Resource Provisioning in SLA-based Cluster
Computing

Kaiqi Xiong and Sang Suh

Department of Computer Science, Texas A&M University, Commerce, TX 75429,
USA

Abstract. Cluster computing is excellent for parallel computation. It
has become increasingly popular. In cluster computing, a service level
agreement (SLA) is a set of quality of services (QoS) and a fee agreed
between a customer and an application service provider. It plays an im-
portant role in an e-business application. An application service provider
uses a set of cluster computing resources to support e-business appli-
cations subject to an SLA. In this paper, the QoS includes percentile
response time and cluster utilization. We present an approach for re-
source provisioning in such an environment that minimizes the total cost
of cluster computing resources used by an application service provider
for an e-business application that often requires parallel computation for
high service performance, availability, and reliability while satisfying a
QoS and a fee negotiated between a customer and the application ser-
vice provider. Simulation experiments demonstrate the applicability of
the approach.

Key words: Cluster computing, scheduling theory, resource provision-
ing, service level agreement, and percentile response time

1 INTRODUCTION

In computer science, scheduling theory is concerned with the optimal allocation
of scarce resources such as servers, processors and network links to computer ser-
vice activities over time, with the objective of optimizing one or several computer
performance measures (e.g., see Levner [13]). Cluster computing is excellent for
parallel computation. It has become increasingly popular. The management of
computing service resources is fundamental to cluster computing. The increas-
ing pervasiveness of network connectivity and the proliferation of on demand e-
business applications and services in public domains, corporate networks, as well
as home environments give rise to the need for the design of appropriate service
management solutions in cluster computing. Accurately predicting e-business
application and scientific computation performance based on service statistics
and a customer’s perceived quality allows an application service provider (sim-
ply called a service provider) not only to assure quality of services but also to
avoid over provisioning to meet a service level agreement (SLA).

Job scheduling has been a fruitful area of research for many decades. It
involves answers to the following questions:

2 Kaiqi Xiong and Sang Suh

1. How are jobs assigned to computing resources, such as processors and ma-
chines?

2. What orders should we use to process jobs in a single computing resource?

3. How to allocate sufficient computing resources to match the requirements of
submitted jobs in terms of ensuring QoS guarantees?

The above three job scheduling questions are usually called the parallel job
scheduling problem, the job sequencing problem, and the resource provisioning
problem (also called the resource matching problem), respectively. While the job
sequencing problem is relatively simple, the parallel job scheduling problem and
the resource allocation problem are difficult to solve. Generally speaking, both
are NP-hard (see Du and Leung [7]). In this paper, we focus on the resource
provisioning problem that has been extensively researched over the years (see
Feitelson et al. [8] and Yom-Tov and Aridor [19]). In particular, we consider the
problem for avoiding the over-provisioning of computing resources. With over-
provisioning, computing resources are allocated more than service request jobs
actually need due to the over-determined requirements of service request jobs,
which should not occur as desired by a service provider for high profits.

Yom-Tov and Aridor [19] gave an example of two machines to explain how
badly over-provisioning affects machine utilization. However, if allocated com-
puting resources fall below a certain level or are insufficient, service request jobs
cannot complete to meet customer service requirements. Hence, the resource
provisioning problem plays a key role in job scheduling. It is an extremely im-
portant but very challenging problem as shown in Liu et al. [12], Naik et al [16],
and Yom-Tov and Aridor [19].

In this paper, we consider a resource provisioning problem in SLA-based clus-
ter computing where a service provider processes e-business application request
jobs for business customers subject to an SLA. Such request jobs often require
parallel computation for high service performance, availability, and reliability.
As shown in Figure 1, a customer represents a business that generates a stream
of service request jobs at a specified rate to be processed by a service provider’s
resources according to QoS requirements and for a given fee. A service request
job is transmitted to a service provider in a cluster computing system consisting
of a group of cluster nodes that are linked together to support parallel computa-
tion (e.g., see Aron et al. [1], Heath et al. [10] as well as Xiao and Ni [35]). Upon
the completion of a service request job at the service provider, the final result
is sent back to the customer. The service provider’s cluster nodes have or are a
set of computing resources so that they are capable to collaborate each other in
parallel for processing the service request job. Such computing resources in each
cluster node may include processors and cluster servers/machines as discussed
in Shin et al. [17] as well as Xiao and Ni [35]. For presentation purpose, we ex-
plicitly think the computing resource of each node as cluster servers. (Note that
in this paper “computing resource” or “server” are used alternatively.)

The resource provisioning problem is to minimize the overall cost of the
service provider’s computing resources of each node allocated to the business
customer in terms of the number of servers at each cluster node while satisfying

Cluster Node 1 Cluster Node 2 Cluster Node m

User
Networks
g‘ Service Provider
User ,-":

Fig. 1. Customer Service Request Jobs in SLA-based Cluster Computing

an SLA agreement. The SLA is a contract negotiated and agreed between the
customer and the application provider. It defines the quality of service (QoS)
and a fee. In this paper, the QoS metrics include:

1. Percentile response time-v% (0 < - < 100) of the time the response time,
i.e., the time to execute a service request job, is less than a pre-defined value;

2. Cluster utilization-It is the percentage of the time that the cluster node is
utilized.

Both of them are often called SLA performance metrics in the literature.
These QoS requirements are typical metrics included in an SLA (e.g., see IN-
TERNAP [25] as well as Martin and Nilsson [28]). As an end user of e-business
applications, a customer is in general concerned about response time rather than
throughput (for example, in an online business, an buyer often concerns about
how soon his/her order will be processed and completed). Hence, we do not in-
clude throughput as a metric in this study. Security, reliability and survivability
may be included in an SLA as well as described in Jacob [26]. We will discuss
them in another paper.

In this paper, we present the resource provisioning problem by minimizing
the total cost of each cluster node’s computer resources required to ensure a
given percentile of the response time and cluster utilization. We formulate the
provisioning problem as a constrained optimization problem. By modeling a
typical customer service scenario as a queueing network, we first propose an
approach to computing the percentile response time of a service request job. We
note that the proposed approach can be also applied to a queueing network whose
cluster nodes are arbitrarily linked as long as the link can be quantified. Then,
we present an approach to solving the constrained optimization problem by
calculating the computing resource of each cluster node required in each service

4 Kaiqi Xiong and Sang Suh

provider’s node. To the best of our knowledge, our study is the first attempt to
analytically solve the resource provisioning problem under the consideration of
percentile response time and cluster utilization for cluster computing by using a
queueing network method.

The rest of the paper is organized as follows. Related work is presented in
Section 2. In Section 3 we formulate the resource provisioning problem with
the SLA performance metrics. In Section 4 we model the service request jobs
processed in SLA-based cluster computing as a queueing network and give an
approximation approach to computing the percentile response time of a customer
service request job in the queueing network. We further propose an approach for
solving the provisioning problem. Numerical experiments are given in Section 5.
We conclude our results in Section 6.

2 Related Work

The job scheduling questions presented in Section 1 have been extensively stud-
ied. They play an important role in not only parallel computation but also other
areas. Many real-world problems can be modeled as scheduling problems. For
example, the relationship between jobs and computing resources is similar to the
one between the following pairs: students and teachers, patients and doctors, as
well as ships and docks. Only a few scheduling problems have been shown to
be tractable, that is, they are solvable in polynomial time. For the remaining
ones, the only way to secure optimal solutions is usually by enumerative meth-
ods, requiring exponential time (e.g., see Cook [6], Garey and Johnson [9], and
Papadimitriou [15]).

Resource management including resource monitoring as well as resource match-
ing and/or resource provisioning has been researched over many years. Feitelson
et al. [8] and Yom-Tov and Aridor [19] have studied resource provisioning for job
scheduling in heterogeneous server clusters. Ngubiri and Vlient [14] discussed a
processor provisioning problem in multi-cluster systems. Bucur [3], Bucer and
Epema [4], and Jones [11] have considered the problem of resource provisioning
for Distributed ASCI Supercomputer (DAS). Bucur and Epema [4] proposed
and analyzed resource provisioning approaches in different scenarios. Jones [11]
focused on scheduling techniques and how they are affected by network charac-
teristics like latencies.

In the paper, we consider a job as a stream of customer service requests in
cluster computing. The problem of multiple heterogeneous resources allocated to
a single job has been discussed in Liu et al. [12]. It is an one-to-many matching
problem under the constraints of application specific global aggregations, for
example, total memory sizes and processor capacities.

As we know, in the above literature the authors only considered the average
metric value of a job stream as a performance metric. This is because an average
metric value is relatively easy to calculate. However, customer is more inclined
to request a statistical bound on its response time than an average response

Resource Provisioning in SLA-based Cluster Computing 5

time. Thus, we use the percentile response time as our performance metric in
the paper.

Resource provisioning with the constraints of a variety of QoS metrics such
as response time, cluster utilization, or packet loss rate for other computing
infrastructures such as a network system have been extensively studied in the
literature as well. Bouillet, et al. [20] considered a routing and resource manage-
ment problem subject to the requirements of aggregate bandwidth from ingress
to egress nodes. In [21], Chassot et al. dealt with a communication architecture
with guaranteed end-to-end QoS in an IPv6 environment. The end-to-end QoS
includes an end-to-end delay (i.e., response time). Chassot et al. only discussed
and measured the maximal, minimal and average values of response time. Cao
and Zegura [22] considered the bandwidth allocation scheme for an available bit
rate service. In Liao and Campbell [27], a mechanism was developed with the
capability of delivering capacity provisioning in an efficient manner providing
quantitative delay-bounds with differentiated loss across per-aggregate service
classes.

3 The Resource Provisioning Problem

In this section, we study the customer service request jobs depicted in Figure 1
where a service request job is transmitted to m cluster nodes within a service
provider. For presentation purposes, we assume that each cluster node has only
one type of cluster server associated with cost c;. If they have multiple types of
servers, we can decompose each cluster node into several individual sub-nodes
so that each one only contains one type of servers with the same cost.

Let N; be the number of servers at node j (j = 1,2, ---, m). Thus, the
resource provisioning problem is to minimize the overall cost of the comput-
ing resources required while satisfying SLA requirements in cluster computing.
That is, the resource provisioning problem is quantified by solving for d; in the
following provisioning problem:

I = min (dl cp+---+ dm C’m) (1)

di,ydm

subject to SLA constraints, where d; represents the number of servers required in
cluster node j and hence its value is 1, 2, -- -, or N}, each server associated with
cost c;. Performance and a service fee are the two most important components
for a variety of SLAs in high performance computing such as cluster and grid
computing to support parallel computing for business applications. In this paper,
the SLA constraints include the aforementioned percentile response time and
cluster utilization as well as a service fee.

As discussed in Section 1, we consider cluster utilization and the percentile
of response time as the SLA performance metrics. The cluster utilization is the
percentage of the time that the cluster node is utilized. It will be discussed
in detail in Section 4.1. The cluster utilization within a service provider is not
observed by a customer (see Martin and Nilsson [28]). Instead, response time

6 Kaiqi Xiong and Sang Suh

can be directly measured by a customer. It directly reflects service performance
as stated in Martin and Nilsson [28], Paxson [30] and Padhye et al. [31].

As described earlier, in the literature, typically the average response time
(or an average execution time) is used (e.g., see Martin and Nilsson [28] as
well as Menasce and E. Casalicchio [29]). The average response time is heavily
influenced by “outliers,” which occur in almost all measurements. Therefore,
although the average response time is relatively easy to calculate, it may not
address the concerns of a customer. Typically, a customer is more inclined to
request a statistical bound on its response time than an average response time.
For instance, a customer can request that 95% of the time its response time
should be less than a desired value. Hence, in this paper we are concerned with
the statistical bound on the response time.

The response time is the time it takes for a service request job to be executed
on the service provider’s cluster nodes and then sent its completed job back to
the customer. Let T" be a random variable representing the response time, and
let fr(t) and Fr(t) be its probability and cumulative distributions pdf and CDF,
respectively. Also, let TP be the desired target response time that a customer
requests and agrees with its service provider based on a fee paid by the customer.
The statistical bound on the response time can be expressed by

TD
Fr(lmro = | fr()dt >+% (0< < 100) 2)
0
which is called percentile response time. This means that v% of the time a service
request job will be executed in less than T7.

As an example let us consider an M /M /1 queue with arrival rate A and
service rate p. The service discipline is FIFO. The steady-state probability of
the system is pg = 1 — p, and pp = (1 — p)p¥, k > 0, where p = % (see
Perros [32]). The response time T is exponentially distributed with the parameter
u(l — p), i.e., its probability distribution is given by

fr(t) = p(1 — p)er0-r)t

Using the definition given in (2), we have that
Fr(t)l—gp = 1 — e #0217 > 4% (3)

For example, to ensure that in a 95% (=v%) of time, customer service request
jobs can be executed in T'P. It follows from (3) that

e*#(lfﬂ)TD < 5%

which is equivalent to
> In 20
HEAT D
Furthermore, the resource provisioning problem can be formulated as the
following integer optimization problem.

Station 1 Station m

Fig. 2. A Service Request Job Model

The Resource Provisioning Problem in SLA-based Cluster Comput-
ing:

Find integers d; (0 < d; < Nj; j = 1,2,---,m) in the m-dimensional
provisioning problem (1) under the constraints of I < CP, the percentile re-
sponse time as expressed by (2), and the cluster utilization satisfying p; <
¢j%, and peverall < (% respectively, where CP is a fee negotiated and agreed
upon between a customer and the service provider, p; is the average cluster uti-
lization of node j, and p°v°"* is the average cluster utilization of all the cluster
nodes within the service provider. Parameters ; and ¢ are pre-defined values in
the SLA (j=1,2,---,m).

4 The Solution of The Resource Provisioning Problem

In this section, we study a queueing network model that depicts the path that
service request jobs have to follow through the cluster nodes’ resources owned
by the service provider described in Figure 1. The queueing model is shown in
Figure 2. We refer to the queueing model as a service request job model since it
depicts the computing resources used to provide computing services to respond
a customer’s service job requests.

The service request job model consists of a single infinite server, and m service
provider’s stations (or simply called nodes. In the rest of this paper, without any
confusion station and node are alternatively used) numbered sequentially from 1
to m as shown in Figure 2. After a customer exits from the single infinite server,
it will continue to be served at all m nodes. Upon completion of its service at
the m-th node, a customer may exit the queueing network with probability «,
or may return to the beginning the queueing network with probability 1 — «,
which characterizes the retransmission of a service request job within the service
provider, shown in Figure 2.

As seen in Figure 1, each cluster node consists of multiple servers that are
linked together to support for parallel computations. The servers of each clus-
ter node are commonly, but not always, connected to each other through fast
local area networks. Cluster nodes are usually deployed to improve performance
and/or availability over that of a single computer, while typically being much
more cost-effective than single computers of comparable speed or availability
(see Luke [2]). Each cluster node has a group of linked servers to work together

% 7777777 — 4’

1-a

8 Kaiqi Xiong and Sang Suh

closely so that it is treated as a single computer in many respects. Thus, in the
following discussion each service provider’s cluster node is modeled as a single
G/G/1 queue with arrival rate \; and service rate 1(d;)u;, where ¥(d;) is a
known function of d; and depends on the configuration of servers at each node
or station. It is non-decreasing and can be inverted, i.e., 1! exists. For in-
stance, suppose that a station represents a group of CPUs. Then, ¢ (n) can be
seen as a CPU scaling factor for the number of CPUs from 1 to n. According to
Chang [5], ¥(n) = £!°82" where ¢ is a basic scaling factor from 1 CPU to 2. So,
v) = € o

Let A be the arrival rate generated by a customer as well as A and A; be
the effective arrival rates to the infinite server, respectively. The infinite server
represents the total propagation delay from the first cluster node through the
m-th cluster node. The first station in Figure 2 models the architecture and
elements (i.e., servers) of the first cluster node in Figure 1. The j-th station in
Figure 2) (j = 2,3,---, m) models the architecture and elements of the j-th
cluster node in Figure 1.

We have the traffic equations: A = A+ (1 — @)\, and A\; = A that implies
A=A = 2, and the utilization of each station is p; = w(;\]?')#j = aujf;(dj)
(j = 1,2,---,m). Note that the infinity server has the same effective arrival
rate as node j. Thus, let p(¢) and p,(¢,¢(d;)p;) be the pdfs of response time
at the infinity server and node j (these pdfs can be at least determined by a
curve fitting of measurement data as discussed in Zandt [36]), and Lx(s) and
Lx,(s,2(d;)u;) its corresponding Laplace transform at the infinite server and
node j respectively, where X is the service time at the infinite server, and X;
is the time elapsed from the moment a service request job arriving at node j to
the moment it departs from the node.

4.1 An Algorithm for The Resource Provisioning Problem

In order to present our approach for solving the resource provisioning problem,
we need to derive the Laplace-Stieltjes transforms (LST) of the probability dis-
tribution of the response time.

Let T'(k) be the response time of k-th visit at the infinite server, the first
node, the second node, ..., and m-th node. Then, T'(k) is considered as the sum
of the response time of the k-th pass at the infinite server plus the response time
of the k-th pass at all the m stations:

Tk)=X+X1+Xo+---+Xpn

where we assume that each router is independent of each other. That is, we
assume that the waiting time of a service request job at a station or a node
is independent of its waiting times at other stations or nodes. Then, the total
response time of a service request is

7= pk)T (k)

=1

Resource Provisioning in SLA-based Cluster Computing 9

where p(k) is the steady state probability that a request will circulate k times
at the infinite server and the j-th station through the computing system. p(k)
is determined by

p(k) = a(l —)

Thus, the LST of the response time T is

Lr(s) =Y p(k) LK (s)L%, (5,9 (d0)) - - L, (8,0 (dim) i)

k=1
which can be re-written as follows:
_ aLx(s) Ij=1Lx;(s,¥(d;) ;)
1—(1—a)Lx(s)I™ Lx; (s, (d;) ;)

where Lx(s) and Lx;,(s,¥(dj)u;) (j =1,2,---,m) are the LST of the response
time X and the response time X;.

The probability distribution fr(¢) and the cumulative distribution Fr(t) of
the response time T' can be calculated by inverting Lr(s) and Lr(s)/s respec-
tively, that is,

Lr(s) (4)

fr(t) =L ' (Ly(s)) and Fr(t)=L"" (LTS(S)> (5)
We observe that fr(t) and Fp(t) are usually nonlinear functions of ¢ and d;.
Hence, the resource provisioning problem is an m-dimensional linear provisioning
problem subject to nonlinear constraints. In general, it is not easy to solve this
problem. However, the complexity of the problem can be significantly reduced
by postulating that the utilization of each node in Figure 2 should be the same

for all nodes. That is, we find the optimum value of dq, - - -, d,, such that
def .
pPL=""=Pm = a
where p; = w(é\ﬁ is the average cluster utilization of the j-th node (j =
J J

1, 2,---,m). This is called the balanced condition. (We note that in production
lines, it is commonly assumed that the service stations are balanced whose fur-
ther justification can be found in Xiong [18]).

We further consider the cluster utilization of the service model within the
service provider’s node, and derive the following result.

Proposition: The average cluster utilization of all the cluster nodes within
the service provider is

(’im

overall (~\ __
@ =T—a

(6)

Proof. From the structure of the queueing network, the average cluster utiliza-
tion of this SLA-based cluster model within the service provider can be computed
by

poverall(&) _ Zp(k)pl (d) P (fL)
k=1

10 Kaiqi Xiong and Sang Suh

where p(k) = a(1 — a)k~! and p;(a) = p;. Due to the balanced condition, we
have p;(a) = @, and then easily get (6). The proof is complete.

As presented in the resource provisioning problem, the constraint of cluster
utilization at each node: p;(a;) < (;%, and the constraint of the average cluster
utilization of all the cluster nodes within the service provider: pvere(g#) <
¢%. To ensure the cluster utilization guarantees, we require that a; = a <
(% and T—aeayam < ¢%. This implies that

SAB)

a < min {G%, -+, Cn%, | T+-a)%

a puj
for j = 1,2,---,m. This implies Z;n:l c;jd; reduces to a function of variable
a. Thus, we have the following algorithm for solving the resource provisioning
algorithm.

Algorithm:

i A . . _
In addition, note that W-])w = a. Hence, ¥(d;) = %ﬂj, ie,dj =¢~! <L>

a. Find a in the following minimization problem of a percentile response time
and its corresponding optimum values of dg-l):

aV « arg min Fr(t)|;—ro

subject to the constraint: Fr(t)|,—rp > 1% at @ = a1, where Fr(t) is given
by (5). Then, the optimum values of dgl) for the percentile response time

guarantee are given by d;l) =g ! (&(f‘)j#‘) for j =1,2,---,m.

b. Calculate a given in (7) to ensure the guarantees of cluster node utilization.

(2

Their maximal values a; for stations 1, 2, and 3 are computed by

Aj 14+ (1—a)%
a§.2) - ;;max{((j%)—l’ 14 (C%Q)C }

Thus, its corresponding optimum values of d§-2) are equal to d§-2) =t (a§2)>
forj=1,2,---,m.

c. Calculate the maximum values d;-w such that d;-w = Inax{dgl), d§2)}, and then
choose the optimum values of d; are equal to d;-” (j=1,2,---,m).

d. Check if 0 < dj < N; (j = 1,2,---,m) and I < CP are satisfied. If yes,
the obtained d; is the optimum number of servers required at each cluster
node. That is, the service provider should allocate at least d; servers at
each cluster node to ensure the SLA guarantee. Otherwise, the resource
provisioning problem subject to the SLA cannot be solved. In this case, the

service provider will inform the customer “We need to re-negotiate the SLA,”
or both.

Resource Provisioning in SLA-based Cluster Computing 11

Note that if we cannot get a solution for the resource provisioning prob-
lem using the above algorithm, then the service provider cannot execute service
request jobs in the SLA-based cluster computing due to at least one of the fol-
lowing reasons: (i) the service provider has insufficient computing resources (i.e.,
1, N, or both are too small), (ii) a pre-specific fee is too low (i.e., I > CP), or
(iii) at least one cluster node is over-utilized. Using these information, we may
detect and debug a service provider’s capacity problem, that is, the SLA needs
to be re-negotiated.

In this algorithm, the run-time for Steps b, ¢ and d have the same run-
time O(m). The efficiency of this algorithm is determined by the run-time for
inverting the LST of the response time in Step a, which can be efficiently done
as well (see Graf [24]). Let 77 be the run-time for the inversion of the LST and
T, be the time to find a*) except the time to invert the LST of the response
time. (This is an one-dimensional minimization problem. So, generally speaking,
T5 is relatively smaller than 77.) Thus, the total run-time for the Algorithm is

As we see, the total run-time for the Algorithm is mainly determined by
O(Ty), which depends on the number of function evaluations required for each
value of t that is varied in each numerical approximation method for the inversion
of a Laplace transform. In our numerical experiments, it usually took a couple
of minutes to complete the evaluation.

Remarks: In the above algorithm, if we require that each node has the same
pre-defined (;, then the constraints of p;(a;) < ;% (j = 1,2,---,m) reduce to
the only one constraint: p1(a1) < (1%, due to the above proposition.

5 Numerical Experiments

In this section we demonstrate how to apply our algorithm to solve the resource
provisioning problem subject to an SLA.

Clearly, our proposed method heavily depends on the computation of the
inverse Laplace transform of Lp(s). Many studies have been done in the past
a few decades as described in Graf [24]. Since the numerical computation of an
inverse Laplace transform is an ill-posed problem, no single method works for
any inverse Laplace transform problem (see Graf [24]). This is because in this
case there is a singular point that significantly affects the numerical computation
of an inverse Laplace transform. Thus, we employed several different numerical
methods for inverting a given L (s). If two or more methods can reach about the
same results, then we are confident that the derived numerical inverse Laplace
transform is correct. These numerical methods include the inversion methods
using Laguerre functions and Fourier functions in Graf [24], Gaussian quadrature
formulas in Piessens [33], and the method by Gaver [23] and Stehfest [34]. The
Laguerre method in Graf [24] and the Gaver-Stehfest method in Gaver [23] and
Stehfest [34] compute more rapidly but are slightly less accurate compared to
the Gaussian quadrature formulas in Piessens [33].

12 Kaiqi Xiong and Sang Suh

We consider the service request job model shown in Figure 2. For presentation
purpose, we only consider a three-station model, i.e., m = 3. The values of
parameters c;, cP, Nj, TP =0.08, v, o, (1, (o, (3, and (are given in Table 1
for j=1, 2, 3.

Table 1. The Values of ¢1, 2, ¢3, CP, N1, Nao, N3, TP, ~, «, 1, C2, €3, and ¢

ci|ealcs| P [N N N3 [TP [y Ta] G [G] G ¢
818(3(800|50(80{100|0.08(98/|0.8]0.78(0.9|0.92]0.58

We further choose A =200, 11 = 48, us = 38, and uz = 25. Also, let fx, (t) and
fx5(t) be Erlang-2 distributions with vy = ¢(dy)p;1 and v = 9(ds)ps for cluster
nodes 1 and 3 respectively, fx,(t) is an Erlang-1 distribution with vo = 1 (d2) s,
where (d;) = 1.5!°82% for j = 1,2,3. Then, A = A/a = 250.

According to our algorithm in Section 4, we calculate the optimum numbers
of dy, d2 and d3 using the following steps.

We first solve for @) in the Step a of Algorithm. That is, let us find the
minimum value of @ such that F(t)|,—qyp = F(TP) > 0.98, where F(TP) is
computed by

F(t)=1L

Lyf 200 II7L(fx,(s))
{s(s +250) 1 — 0.21T L(fx, (s)) }

and L(fx,(t)) is the LST of fx,(t) for j = 1,2,3. Thus, we get a = 0.85.
Consequently, dgl) = 23, dgl) = 34, and dgl) = 68.

Then, we use Step b of the Algorithm to compute a§2) = max{6.6774,6.4780} =
6.6774, al?) = max{7.3099,8.1828} = 8.1828 and a{”) = max{10.8696, 12.4379} =
12.4379. Thus, d* = 26, d$¥ = 37, and d) = 75.

By using Step c,we get d}f = 26, d}¥ = 37, and d3! = 75. We further choose
d; = d;-”7 and verify that I = Z?Zl cjd; = 729 < CP. This means that the
optimum values are d; = 26, dy = 37 and d3 = 75.

Extensive numerical results point to the fact that the proposed method pro-
vides an efficient way to calculate computing resources required for SLA assur-
ance.

6 Conclusions

Cluster computing is excellent for parallel computation. It has become increas-
ingly popular. We have proposed an approach for resource provisioning in a
typical SLA-based cluster computing environment, whereby we minimize the to-
tal cost of computing resources allocated to a customer so that a given set of
SLAs including percentile of the response time and cluster utilization is satisfied.

Resource Provisioning in SLA-based Cluster Computing 13

We have further formulated the resource provisioning problem as an opti-
mization problem subject to SLA constraints for a typical SLA-based cluster
computing system, and developed an efficient approach to solving the problem.
Finally, we have demonstrated how to use our proposed approach to finding the
minimum values of computing resources required for the customer SLA guaran-
tee by conducting numerical experiments.

Most importantly, we should point out that the proposed approach of this
paper provides a framework for addressing and solving this type of resource
provisioning problems subject to a given set of SLAs for high-performance com-
puting systems including cluster and grid computing systems. Moreover, this
approach can be extended to study a service request job model whose cluster
nodes are arbitrarily linked as long as the defined link can be quantified. In this
paper, we only considered a percentile of response time and cluster utilization in
the SLA. Other metrics such as security, availability, vulnerability, and reliability
will be discussed in another paper.

References

1. M. Aron, D. Sanders, P. Druschel, and W. Zwaenepoel, “Scalable content-aware
request distribution in cluster-based network servers,” In Proceedings of USENIX00
Technical Conference, June, 2000.

2. R. Lucke, In Buidling Clustered Liuz Systems, Prentice Hall, 2005.

3. A. Bucur, “Performance analysis of processor co-allocation in multicluster systems,”
In PhD Thesis, Delft University of Technology, Delft, The Netherlands, 2004.

4. A. Bucur and D. Epema, “ Local versus global schedulers with processor
co-allocation in multicluster systems,” In Feitelson, D.G., Rudolph and L.,
Schwiegelshohn, U. (eds.) JSSPP 2002, Leture Notes in Computer Science (LNCS),
vol. 2537, pp. 184204. Springer, Heidelberg, 2002.

5. J. Chang, “Processor performance: Update 17, http://SQL-Server-
Performance.com

6. S. Cook, “The complexity of theorem proving procedures,” In Proceedings of the
Third Annual ACM Symposium on the Theory of Computing, ACM, New York. pp.
151-158, 1971.

7. J. Du and T. Leung, “Complexity of scheduling parallel task systems,” SIAM
Journal on Discrete Mathematics, 2, pp. 473-487, 1989.

8. D. Feitelson, L. Rudolph and U. Shwiegelshohn, “Parallel job scheduling: a status
report,” In D. Feitelson, L. Rudolph and U. Shwiegelshohn (eds.) JSSPP 2004.
Leture Notes in Computer Science (LNCS), vol 3277, pp. 1-16, Springer, Heidelberg,
2005.

9. M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, New York: W.H. Freeman, 1979

10. T. Heath, B. Diniz, E. V. Carrera, W. Meira Jr., and R. Bianchini, “Self-configuring
heterogeneous server clusters,” In Proceedings of the Workshop on Compilers and
Operating Systems for Low Power, September, 2003.

11. W. Jones, “Improving parallel job scheduling performance in multi-clusters
through selective job co-allocation,” In PhD dissertation, Clemson University, Clem-
son, South Carolina, USA 2005.

14 Kaiqi Xiong and Sang Suh

12. C. Liu, L. Yang, I. Foster, and D. Angulo, “Design and evaluation of a resource
selection framework for grid applications,” In Proceedings of the 11th IEEE Inter-
national Symposium on High Performance Distributed Computing HPDC-11 2002
(HPDC02), pp. 63, Washington, DC, USA, IEEE Computer Society, 2002.

13. E. Levner, Multiprocessor Scheduling: Theory and Applications , I-Tech Education
and Publishing, Vienna, Austria, December 2007.

14. J. Ngubiri and M. Vliet, “Group-wise performance evaluation of processor co-
allocation in multi-cluster systems,” In E. Frachtenberg and U. Shwiegelshohn
(eds.) JSSPP 2007. Leture Notes in Computer Science (LNCS), vol 4942, pp. 24-36,
Springer, Heidelberg, 2008.

15. C. Papadimitriou, Computational Complexity (1st ed.), Addison Wesley, 1994.

16. V. Naik, C. Liu, L. Yang, and J. Wagner, “On-line resource matching in a het-
erogeneous grid environment,” In Proceedings of the International Symposium on
Cluster Computing and the Grid (CCGrid 2005),JEEE Computer Society, 2005

17. M. Shin, S. Chong, and I. Rhee, “Dual-resource TCP/AQM for processing-
constrained networks,” In Proceedings of the IEEE INFOCOM, April 2006.

18. K. Xijong, “Resource Optimization and Security in Distributed Computing”, In
Ph.D. Dissertation, North Carolina State University, USA, December 2007.

19. E. Yom-Tov and Y. Aridor, “A self-optiimized job scheduler for heterogeneous
server clusters,” In S. Frachtenberg and U. Shwiegelshohn (eds.) JSSP 2007, Leture
Notes in Computer Science (LNCS), vol 4942, pp. 169-187, Springer-Verlag Berlin,
Heidelberg, 2008.

20. E. Bouillet, D. Mitra, and K. Ramakrishnan, “The structure and management of
service level agreements in networks,” IEEE Journal on Selected Areas in Commu-
nications, 20(4), pp. 691-699, 2002.

21. C. Chassot, F. Garcia, G. Auriol, A. Lozes, E. Lochin, and P. Anelli, “Performance
Analysis for an IP Differentiated Services Network ”, In Proceedings of IEEFE Int-
nernational Conference on Communication (ICC’02), pp. 976-980, 2002.

22. Z. Cao and E. Zegura, “Utility max-min: An application-oriented bandwidth allo-
caton scheme”, In Proceedings of the IEEE INFOCOM, March 1999.

23. D. Gaver, M. Handley, J. Padhye, and J. Widmer, “Observing stochastic processes,
and approximate transform inversion,” Operation Research, 14(3), 1966.

24. U. Graf, Applied Laplace Transforms and z-Transforms for Scientists and Engi-
neers, Birkhauser Verlag, Basel-Boston-Berlin, 2004.

25. INTERNAP, “The INTERNAP route optimization solution: executive summary,”
http://www.internap.com/learning/whitepapers.

26. B. Jacob, et al., On Demand Operating Environment: Managing the Infrastructure
, IBM Redbooks, June 2005.

27. R. Liao and A. Campbell, “Dynamic core provisioning for quantitative differenti-
ated services,” IEEE/ACM Transactions on Networking, 12(3), pp. 429-442, June,
2005.

28. J. Martin and A. Nilsson, “On service level agreements for IP networks,” In
Proceedings of the IEEE INFOCOM, June 2002.

29. D. Menasce and E. Casalicchio, “A framework for resource allocation in grid
computing,” In Proceedings of the MASCOTS, October 2004.

30. V. Paxson, “End-to-end Internet packet dynamics,” In Proceedings of the ACM
SIGCOMM, 1997.

31. J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP throughput: a
simple model and its empirical validation,” In Proceedings of the ACM SIGCOMM,
2004.

Resource Provisioning in SLA-based Cluster Computing 15

32. H. Perros, Queueing Network with Blocking, FExact and Approximate Solutions,
Oxford University Press, 1994.

33. R. Piessens, “Gaussian quadrature formulas for the numerical integration of
Bromwich’s integral and the inversion of the Laplace transform,” Journal of Engi-
neering Mathematics, 5(1), 1971.

34. H. Stehfest, “Algorithm 386, numerical inversion of Laplace transforms,” Com-
muncations of the ACM, 13(1), January 1970.

35. X. Xiao and L. M. Ni, “Internet QoS: a big picture,” IEEE Network, March/April
1999.

36. T. Zandt, “How to fit a response time distribution,”
”http://citeseer.ist.psu.edu/552295.html”

