parameter,the
instance’s spot price, can trigger an influx of additional VM workloads into the
datacenter. These workloads run under lower availability guarantees as they can
be shutdown by the provider if they cause interference with workloads that run
under a high availability regime, such as the reserved instance or on-demand
instances at EC21.

Scheduling workloads that have low priority and quality of service (QoS)
guarantees in terms of performance, alongside with high-QoS workloads thus
offers a possibility to deal with underutilization. Consider for example the addi-
tion of a batch job workload to a 4-way server that is running a VM with four
cores hosting a high priority web service. The web service’s spiky load pattern
opens up the possibility for filling in underutilized periods with the batch work-
load. Such a scheduling approach must ensure that high-QoS workloads do not
suffer from performance degradation caused by their multiplexing with low-QoS
workloads. At the same time, enough low-QoS workloads should pass admission

1 Note that EC2 uses an indirect mechanism for this by increasing the spot price to a
level that rises above the standing bid of an adequately high number of spot instance
workloads. This clears them for shutdown under the contractual rules of the trading
agreement.



control in order to achieve the highest possible utilization and throughput of the
infrastructure.

Although some commercial products exist, such as VMware’s vSphere, that
perform load balancing in a cluster for a given set of virtual machines, no definite
solution exists today for tackling this problem if a free decision can be made to
accept additional low-QoS workloads. In this paper, we present a simulation
framework to analyze the performance of VM scheduling problems and evaluate
a scheduling algorithm that is tailored towards the multiplexing of these high-
and low-QoS workloads in a virtual machine context. We demonstrate that by
tuning a limited set of parameters a tradeoff can be made between maximizing
utilization and avoiding workload interference.

2 Model

2.1 Resource and Job Model

In this contribution, we research the VM scheduling problem within the context
of the following model. We explore the problem in a setting with one infrastruc-
ture provider P , that hosts a set of m machines Mj (j = 1, · · · ,m). These are
considered to be identical parallel machines so each machine is able to execute
any job from the set of n jobs Ji (i = 1, · · · , n), and for the machine’s processing
capacity sj we have, ∀i, j ∈ {1, · · · ,m} : si = sj = 1. A job, which models the
execution of a virtual machine instance, has a varying load pattern over time
and is sequential, i.e. it runs on only one machine at a time. A job has a release
time ri, and a duration pi. We consider two types of QoS levels for jobs. High-
QoS jobs must be able to start at time ri and should be able to allocate the full
processing power of the machine on which they are deployed. These jobs are not
preemptible, e.g. a virtual machine running a relational database. Low-QoS jobs
can be preempted at a fixed cost cp. In this work, we assume that job preemp-
tion requires a suspension of the virtual machine. Equivalently, a resumption of
a virtual machine instigates a cost cr. The job startup costs (cb) and termination
costs (ct) are also modeled as we are dealing with VMs. For preemption, we only
consider the case wherein a VM is swapped out of memory to make room for the
other VMs that run on the server. An example of a workload that is amenable
to a low-QoS regime is a virtual machine that executes low-priority batch jobs.

A machine corresponds to a virtualized core of a server that runs a virtual
machine monitor. The provider P operates a cluster of such servers. A machine
can accommodate more than one job at a time. We assume that the distribution
and multiplexing of a VMs workload over the virtual cores of a server is man-
aged by the virtual machine monitor and do not explicitly model this behavior.
We also do not model the overheads that such multiplexing brings in terms of
technical considerations such as I/O contention for resources or cache line in-
validations. Although these aspects can certainly have a significant impact on
this study, they are also very application dependent and difficult to model and
simulate. In that respect, this study maps out the maximum performance that
can be attained under the proposed scheduling approach.



2.2 VM management model and simulation framework

For managing the distribution of virtual machines over multiple servers in the
cluster a virtual infrastructure manager (VIM) is required. There are multiple
such managers currently available such as vSphere (VMWare’s commercial offer-
ing), or one of the open source alternatives such as OpenNebula [6] or Eucalyptus
[7]. Depending on the capabilities of the VIM, a set of features and operations is
available to manage the execution of the VM instances on the cluster. Because of
its generality, we have chosen to model our scheduling problem in the context of
the features offered by the OpenNebula toolkit. The open nature of the project,
the emphasis on being a research platform and the generality of its feature set
are the main factors that influenced this choice.

One of the schedulers already available for OpenNebula is the Haizea [8, 6]
scheduler. The VM operations available to the scheduler are shutdown, start, sus-
pend and resume. The scheduler is assumed to have no knowledge of pi. In order
to deal with infrastructure underutilization, we take an overbooking approach.
That is, we allow the scheduler to allocate more resources than physically avail-
able on the cluster node. Such an overbooking has to be actively managed by
active scheduling decisions in order to limit the interference of low-QoS loads
with high-QoS loads. As the Haizea scheduler already supports many of the fea-
tures required for overbooking, such as the support for differentiation between
multiple job types, it is chosen as the basis for our scheduler.

All of the scheduler’s decisions result in a series of commands and correspond-
ing VM states that can be used to drive the two enactment backends available
in Haizea. The first is a simulated backend used in the presented experiments,
the second drives the OpenNebula virtual infrastructure engine where Haizea
can be used as an alternative to the default scheduler. One of the major ben-
efits of the second backend is that all the scheduling algorithms implemented
within the extended framework are automatically compatible with OpenNebula.
An advantage of this choice is that the results of our simulation studies can be
verified in a real-world setting without much additional cost.

Haizea’s simulation mode uses a simulation core that keeps track of all ac-
tions that are scheduled with a specific firing and finishing time. The simulation
steps through time by subsequently adjusting the simulator’s virtual clock to
the time of the next action. At each step, the state of the simulated environ-
ment is updated and user code can step in to schedule new actions. A single VM
operation, such as suspend, can involve one or more actions, depending on the
level of detail in the VM management model. For example, one could explicitly
model the time required for state checkpointing, or the I/O operation involved
in storing the checkpoint.

With a configurable time frequency, our scheduler performs an overbooking
step. In such a step all available machines are polled to obtain the active jobs
and their current utilization. This information is then used to determine all the
VM operations that are required, based on the scheduling policy’s options. In-
terspersed with these fixed steps lie management steps. During the management



steps all events that do not coincide with overbooking step times are performed
e.g. issuing a shutdown command when a VM has finished its workload.

3 Scheduling Algorithm

Any overbooking scheme will have the same general goal: reduce resource wastage
due to underutilization while at the same time having a minimal impact on the
existing resource users. As a result of their suspend and resume capabilities VMs
are uniquely suited for this goal provided they have different types of QoS re-
quirements. A lower priority VM can be suspended and resumed at a later, more
opportune time and/or location without losing any performed work. The sched-
uler determines the suitability of machines for low-QoS jobs and only launches
the job if sufficient resources are available. For high QoS jobs, the scheduler in-
stalls reservations to make sure resources are available for the entire duration of
the workload. Low-QoS jobs are queued up until machines are available.

As jobs only use a single machine, the amount of jobs supported by a single
cluster node can be expressed in slots. Each slot is equivalent to the processing
capability of a single CPU core. As such, we will refer to a machine Mi as a slot
in the remainder of this paper. Slots provide a convenient abstraction to specify
both the available physical resources as well as the maximum allowed amount
of overbooking.

High-QoS jobs may require the full processing capacity of the reserved slots at
some point in time but it is reasonable to assume this is not permanently the case.
The reserved but unused resources pose both an opportunity and a challenge.
There is an opportunity to increase overall utilization by scheduling in low-
QoS workloads. Depending on the QoS guarantees, interference with high-QoS
workloads with must be completely avoided or kept within reasonable bounds.
In contrast to the EC2 approach, we want to preserve the work that has been
completed in a low-QoS VM and therefore do not kill it if it is detected to
interfere with high-QoS VMs. Therefore, our scheduler must take into account
the overheads of suspending and resuming low-QoS VMs. Suspending as well as
starting and stopping a VM can be a resource intensive operation. Depending
on the configuration of the cluster, it is possible that all four major resources
(CPU, memory, disk and network) are heavily taxed.

We quantify the interference between VMs by measuring the CPU utilization
on a node in excess of 100%. As mentioned before, this is only one dimension of
interference that can exist between VMs that are deployed on the same node.
Other dimensions such as contention for disk I/O bandwidth will be investigated
in future work.

A simple and effective method to put restrictions on the allowed ranges for
overbooking is the introductions of bounds. The base algorithm determines its
actions using a lower and an upper bound. The lower bound puts a limit on the
maximum node utilization for nodes where new low QoS VMs are booted. The
upper bound is used to decide when a VM should start suspending. Keeping



in mind the overhead of starting and suspending a VM, the algorithm will not
schedule more than one of these operations simultaneously one a node.

Our scheduling algorithm works in two steps: scheduling new overbooking
requests and evaluating running requests. The first step, for which pseudo-code
is shown in Algorithm 1, works as follows. The algorithm starts by obtaining
a list of all the nodes that can currently support an extra VM. The suitability
of a node is determined by comparing the node utilization (including the loads
introduced by possible overbooked VMs) with a configurable lower bound. All
nodes with a utilization lower or equal to this lower bound are added to a list of
overbooking candidates. After suitable candidates are found the list of low-QoS
requests is updated: incoming requests are added to the back of the queue while
suspended requests are added to the front. Suspended requests are ordered by
initial arrival time with the oldest appearing at the front of the queue. With all
necessary data gathered, VMs can be scheduled until either the available nodes
or requests are exhausted.

Input: Set of nodes, Set of vm requests, lower bound
foreach Node i do

if Utilization(i) ≤ lower bound then
available nodes.add(i) ;

end
end
Update(vm requests) ;
while available nodes remaining & vm requests remaining do

vm = vm requests.pop() ;
n = available nodes.pop() ;
Schedule(vm on Node n) ;

end
Algorithm 1: Adding Overbooked VMs

Since utilization is a volatile property the conditions for overbooking will
need to be evaluated at regular intervals. The pseudo code for this part of the
algorithm can be found in 2. All nodes supporting one or more overbooked VMs
are evaluated, and if the total utilization equals or surpasses the set lower bound
the VM that was added last will be suspended.

Input: Set of nodes, upper bound
foreach Node i do

if Utilization(i) ≥ upper bound then
vm = overbooked vms(i).get last() ;
Suspend(vm) ;

end
end

Algorithm 2: Suspending Overbooked VMs



4 Experiments

In this section, we evaluate the performance of our scheduling algorithm. We first
outline our experimental setup after which we present and discuss our results.

4.1 Experimental setup

Our experimental setup consists of three major aspects: the cluster used to
deploy the VMs, a list of high- and low-QoS requests and the load generators
attached to the requests. The cluster consists of 50 homogeneous octacore nodes.
To generate a non-trivial synthetic load pattern that is reminiscent of the behav-
ior of real-world workloads, we introduce the following three different application
types2 following [9]:

Noisy: Starting from a mean utilization value µ, a load pattern is generated by
drawing random numbers from a normal distribution N(µ, 15). An example
of a noisy load pattern for µ = 75 can be found in Figure 1.
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Fig. 1. Sample noisy load pattern.

Spiky: This load pattern is based on a normal distribution with σ = 5. To
add load spikes to the pattern, each drawing of the load distribution has
1% chance of generating a spike with 90% chance of having a positive one.
Each spike has 50% chance of continuing. An example spiky load pattern for
µ = 75 can be found in Figure 2.

Business: A business load pattern is slightly more complicated in that a func-
tion is used to determine the µ parameter of the normal distribution N(µ, 5)
depending on the time of day. The value of µ is calculated with a piece-
wise function that represents utilization fluctuations coinciding with business
hours. The function is configured with a minimum (min) and a maximum
(max) utilization value. Utilization rises from min to max between 8.00 and

2 By manipulating a limited number of parameters we can emulate a wide range of
applications.
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Fig. 2. Sample spiky load pattern.

10.00 in the morning. Between 11.30 and 13.30 there is a slight drop repre-
senting lunch hours. In the evening there is a second decline dropping back to
min between 16.00 and 18.00. The incremental utilization changes between
min and max are calculated by adjusting the amplitude and period of a
sinus function. During weekends, the function returns the minimum value.
An example business load pattern for min = 50 and max = 90 is shown in
Figure 3.
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Fig. 3. Sample business load pattern on a weekday.

Each high-QoS application has an equal chance of generating one of the
three load patterns. For the spiky and noisy load patterns, µ is drawn from a
normal distribution N(75, 15). For the business load pattern, min = 50 and
max = 90. An example of a possible workload during a weekday on a node in
the cluster can be found in Figure 4. High-QoS applications are generated in
such a manner that load patterns are randomly scheduled among the different
nodes on the cluster. Each low-QoS application has a noisy load pattern with
µ = 90 simulating CPU intensive batch jobs. Each separate application consists



of a single job. High-QoS jobs are generated in such a manner that all physical
slots are continuously occupied. Using 50 octacore nodes this means there are
400 high-QoS applications running at any given time, one for each core. The
low-QoS job arrival rate is set a level that ensures the queue never becomes
empty. The maximum amount of concurrently executing low-QoS applications
depends on the overbooking slots per node.

All application runtimes are generated according to a geometrical distribu-
tion. If X is the runtime in minutes, the probability is expressed in equation
1 for n = 30, 60, 90, ... with p equaling 0.1% and 1% for respectively high- and
low-QoS applications.

Pr [X = n] = p (1− p)(
n
30−1) (1)

Preliminary tests indicated that the results for running the simulation for one
week and for one month produced equivalent results. This is a logical consequence
of the weekly repeating pattern. To reduce the time needed to produce results for
the numerous tests, we reduced the time horizon of the simulation to one week.
The frequency for running the overbooking logic was set to 5 minutes. The costs
for VM operations were configured as cb = cp = cr = ct = 30s. Providing an
estimate for VM operations in a cluster environment depends highly on not only
the storage and network configuration but also on the target VM memory usage.
The 30s estimate should be viewed in the context of a cluster using fast network
storage to provide the VM images and VM instances using 1 GB of memory.
This assumption removes the need to model migration overhead when resuming
VMs on different nodes.

Executing the scenario without overbooking logic results in a mean CPU
utilization of 69.4% during a total of 67,200 workload hours. Every test consist
of three parameters: available overbooking slots, upper- and lower bound. These
are chosen in function of the relatively high average utilization on the simulated
cluster. The amount of overbooking slots was taken to either be 1, 2 or 3. We
varied the upper and lower bounds in increments of 5 between [85, 95] and [60,80]
respectively. Since each CPU core can maximally account for a utilization of
12,5%, the minimum difference between lower and upper bound is taken to be
15%. Relaxing this constraint will often result in immediately suspending the
VM once it becomes active. All other lower bounds are set 5% apart going down
until 60.

4.2 Results

The outcome of the experiments is gathered into Tables 1-3, each containing the
results of the test performed for a set amount of overbooking slots. The first
column contains upper and lower bounds. The third column shows the average
utilization achieved when the overbooking logic is active. The average utiliza-
tion of 69.4% achieved without overbooking, increases to more than 87% for the
scenario with three slots, a lower bound of 80 and upper bound of 95. A con-
servative bound configuration of 85-60 using a single overbooking slot, leads to



 50

 55

 60

 65

 70

 75

 80

 85

 90

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

C
P

U
 U

til
iz

at
io

n

Time

Node average

Fig. 4. Sample load pattern on a single eight core node during a weekday.

a utilization of 73.7%. The fourth column contains the hours of workload that
have executed within overbooked low-QoS VMs. This total does not include any
VM operation overhead, only active VMs can contribute to the total. The fifth
column shows the amount of VM suspensions. The second to last column con-
tains the amount of degradation points if the results are interpreted without any
overhead. Degradation points are all overbooking time steps where a total load
was recorded that would impact the high-QoS VMs. The last column contains
the amount of degradation points taking into account a 5% overhead.

From the preliminary results in Tables 1, 2 and 3 we can reach some initial
conclusions with respect to the parameter variations and their results. For the
purpose of this discussion we will refer to the difference between upper and lower
bounds as the overbooking window size. Negative effects are considered to be a
combination of increased suspensions (and the resulting resumptions) and an
increase in the amount of degradation points at both 95 and 100%.

We will first look at the impact caused by the amount of available over-
booking slots. The influence of the amount of overbooking slots is lowest in
the scenarios with the lowest bound values. This can be attributed to the fact
that the average utilization without overbooking is already relatively high, and
only allows for a single overbooked VM when bounds are set low. When the
bounds are increased more interesting results can be observed. Moving from one
overbooking slot to two yields higher utilization levels and often lower negative
effects for similar bound values. A single overbooking slot performs only slightly
better when the lower bound is set at 60 and total utilization is lowest. Increas-
ing the slot amount to a maximum of three overbooked VMs on the other hand
results in similar utilization levels while having the same or more negative ef-
fects. A higher maximum increase in utilization can be achieved but there is a
substantial increase in the amount of negative effects as well. It seems that in
most cases, two overbooking slots is the most appropriate setting for this type
of workload.

A detailed side by side comparison of Tables 1-3 shows that although the
numbers may vary, the trends that can be detected are similar. There are two
trends that deserve some further discussion, namely the effects of increasing the



lower bound with regard to a fixed upper bound and increasing the upper bound
with regard to fixed window sizes.
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Fig. 5. Increase in utilization and suspensions when using 2 overbooking slots and an
upper bound of 95. The lower bound is increased to decrease the overbooking window.

Increasing lower bounds: The first trend is the effect obtained by increasing
the lower bound and keeping all other parameters constant. This results in
utilization gains that slowly decrease per step. At the same time we find
there is an exponential increase in negative effects. This is illustrated in
figure 5, the lower bound is increased in steps of 5 from 60 to 80 creating
corresponding overbooking windows [35:15]. The results show that although
increasing the lower bound will give better utilization gains, these come at
an increasingly higher cost. Figures 6 and 7 further show that this effect is
present in all window, upper bound combinations.

Increasing upper bounds: Increasing the upper bound under a fixed window
size results in a linear increase in utilization (see Figure 6) while suspensions
(and degradation points) remain at roughly the same magnitude (see Fig-
ure 7). From these results we find that choosing a higher upper bound will
increase utilization while having a small impact on the negative effects of
overbooking.

In summary, we find that selecting a correct amount of overbooking slots is
an important part of achieving optimal results. There is a tipping point where
extra slots will only add negative effects without additional gain in utilization.
We also find that increasing the lower bound has diminishing effects on uti-
lization gains while negative effects increase exponentially. On the other hand,
increasing the upper bound in our current simulator does not add negative ef-
fects while utilization displays a steady increase. This leads us to believe that
a correct upper bound will most likely depend on limiting factors not yet ex-
plored in this research3. We can however conclude that the upper bound should
3 In multi core systems with more VMs than cores, performance degradation will occur

somewhere before total utilization hits 100%.
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be placed as high as possible. Depending on the amount of negative effects an
administrator is prepared to allow, an optimal set of bounds can be chosen to
maximize utilization.

5 Related Work

To deal with underutilization in batch queuing systems, backfilling techniques
such as EASY [10] are often used. Jobs can jump ahead in the queue if they do
not delay the start time of the first job in the queue. Conservative backfilling
approaches [11] require that upon a backfill operation, no job in the queue is
delayed in order to maintain fairness. A problem with these approaches is their
reliance on user estimates of job runtimes which are often incorrect [12]. Several
techniques have been proposed to model this runtime in order to tackle this
problem [13–15].

Aside from backfilling, overbooking of resources is another technique to deal
with underutilization. The scheduler deliberately overbooks resources in order
to deal with jobs that do not use their allocated resource share fully. Sulistio et.
al [16] developed a resource overbooking scheme for a setting in which resource
reservations are made on a grid infrastructure. Whereas our work hinges on the



Bounds Slots Utilization Hours Suspends > 100% > 95%

85 - 60 1 73.7 3297.79 405 0 1
85 - 65 1 75.19 4434.55 1125 0 3
85 - 70 1 76.36 5338.98 3443 0 17

90 - 60 1 74.57 3966.83 191 0 10
90 - 65 1 76.3 5290.09 406 0 25
90 - 70 1 77.42 6150.38 1033 0 62
90 - 75 1 78.28 6806.58 2508 6 195

95 - 60 1 75.25 4491.03 144 3 144
95 - 65 1 77.29 6043.97 234 7 234
95 - 70 1 78.45 6936.92 383 13 384
95 - 75 1 79.17 7478.31 660 22 660
95 - 80 1 79.66 7864.45 1305 64 1305

Table 1. The results using different bound combinations and one overbooking slot.

Bounds Slots Utilization Hours Suspends > 100% > 95%

85 - 60 2 73.86 3418.20 490 0 1
85 - 65 2 75.81 4909.43 1839 0 9
85 - 70 2 77.83 6457.53 6797 3 81

90 - 60 2 75.07 4341.34 243 0 15
90 - 65 2 77.59 6277.52 746 1 49
90 - 70 2 79.87 8020.48 2507 7 196
90 - 75 2 82.13 9760.40 7461 49 868

95 - 60 2 75.84 4934.74 176 7 177
95 - 65 2 79.37 7639.71 370 18 371
95 - 70 2 82.21 9813.01 888 43 888
95 - 75 2 84.45 11528.12 2207 135 2208
95 - 80 2 86.16 12845.09 5498 577 5498

Table 2. The results using different bound combinations and two overbooking slots.

Bounds Slots Utilization Hours Suspends > 100% > 95%

85 - 60 3 73.88 3429.17 476.0 0.0 1.0
85 - 65 3 75.81 4915.34 1866.0 0.0 10.0
85 - 70 3 77.84 6468.15 6871.0 6.0 94.0

90 - 60 3 75.0 4289.79 242.0 0.0 16.0
90 - 65 3 77.57 6266.12 757.0 1.0 51.0
90 - 70 3 79.89 8047.17 2619.0 13.0 211.0
90 - 75 3 82.35 9921.47 8502.0 107.0 1190.0

95 - 60 3 75.88 4964.69 172.0 8.0 173.0
95 - 65 3 79.38 7643.12 376.0 18.0 376.0
95 - 70 3 82.36 9926.95 966.0 53.0 966.0
95 - 75 3 84.92 11885.76 2898.0 246.0 2899.0
95 - 80 3 87.33 13733.74 8838.0 1376.0 8838.0

Table 3. The results using different bound combinations and three overbooking slots.



exploitation of the volatility of VM workloads, their model attempts to deal with
the binary case wherein reservations are not used at all or are canceled. They use
a richer model for the cost of overbooking by introducing a penalty model that is
linked to a renumeration, whereas we only consider the number of performance
degradation points the schedule generates. In future work, we are interested in
including such an application-specific penalty model to diversify the loss of value
an application faces if it is subject to a degradation in performance.

An approach to overbooking non-preemptive workloads in a non-virtualized
setting was proposed by Urgaonkar et al. [17]. They demonstrated that con-
trolled overbooking can dramatically increase utilization on shared platforms.
Resource requirements are based on detailed application profiling combined with
guarantees requested by application providers. The profiling process requires all
applications to run on a set of isolated nodes while being subjected to a realistic
workload, this workload generates a set of parameters that must be represen-
tative for the entire application lifetime. Instead of pro-actively managing over-
booking, application placement is based on a set of constraints and a probability
with which these constraints may be violated.

Perhaps somewhat surprisingly, workload traces from the LCG-2 infrastruc-
ture, which supports the data processing of CERN’s Large Hadron Collider, have
shown that as much as 70% of the jobs run by a Tier-2 Resource center in Russia
use less than 14% of CPU-time during their lifetime [18]. On the other hand,
98% of the jobs use less than 512MB of RAM. Cherkasova et al. thus investi-
gate the potential of running the batch workloads in VMs and overbooking grid
resources to increase utilization. The authors conclude that the use of virtual-
ization and multiplexing multiple VMs on a single CPU core allows for a 50%
reduction in the required infrastructure while rejecting less than 1% of the jobs
due to resource shortage.

Birkenheuer et al. [19] tackle underutilization for queue-based job scheduling
by modeling the probability that a backfill operation in the job queue delays
the execution of the next job due to bad user runtime estimations or resource
failure. A threshold is defined on this probability to decide whether a job can be
used for backfilling. Birkenheuer et al. report on a 20% increase in utilization on
a schedule for a workload trace of a 400 processor cluster. Their work is however
not adopted to the specifics of virtual machine scheduling and only considers a
single-processor case.

At the level of the VMM, priorities and weights can also be assigned to VMs
such that high priority workloads maintain their resource share in the presence
of low priority loads [20]. The VMM scheduler operates in time quanta that
are in the order of tens of milliseconds to ensure the system allocates resources
under the configured allocation constraints. Our approach differs from this in
that we suspend virtual machines so that their memory pages can be reclaimed
by other VMs. Although memory overcommitment is possible in popular VMMs
such as Xen, HyperV and VMware, this can result in noticeable performance
degradation if the VMs actually require the overcommitted memory [21, 22].



6 Future Work

Our first direction of future work will be to further evaluate the effectiveness of
the presented scheduling approach. To obtain a complete view a larger amount
of slot, bound and scenario combinations must be evaluated. Likewise, we wish
to extend the set of workloads that are analyzed and, if possible, make use of
trace data from real workloads. Our second goal is to classify VM workloads into
predefined classes so that an optimal scheduling configuration can be chosen au-
tomatically. Thirdly, we want to improve the scheduling algorithm itself. In this
regard we plan to explore the potential of workload modeling and prediction
techniques to attain a more intelligent mapping between a low-QoS workload
and the cluster node it is placed on. Finally, we plan to add aspects such as
memory and network usage to the model in order to increase the accuracy of
our results and to allow for the development of more complete scheduling. Using
this more accurate model, we will compare our simulation results to those from
OpenNebula experiments conducted with a real backend. In this manner, incon-
sistencies in the model and its assumptions can be rectified providing a realistic
basis for further research.

7 Conclusion

We have introduced a scheduling algorithm which multiplexes low- and high-QoS
workloads on a virtualized cluster infrastructure in order to increase the infras-
tructure’s utilization through overbooking. By monitoring the difference between
formal and actual requirements of high-QoS workloads in terms of CPU load, an
opportunity to add low-QoS workloads to a cluster node is detected. We intro-
duce a limited set of parameters in our scheduling policy so that a flexible tradeoff
can be made between maximization of infrastructure utilization and workload
interference. The results obtained from initial testing show that depending on
the requirements, optimal parameters can be selected that significantly increase
utilization while causing limited interference with high-QoS workloads. We iden-
tified general trends in the system’s performance through parameter tuning and
identified a number of guidelines to determine an optimal parameter setting.
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