
Contention-Aware Scheduling with Task
Duplication

Oliver Sinnen, Andrea To, Manpreet Kaur

Department of Electrical and Computer Engineering, University of Auckland
Private Bag 92019, Auckland 1142, New Zealand

o.sinnen@auckland.ac.nz

Abstract Scheduling a task graph onto several processors is a trade-off
between maximising concurrency and minimising interprocessor commu-
nication. A technique to reduce or avoid interprocessor communication
is task duplication. Certain tasks are duplicated on several processors
to produce the data locally and avoid the communication among pro-
cessors. Most algorithms using task duplication are for the classic model,
which allows concurrent communication and ignores contention for com-
munication resources. The recently proposed, more realistic contention
model introduces contention awareness into task scheduling by assigning
the edges of the task graph to the links of the communication network.
It is intuitive that scheduling under such a model benefits even more
from task duplication. This paper proposes a contention-aware task du-
plication scheduling algorithm, after investigating how to use task du-
plication in the contention model. An extensive experimental evaluation
demonstrates the significant improvements to the speedup of the pro-
duced schedules.

1 Introduction

In the task scheduling area, a program is represented as a directed acyclic graph,
called task graph, where the nodes represent the tasks and the edges represent
the communications between the tasks. Scheduling such a task graph on a set of
processors for fastest execution is a well known NP-hard optimisation problem
[10] and many heuristics have been proposed [3,7,10,17].

Task duplication is a well known technique to reduce the necessary commu-
nication between processors. In this technique certain crucial tasks are executed
on more than one processor. The data they procedure is then locally avail-
able on different processors and less communication has to be sent between the
processors. Again, many algorithms have been proposed that incorporate this
technique into scheduling [4,7,8,9].

The classic model used by most scheduling algorithms heavily idealises the
target parallel system. It is assumed that all communication can happen at the
same time and that all processors are fully connected, in other words there is no
contention for communication resources. It is now more and more recognised that
this classic model is not realistic and does not suffice for accurate and efficient

task scheduling [1,5,15,16]. Contention aware scheduling algorithms depart from
the classic model and schedule not only the tasks, but also the edges on the
communication resources.

It is intuitive that avoiding or reducing interprocessor communication be-
comes more important under the contention model. Consequently, task duplica-
tion should be more beneficial under this model. To the authors’ best knowledge
however, no task duplication algorithm to be used under a contention model
has been proposed. In this paper we propose a contention-aware task duplica-
tion scheduling algorithm. It works under the general contention model and its
algorithmic components are based on state-of-the-art techniques used in task
duplication and contention-aware algorithms. We investigate the changes to the
scheduling model (Section 3) and discuss the proposed algorithm (Section 4).
An extensive experimental evaluation shows that our algorithm is far superior
to contention-aware algorithms that do not use task duplication and to task
duplication algorithms under the classic model (Section 5). The next section
gives a background on task scheduling, including the different models and basic
algorithmic techniques.

2 Task scheduling

The program to be scheduled is represented by a directed acyclic graph (DAG),
called task graph, G = (V,E, w, c). The nodes V represent the program’s tasks
and the edges E the communications between them. An edge eij ∈ E represents
the communication from node ni to node nj . The positive weight w(n) of node
n ∈ V represents its computation cost and the non-negative weight c(eij) of
edge eij ∈ E represents its communication cost.

The set {nx ∈ V : exi ∈ E} of all direct predecessors of ni is denoted
by pred(ni) and the set {nx ∈ V : eix ∈ E} of all direct successors of ni, is
denoted by succ(ni).

A schedule of a task graph on a target system consisting of a set P of dedic-
ated processors is the association of a start time and a processor with each of its
nodes: ts(n, P) denotes the start time of node n ∈ V. Thus, the node’s finish
time is given by tf (n, P) = ts(n, P) + w(n). The processor to which n is alloc-
ated is denoted by proc(n). Further, let tf (P) = maxn∈V:proc(n)=P {tf (n, P)} be
the processor finish time of P and let sl(S) = maxn∈V{tf (n, proc(n))} be the
schedule length (or makespan) of S, assuming minn∈V{ts(n, proc(n))} = 0.
For such a schedule to be feasible, the following two conditions must be fulfilled
for all nodes in G.

The Processor Constraint enforces that only one task is executed by a
processor P at any point in time, which means for any two nodes ni,nj ∈ V that
either tf (ni, P) ≤ ts(nj , P) or tf (nj , P) ≤ ts(ni, P) must be true.

The Precedence Constraint enforces that for every edge eij ∈ E, ni, nj ∈
V, the destination node nj can only start after the communication associated
with eij has arrived at nj ’s processor P

ts(nj , P) ≥ tf (eij , proc(ni), P). (1)

tf (eij , Psrc, Pdst) is the edge finish time of eij communicated from Psrc to Pdst,
which is defined later, depending on the scheduling model.

2.1 Classic scheduling

Traditionally, most scheduling algorithms have employed a strongly idealised
model of the target parallel system [3,7,10,17].

Definition 1 (Classic System Model).
A parallel system Mclassic = (P) consists of a finite set of dedicated pro-

cessors P connected by a communication network. This dedicated system has the
following properties: i) local communication has zero costs; ii) communication is
performed by a communication subsystem; iii) communication can be performed
concurrently; iv) the communication network is fully connected.

Based on this system model, the edge finish time only depends on the finish
time of the origin node and the communication time. The edge finish time of
eij ∈ E is given by

tf (eij , Psrc, Pdst) = tf (ni, Psrc) +
{

0 if Psrc = Pdst

c(eij) otherwise
(2)

Thus, communication can overlap with the computation of other nodes, an
unlimited number of communications can be performed at the same time, and
communication has the same cost c(eij), regardless of the origin and the destin-
ation processor, unless the communication is local.

2.2 List scheduling

The scheduling problem is to find a schedule with minimal length. As this prob-
lem is NP-hard [10], many heuristics have been proposed for its solution. A
heuristic must schedule a node on a processor so that it fulfils all resource and
precedence constraints.

The best known scheduling heuristic is list scheduling as given in Algorithm 1.
In this simple, but common, variant of list scheduling the nodes are ordered
according to a priority in the first part of the algorithm. The schedule order
of the nodes is important for the schedule length and many different priority
schemes have been proposed [6,13,17]. A common and usually good priority is
the node’s bottom level bl, which is the length of the longest path leaving the
node. Recursively defined it is

bl(ni) = w(ni) + max
nj∈succ(ni)

{c(eij) + bl(nj)} (3)

Algorithm 1 List scheduling
1: Sort nodes n ∈ V into list L, according to priority scheme and precedence con-

straints.
2: for each n ∈ L do
3: Find processor P ∈ P that allows earliest finish time of n.
4: Schedule n on P .

2.3 Contention aware scheduling

The classic scheduling model (Definition 1) does not consider any kind of con-
tention for communication resources. To make task scheduling contention aware,
and thereby more realistic, the communication network is modelled by a graph,
where processors are represented by vertices and the edges reflect the commu-
nication links. The awareness for contention is achieved by edge scheduling [11],
i.e. the scheduling of the edges of the DAG onto the links of the network graph,
in a very similar manner to how the nodes are scheduled on the processors.

The network model proposed in [15] captures network [11,13] as well as end-
point contention [1,5]. This is achieved by using different types of edges and
by using switch vertices in addition to processor vertices. Here, it suffices to
define the topology network graph to be TG = (P,L), where P is a set of
vertices representing the processors and L is a set of edges representing the
communication links. The system model is then defined as follows.

Definition 2 (Target Parallel System – Contention Model).
A target parallel system MTG = (TG) consists of a set of processors P con-

nected by the communication network TG = (P,L). This dedicated system has
the following properties: i) local communications have zero costs; ii) communic-
ation is performed by a communication subsystem.

The notions of concurrent communication and a fully connected network
found in the classic model (Definition 1) are substituted by the notion of schedul-
ing the edges E on the communication links L. Corresponding to the scheduling
of the nodes, ts(e, L) and tf (e, L) denote the start and finish time of edge
e ∈ E on link L ∈ L, respectively.

When a communication, represented by the edge e, is performed between two
distinct processors Psrc and Pdst, the routing algorithm of TG returns a route
from Psrc to Pdst: R = 〈L1, L2, . . . , Ll〉, Li ∈ L for i = 1, . . . , l. The edge e is
scheduled on each link of the route. For details on the scheduling of the edges
on the links and the topology graph refer to [15].

It is important to realise that the edge scheduling only affects the scheduling
of the tasks through a redefinition of the edge finish time, when compared with
the classic model (eq. 2). Let R = 〈L1, L2, . . . , Ll〉 be the route for the commu-
nication of eij ∈ E from Psrc to Pdst if Psrc 6= Pdst. The edge finish time of
eij is

tf (eij , Psrc, Pdst) =
{

tf (ni, Psrc) if Psrc = Pdst

tf (eij , Ll) otherwise (4)

Thus, the edge finish time tf (eij , Psrc, Pdst) is now the finish time of eij on
the last link of the route, Ll, unless the communication is local. As nothing else
changes for the scheduling of the tasks, most scheduling heuristics proposed for
the classic model, can also be used under the contention model, thereby making
them contention aware. This is in particular true for list scheduling [13].

3 Duplication in contention aware scheduling

Scheduling a task graph is a trade-off between maximising the concurrency and
minimising the interprocessor communication costs. It often happens that the
advantage of executing tasks in parallel is negated by the associated interpro-
cessor communication cost. It is intuitive that this is even more pronounced
under the more realistic contention model, where contention can increase the
communication delay.

Task duplication is a well known technique that tries to reduce the communic-
ation costs, by scheduling certain tasks on more than one processor. The function
proc(n) for the processor allocation of node n becomes a subset of P , denoted by
proc(n). The communication from these duplicated nodes then becomes local
on their allocated processors, avoiding costly interprocessor communication.

Many algorithms have been proposed using task duplication [4,7,8,9]. The
irony is that most of them have been proposed for the classic model, even
though avoiding interprocessor communication under the more realistic conten-
tion model can be more crucial. This paper proposes a novel task duplication
algorithm for the contention model. In this section we will study the general
consequence for the scheduling of the nodes and the next section proposes a
contention aware task duplication algorithm. First, let us look at task duplica-
tion under the classic model.

Under the classic model, task duplication has an impact on the Precedence
Constraint, eq. (1). Given the communication eij , the node nj cannot start until
at least one instance of the duplicated nodes of ni has provided the communic-
ation eij . It is not necessary to define which instance of ni is sending the data
to nj in case there is more than one instance that can provide it on time.

3.1 Under contention model

Task duplication under the contention model changes significantly. Under the
contention model, it must be strictly defined from where a communication is
sent if there are several instances of a sending task. Regard Figure 2 where the
task graph of Figure 1(left) is scheduled under the contention model on four
processors connected to a central ideal switch (Figure 1(right)). Ideal means
there is no contention within the switch. The tasks A and B have been duplicated
and only two communications are remote. Edge eAE is scheduled on links L2 and
L3 (route from P2 to P3) , and eAF on links L1 and L4 (route from P1 to P4). In
other words, both instances of A are sending out data, but each only one edge.

B

C D

 1

1

 9

 2A

E

 9

 3 3
F

 9 9
1

 2 2

P
1

P
2

P
4

P
3

L1

S
L2

L3

L4

Figure 1. Example task graph (left) and topology graph of four processor system
(right)

LL L LP3P

time

P
A

0
1 1

C

1

2

2

3

4

2 3 P4 4

F

BB

E
D

A

e
AE

e
AF

e
AE

e
AF

Figure 2. Task duplication under contention model

Because of the contention model, it is actually important that eAE and eAF

are sent from different processors as can be observed in Figure 3, where both
are sent from P2. Due to contention on L2, eAF is delayed and therefore arrives
one time unit later at P4, which in turn increases the schedule length through
F ’s later start time.

LL L LP3P

time

P
A

0
1 1

C

1

2

2

3

4

2 3 P4 4

F

BB

E
D

A

e
AE

e
AF

e
AE

e
AF

Figure 3. Contention on L2 delays communication eAF , increases schedule length

The consequence from this observation is that it must be decided during the
scheduling of the tasks and edges, which instance of a duplicated task sends the
communication. As several instances of a node ni might exist, eij might be sent
several times to different processors, possibly from the same source processor.

As this duplication is done under the contention model, the finish time of the
edge remains as defined in eq. (4), that is it corresponds to the finish time of the
edge on the link entering the destination processor, for example in Figure 3 the
finish time of eAF is f(eAF , P2, P4) = f(eAF , L4) = 3.

A scheduling algorithm must carefully choose from which task a communica-
tion is sent when several instances exist so that the communication edge can be
scheduled and an accurate view of the contention is gained. Under the contention
model, this choice is make by tentatively scheduling the edges on the links of
the different routes to see from where the communication arrives first as will be
seen in the following section [15].

4 Algorithm

The contention-aware task duplication scheduling algorithm proposed in this
section is based on scheduling algorithms for the contention model and task
duplication techniques used under the classic model. In the following we present
and discuss its elements.

List scheduling As the general algorithmic approach, list scheduling, as given
in Algorithm 1, is chosen. List scheduling is easily adaptable to the contention
model, as shown in [13]. In the first phase the nodes are ordered according to
their bottom levels bl(n), defined in (3), which was shown to be the superior node
priority under the contention model in an extensive experimental evaluation [13].
Algorithm 2 outlines our proposed algorithm.

Algorithm 2 Contention-aware task duplication scheduling algorithm
1: B 1. Part:
2: Sort nodes n ∈ V into list L, according to bl(n)
3: B 2. Part:
4: for each n ∈ L do
5: for each P ∈ P do
6: Tentatively schedule n, recursively duplicating n’s critical parent – record best

finish time tf (n, P) and ancestors to be duplicated, if any
7: Let Pmin be processor where n can finish earliest
8: Duplicate recorded ancestors of n on Pmin

9: Schedule n on Pmin

10: Remove redundant tasks and their in-edges

Insertion technique During list scheduling, each task can be scheduled between
already scheduled tasks (insertion technique) or after the finish time of processor
P (end technique). The same principle applies of course to the scheduling of
the edges on the links. For the necessary tentative scheduling and the redundant
task/edge removal (see below) the insertion technique is more suitable and hence
employed.

Critical parent An essential question for task duplication algorithms is which
tasks should be duplicated. When a task n is scheduled on a processor P , the

primary candidates for duplication are its predecessors pred(n), or parents. As
task duplication algorithms have shown, it is usually not beneficial to duplicate
all predecessors. The most important task to duplicate is the task from which the
data transfer arrives the latest, called critical parent cp(n) [4]. Under the con-
tention model, this corresponds to the edge ecp(n),n with the highest finish time
f(ecp(n),n, Ll) on the link Ll entering the processor P . If that communication
ecp(n),n can be made local, task n might start earlier. Hence, our proposed al-
gorithm considers the critical parent for duplication. The duplication is accepted
if the task n can start earlier.

Recursive duplication In some situations it can be more beneficial to not only
duplicate the critical parent, but also considering the predecessors of the crit-
ical parent for duplication. Task duplication algorithms therefore consider the
recursive duplication of the critical parent cp(n), its critical parent cp(cp(n))
and so on [2]. This approach is adopted by our algorithm, whereby the recursive
duplication goes as deep as it is most beneficial, i.e. as it reduces the start time
of task n most.

Tentative scheduling A characteristic aspect of scheduling under the contention
model is the need to tentatively schedule edges on the communication links in
order to obtain the data ready time of a task n, i.e. the time when all incoming
edges have finished communication. For example, we search for the processor
that allows task ni’s earliest finish time and ni has the in-edges eli and eki.
Then, for each processor P , we must schedule the communication on the links
of the route from proc(nl) and proc(nk) to P . That gives us an accurate data
ready time of ni on P . Before the next processor is considered, the edges must
be removed from the schedule, hence tentative scheduling. With task duplication
this tentative scheduling is even more involved as there might be more than one
instance of nl and nk, as seen with task A in the example of Figure 2 and 3.
Our algorithm therefore integrates tentative scheduling also on this level, i.e. the
communication is tentatively scheduled from each instance of a predecessor task
in order to find the best data provider.

Redundant task/edge removal When a task n is duplicated on processor P , the
original and other instances of n might have become redundant. This is the
case, if one or more of these instances do not provide data to any predecessor.
The redundant tasks can and should be removed from the schedule. Under the
contention model, the removal of a task implies that also its in-edges can be re-
moved from the links. Especially together with the insertion technique, the freed
space can be used by subsequently scheduled tasks and their edges, potentially
leading to shorter schedules. Our algorithm checks for and removes redundant
tasks after the scheduling of each task.

Complexity The complexity of contention-aware list scheduling with the insertion
technique is O(|V|2 + |P||E|2O(routing)) [12]. O(routing) is the complexity
for finding the communication route in the network and its length, but is for

many practically relevant systems O(1). With our recursive task duplication the
complexity increases to O(|P|2(|V|3 + |V||E|2O(routing))).

5 Experimental evaluation

Two questions need to be answered in the evaluation of the proposed algorithm:
i) How do the schedules improve compared to a task duplication algorithm
without contention awareness? ii) How does task duplication improve upon other
contention-aware scheduling algorithms? To answer these questions, we have im-
plemented four algorithms. The proposed contention-aware task duplication al-
gorithm (CA-D) is compared with a contention-aware list scheduling (CA-LS)
[13], which is essentially the same algorithm as CA-D, but without the du-
plication of tasks. Further, we implemented a task duplication (D) and a list
scheduling algorithm (LS) under the classic model. Again, they are identical to
CA-D and CA-LS, respectively, but without the contention awareness.

Schedules produced under the different models cannot be directly compared
[14]. Usually, schedules under the contention-model are longer, but more real-
istic, resulting in shorter execution times. Hence to compare the schedule, we
simulated contention for D and LS. This was done by rescheduling the D’s and
LS’s schedules under the contention model [14]. To indicate this contention sim-
ulation we named D and LS in the following D-CS and LS-CS.

5.1 Setup

For the models of the parallel target systems we have chosen sets of processors
(2, 8 and 15) connected to an ideal switch. Each processor has an out-going
and an in-coming link connected to this switch, thus only one communication
in each direct can take place at the same time. This corresponds to full-duplex
communication ports and this model is also referred to the one-port model [1].

A large set of graphs was generated as the workload for the scheduling al-
gorithms. This set comprised of graphs of seven types: In-trees, Out-trees, Series-
Parallel (SP), Fork, Join, Fork-join and Random [12]. Within each type, graphs of
different sizes were created (number of nodes= 20, 100, 500, 1000) with random
node and edge weights, scaled to achieve different communication to compu-
tation ratios (CCR = 0.1, 1, 10) [12]. CCR is a measure for the importance of
communication and is defined as the total edge weight over the total node weight
CCR =

P
e∈E c(e)P

n∈V w(n) . In total about 2000 graphs were generated and scheduled.

5.2 Results

In this section the significant experimental results are shown and discussed.
Regard Figures 4 and 5 that display the speedup over the number of processors
for different graph types. The displayed values are average values across all
different graphs of the same type. Speedup of a schedule S is defined as the
sequential length of the graph over the schedule length speedup(S) =

P
n∈V w(n)

sl(S) .

Figure 4. Speedup over processors for SP-graphs (left) and random graphs (right)

Figure 5. Speedup over processors for out-trees (left) and speedup over CCR for all
graphs on 15 processors (right)

Contention aware (CA-D) vs. non-contention aware duplication (D-
CS) The figures show that contention aware duplication (CA-D) is never worse
than non-contention aware duplication (D-CS). In fact, CA-D produces greater
speedup than D-CS for all graphs, except for fork graphs. The difference between
the two algorithms is the greatest with SP graphs, where the speedup produced
by CA-D on 15 processors is 120 percent greater than that of D-CS.

Figure 5(right) shows the average speedup across graph types produced by
each algorithm for different CCR values on 15 processors. The average speedup
values produced by the algorithms for high communication graphs (CCR = 10)
show the greatest difference (95 percent) between contention aware duplication
(CA-D) and non-contention aware duplication (D-CS). The difference is less, but
still significant for medium communication graphs (contention aware duplication
is 20 percent greater). As can be expected, contention aware duplication can excel
most when the CCR value is medium to high, in other words when avoiding
communication and contention is most important. To summarise, duplication
under the contention model is significantly better than under the classic model.

Contention aware duplication (CA-D) vs. contention aware list
scheduling (CA-LS) Task duplication has never been used in contention-
aware algorithms. In this sub-section we are therefore evaluating if it improves
the schedule length at least as much as it does under the classic model, so we
compare CA-D with CA-LS, both contention aware algorithms, but only CA-D
does duplication. As can be seen in the figures, CA-D has greater speedup on all
numbers of processors for all graph types. Graphs with structures that benefit
from task duplication (i.e., graphs where there is at least one node with more
than one child) show the greatest difference in speedup. Speedup produced on
15 processors by CA-D is 54 percent greater than that of CA-LS for out-trees,
31 percent greater for SP graphs, and 18 percent greater for random graphs.
Note that the difference between the non-contention aware algorithms D-CS and
LS-CS is sometimes significantly less, e.g. for random-graphs. This is evidence
supporting our hypothesis that task duplication is more important for schedul-
ing under the contention model. To summarise, the duplication technique does
significantly improve the list scheduling heuristic under the contention model for
most task graphs, even more than under the classic model.

6 Conclusions

This paper proposed a novel contention-aware task duplication scheduling al-
gorithm. It was studied how task duplication can be performed under the con-
tention model. Based on this an algorithm was proposed using state-of-the-art
scheduling techniques found in classic task duplication algorithms and other
contention-aware algorithms.

An extensive experimental evaluation of the algorithm was performed, com-
paring the proposed algorithm with task duplication under the classic model and
with a contention-aware algorithm without task duplication. This revealed very
significant speedup gains, both compared to task duplication under the classic
model and to other contention-aware scheduling algorithms without task duplic-
ation. As predicted, task duplication is even more beneficial under the contention
model than under the classic model.

References

1. O. Beaumont, V. Boudet, and Y. Robert. A realistic model and an efficient heuristic
for scheduling with heterogeneous processors. In HCW’2002, the 11th Heterogen-
eous Computing Workshop. IEEE Computer Society Press, 2002.

2. S. Darbha and D. P. Agrawal. Optimal scheduling algorithm for distributed-
memory machines. IEEE Transactions on Parallel and Distributed Systems, 9(1):87
– 95, January 1998.

3. A. Gerasoulis and T. Yang. A comparison of clustering heuristics for schedul-
ing DAGs on multiprocessors. Journal of Parallel and Distributed Computing,
16(4):276–291, December 1992.

4. T. Hagras and J. Janec̆ek. A high performance, low complexity algorithm for
compile-time task scheduling in heterogeneous systems. Parallel Computing,
31(7):653–670, 2005.

5. T. Kalinowski, I. Kort, and D. Trystram. List scheduling of general task graphs
under LogP. Parallel Computing, 26:1109–1128, 2000.

6. H. Kasahara and S. Narita. Practical multiprocessor scheduling algorithms for
efficient parallel processing. IEEE Transactions on Computers, C-33:1023–1029,
November 1984.

7. B. Kruatrachue and T. G. Lewis. Grain size determination for parallel processing.
IEEE Software, 5(1):23–32, January 1988.

8. J.-C. Liou and M. A. Palis. A new heuristic for scheduling parallel programs on
multiprocessor. In 1998 International Conference on Parallel Architectures and
Compilation Techniques, pages 358 – 365, October 1998.

9. F. E. Sandnes and G. M. Megson. An evolutionary approach to static taskgraph
scheduling with task duplication for minimised interprocessor traffic. In Proc.
Int. Conf. on Parallel and Distributed Computing, Applications and Technologies
(PDCAT 2001), pages 101–108, Taipei, Taiwan, July 2001. Tamkang University
Press.

10. V. Sarkar. Partitionning and Scheduling Parallel Programs for Execution on Mul-
tiprocessors. MIT Press, 1989.

11. G. C. Sih and E. A. Lee. A compile-time scheduling heuristic for interconnection-
constrained heterogeneous processor architectures. IEEE Transactions on Parallel
and Distributed Systems, 4(2):175–186, February 1993.

12. O. Sinnen. Task Scheduling for Parallel Systems. Wiley, May 2007.
13. O. Sinnen and L. Sousa. List scheduling: Extension for contention awareness and

evaluation of node priorities for heterogeneous cluster architectures. Parallel Com-
puting, 30(1):81–101, January 2004.

14. O. Sinnen and L. Sousa. On task scheduling accuracy: Evaluation methodology
and results. The Journal of Supercomputing, 27(2):177–194, February 2004.

15. O. Sinnen and L. Sousa. Communication contention in task scheduling. IEEE
Transactions on Parallel and Distributed Systems, 16(6):503–515, June 2005.

16. A. Tam and C. L. Wang. Contention-aware communication schedule for high speed
communication. 6(4):339–353, 2003.

17. M. Y. Wu and D. D. Gajski. Hypertool: A programming aid for message-passing
systems. IEEE Transactions on Parallel and Distributed Systems, 1(3):330–343,
July 1990.

