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Abstract. In this paper, we examine the concept of giving every job
a trial run before committing it to run until completion. Trial runs al-
low immediate job failures to be detected shortly after job submission
and benefit short jobs by letting them run and finish early. This occurs
without incurring a significant penalty on longer jobs, whose average and
maximum waiting time are actually improved in some cases. The strat-
egy does not require preemption and instead uses the ability to kill and
restart a job from the beginning, which it does at most once for each
job. While others have proposed similar strategies, our algorithm is dis-
tinguished by its determination to give each job a fixed-length trial run
as soon as possible. Our study is also more focused, including a detailed
description of the algorithm and an examination of the effect of varying
the length of a trial run.

1 Introduction

It is widely known that user estimates of job runtimes are highly inaccurrate
(eg. [8],[10]). Typically the worst overestimates are explained by pointing to pro-
grams that fail early in their execution. For example, Perković and Keleher [12]
say “The presence of large runtime overestimations indicates the presence of
applications still in development, and therefore, have high probability to die
prematurely either because of bugs or because they run in a new environment”.
At the same time, job queues on large machines can be long, potentially pre-
venting these failures from being discovered for quite some time. Waiting for an
hour only to discover that your program died from an immediate segmentation
fault increases the frustration already inherent in debugging tasks.

Furthermore, job failures turn out to be surprisingly common. Figure 1 re-
ports the number and percentage of jobs that fail in traces from the Parallel
Workloads Archive [3]. Many of the traces contain significant numbers of jobs
that fail.

Based on the frequency of job failures and the frustration of waiting to dis-
cover them, we believe it is important to design schedulers so that they attempt
to detect jobs that quickly fail as soon after submission as possible. Some of the
failures are likely to be hardware problems, the detection of which cannot be im-
proved by changes to the scheduler. When a job fails because of a programming
error or something wrong in the runtime environment, however, this failure can
be detected by starting the job soon after its submission. Since failing jobs are



Trace Num. Jobs Num. failed % failed
CTC-SP2-1995-1.swf 70,918 6,972 9.8
CTC-SP2-1996-2.1-cln.swf 77,222 16,669 21.6
DAS2-fs0-2003-1.swf 219,618 2,643 1.2
DAS2-fs1-2003-1.swf 39,356 1,554 4.0
DAS2-fs2-2003-1.swf 65,382 1,994 3.1
DAS2-fs3-2003-1.swf 66,112 1,143 1.7
DAS2-fs4-2003-1.swf 32,953 602 1.8
KTH-SP2-1996-2.swf 28,489 7,948 27.9
LANL-CM5-1994-3.1-cln.swf 122,060 20,368 16.7
LANL-O2K-1999-1.swf 116,996 23,670 20.2
LLNL-Atlas-2006-1.1-cln.swf 38,194 10,250 26.8
LLNL-Thunder-2007-1.1-cln.swf 118,791 7,933 6.7
LLNL-uBGL-2006-1.swf 19,405 6,835 35.2
LPC-EGEE-2004-1.2-cln.swf 220,695 10,490 4.8
SDSC-Par-1995-2.1-cln.swf 53,970 906 1.7
SDSC-Par-1996-2.1-cln.swf 32,135 814 2.5
SHARCNET-2005-1.swf 1,194,184 1,003,277 84.0

Fig. 1. Failing jobs by trace. Only traces with at least one failing job are presented.
There were 2 other traces that reported all jobs succeeding, 2 that reported all jobs
having “unknown” exit status, and 4 that reported various mixtures of succeeding,
canceled, or unknown exit status. Also note that the number of jobs varies from the
value reported in the Parallel Workloads Archive, sometimes greatly. We exclude jobs
with unknown exit status and those that were canceled without running.

only identified after they fail, this requires that all jobs be started soon after
submission. If the system supports preemption, it is possible to do exactly this;
as soon as a job arrives, preempt other jobs to give it sufficient processors to run
for a brief period of time, after which the new job is itself preempted and the
previous jobs resumed. In this way, any job failure occurring at the beginning of
the job would be detected nearly immediately. If the period is brief enough, the
previously-running jobs are not greatly inconvenienced. Thus, we are left with an
engineering tradeoff to choose the length of a job’s initial run, with longer runs
finding more failures and shorter runs minimizing disruption to already-running
jobs.

Unfortunately, preemption is difficult to implement in a large multiprocessor
system because preempting a job requires saving its state on each of its proces-
sors and also catching all “in flight” messages traveling between them. Because
of these difficulties, many multiprocessor systems do not support preemption.
Instead, our algorithms use restarts, in which a job can be stopped and restarted,
but does so from the beginning of its execution, effectively losing its progress
from the first run. Restarts are less powerful than preemption and should be sim-
pler to implement; it is not necessary to save any state, but merely to kill the job
and ignore any of its messages. It is still technically challenging to restart jobs
that perform side effects (eg. file I/O), but we believe it is easier for systems to
implement restarts than preemption. In exchange for being easier to implement,



restarts impose greater cost on jobs on which they are used; all work previously
done on that job is lost.

Now we can give the outline of our scheduling idea. As above, we attempt to
start every job soon after its submission. We call the first time a job is started
its trial run, which we only allow to continue for a bounded period of time.
Jobs that do not fail (or complete) within this time are killed to be restarted
later. When a job is restarted is controlled by a base scheduler such as First-
Come First-Served (FCFS) or EASY [9]. We call the combination of trial runs
and the base scheduler a timed-run scheduler, which can be viewed as the base
scheduler operating within a framework that manages trial runs. Our intent
is for the timed-run scheduler to behave similarly to its base scheduler except
for identifying failing jobs more quickly. In particular, once the base scheduler
decides to start a job, that job is never restarted; our algorithm only kills jobs
at the end of their trial run when relatively little work is lost by doing so. We
say a job is committed when it has been started by the base scheduler. Exactly
when a job should be committed proved to be a more subtle decision than we
originally thought; we discuss this decision later in the paper.

As a side effect of giving jobs trial runs, the timed-run scheduler also benefits
jobs that successfully finish within their trial run. We use the term short jobs to
denote jobs that complete or fail during their trial run and long jobs to denote
the others. Allowing short jobs to cut in front of longer jobs generally improves
the system’s average response time, though at some cost in fairness. For a short
trial run length, we believe that the affect on long jobs is minimal in exchange
for the benefits provided to short jobs, especially jobs that fail immediately after
they start.

We show that this strategy can greatly reduce the time to detect problems
in short failing jobs, the jobs on which users will be most frustrated to wait. The
benefits of our strategy extend to all short jobs, which form a significant fraction
of many workloads. The improvement is achieved with a non-preemptive strategy
that restarts each job at most once. It is generally realized without significantly
penalizing long jobs and even improves their average and maximum response
time in some cases.

These results are based on event-based simulations using traces from the
Parallel Workloads Archive. We assume that the system being evaluated uses
pure space-sharing to run rigid jobs.

We note that others have proposed similar strategies in the past. What dis-
tinguishes our algorithm is its focus on giving each job a fixed-length trial run
as soon as possible. We also give a more thorough evaluation of trial runs in
isolation, giving a detailed description of the algorithm and an examination of
the effect of varying the length of a trial run.

The rest of the paper is organized as follows. In Section 2 we fully specify
the timed-run scheduling strategy. Then, in Section 3 we evaluate this strategy.
We discuss related work in Section 4. We conclude with a discussion of future
work in Section 5.



2 Timed-Run Scheduling

Now, we are ready to formally define the timed-run algorithm. It maintains
a list of jobs awaiting a trial-run in addition to whatever data structures are
required for the base scheduling algorithm. Newly-arrived jobs are added to the
end of this list as well as to the base scheduler’s data structures. Whenever a job
arrives or processors are freed due to a job completion or termination, the timed-
run scheduler traverses this list looking for jobs to start. Any jobs encountered
during this traversal that can start are removed from the list and started on
their trial run. Only if no jobs can start trial runs is the base scheduler allowed
to start jobs.

Our goals when designing this algorithm were to give jobs their trial runs
as early as possible while impacting the base scheduler as little as possible. The
prioritization of trial runs is reflected in our choice to look for jobs in the trial
run list before consulting the base scheduler. Because the jobs are considered
for trial runs in order of their arrival, we slightly favor earlier-arriving jobs and
provide some measure of fairness. The jobs are not forced to receive trial runs
in the order they arrive, however, to facilitate giving as many jobs as possible
their trial runs soon after they arrive. We also allow the base scheduler to run
jobs even when there are still jobs waiting for trial runs (provided none of them
can start) to minimize the impact on the base scheduler. This decision and
allowing trial runs to occur out of order both penalize large jobs, but we felt this
discrimination was justified to avoid draining the machine just for a trial run of a
large job. We consider it the base scheduler’s responsbility to make such weighty
decisions. In addition, we felt that failures of small jobs were more “justified”
since users should test large programs on a smaller scale before running them
on many processors.

The other obvious decision to make when implementing the timed run sched-
uler is the duration of trial runs. We initially chose 90 seconds as the trial run
length because this was the value given by Mu’alem and Feitelson [10] in their
discussion of failing jobs. Another value mentioned in the literature is 1 minute,
which Chiang and Vernon [2] observed was sufficient to complete 12–33% of jobs
requesting over an hour and 11–42% of jobs requesting over 10 hours in a trace
from NCSA’s Origin 2000. They did not discuss the cause of these dramatic
overestimates, but it seems likely that job failures played a role. Lawson and
Smirni [7] suggest 180 seconds, which they observed to exclude most jobs that
crashed. We discuss the effect of varying the trial run length in Section 3.2.

2.1 Optimizations and complications

We decided on the aspects of timed-run scheduling described above without
much difficulty. While implementing it and examining the schedules produced
by our initial prototype, however, we discovered a number of complications. We
now describe these and the policy decisions we made to resolve them.



Jobs wait until finishing their trial runs before committing. The first complica-
tion we discovered applies even to very small input instances. What should the
scheduler do when the machine is idle and a single job arrives? As described
above, the algorithm will select this job for a trial run and then schedule it
again by following the base scheduling algorithm. Obviously, the job should not
be started twice, but it seems premature to commit it to run to completion
simply because it was the first job to arrive after an idle period. Nor is this
necessarily a rare case since the same situation occurs if a job starts a trial run
and then is selected by the base scheduler. We resolved this by not allowing a
job to commit during its trial run. During this time, the base scheduler acts as
if the job cannot fit on the machine.

To improve performance when a job’s trial run and its selection by the base
scheduler occur together, we implemented a fairly obvious optimization: when
a job completes its trial run, if the timed run scheduler will decide to start the
same job for its commited run, we simply continue that job rather than stopping
and restarting it. This optimization complicates the scheduler’s logic somewhat,
but clearly improves the schedule since it avoids wasting the time already spent
on the trial run.

Jobs continue trial runs until replaced. After implementing the above, we no-
ticed a related optimization. Consider the following job instance, scheduled on a
100-processor machine with 90-second trial runs and a First-Come First-Served
(FCFS) base scheduler:

Job Arrival time Number processors Runtime
A 0 80 300
B 100 100 40
C 110 20 > 90

This instance is scheduled as shown in Fig. 2. Notice that job A continues after
its trial run because nothing else has arrived when it finishes the trial run. Job
C does not get to continue, however, because FCFS wants to run job B first.
Terminating job C at time 200 is not strictly necessary, however, since job B
cannot start until time 300. Instead, we allow jobs that complete their trial runs
to continue running until the scheduler has another use for their processors,
either for a different job’s trial run or for a committed run. For the example
above, this means that job C is allowed to continue until time 300. If it has
length between 90 and 190, this allows it to complete. Even if job C requires
more time than this, nothing is lost since the processors it uses would have been
idle otherwise. Note that extensions are granted even when a job’s estimated
running time indicates that it will not complete because the estimate may be
inaccurate.

Avoiding restarts and extending trial runs are both achieved using lazy job
termination. When a job finishes its trial run, it is added to a collection of jobs
that can be terminated if needed. The scheduler makes its decisions as if all jobs
in this collection had been terminated. If the scheduler decides to start a job
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Fig. 2. Short jobs continue running until replaced

that requires some of their processors, jobs from the collection are terminated
as needed, beginning with the one whose trial run ended longest ago.

Long jobs must wait for their turn in the base scheduler. The next complication
we encountered required a more difficult policy decision. Consider the following
instance, again scheduled on a 100-processor machine with 90-second trial runs
and FCFS scheduling:

Job Arrival time Number processors Runtime
A 0 70 90
B 5 70 60
C 10 50 200
D 20 20 140
E 25 30 40

Two possible schedules are shown in Fig. 3. The difference is in when job D is
committed. At time 150, job D has completed its trial run. The other job in the
system is job C, which has not had a trial run, but should run first according to
the base scheduler (FCFS).

Our first inclination was to start job D immediately in this situation since it
seems wasteful to idle processors while waiting for a job that has already started
(albeit only for a trial run). Our eventual conclusion, however, was to delay
job D until its predecessor gets committed. The reason for this decision is to
allow for the possibility that another job arrives during the trial run of job C. If
we committed job D and a newly-arrived job prevents job C from committing,
then the timed run scheduler would have committed jobs out of the order given
by the base scheduler, violating our intention to make the timed run scheduler
an augmentation of the base scheduler rather than its replacement. Note that
delaying when jobs are committed in this way could harm our performance. An
alternate solution would be to start job D, but kill it if job C ends up not
committing. This would be similar to the speculative backfilling of Perković and
Keleher [12].
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Fig. 3. Two possible ways to schedule the long run of job waiting for a job starting its
trial run. In (a), job D starts as soon as job C begins its trial run. In (b), it waits for
job C to be committed.

Dealing with job reservations. The final complication we encountered while im-
plementing the timed run strategy is how to combine it with base schedulers
where jobs are given reservations. In keeping with our goal to give each job a
trial run shortly after it arrives, our algorithm favors trial runs over committing
jobs in the order given by the base scheduler. This means reservations may be
violated since newly-arrived jobs can (briefly) grab processors at any time. How-
ever, we do recognize that reservations are desirable from a user perspective since
they promote fairness and make the system more predictable for users. Thus, we
wished to achieve a compromise by preserving the spirit of reservation-wielding
base schedulers while violating the specific reservations.

For the EASY scheduler, there is a relatively straightforward way to achieve
this compromise. We simply disabled the error checking that reports when a
guarantee is violated. This works because our implementation of EASY (follow-
ing [10]) does not build an entire schedule. Rather, it stores the jobs in arrival
order, the currently-running jobs with their estimated completion times, and the
first job’s guaranteed time. To make a scheduling decision, it traverses the list of
waiting jobs and starts any job that can be run without violating the guarantee.

It is much less clear how to use timed-run scheduling with algorithms that
provide guarantees to more than one job such as Conservative backfilling. One
solution is to rebuild the estimated schedule whenever trial runs cause it to
break, but this could greatly slow down the scheduler. Another idea is to give



initial guarantees with some slack to allow for trial runs by later jobs, but this
seems to violate the spirit of Conservative backfilling. We believe more research
is warranted on this question.

3 Experimental Results

To evaluate the timed-run strategy, we used an event-driven simulator. Events
were generated for job arrivals, job completions, and at the end of trial runs.
The data for our simulations were obtained from the online Parallel Workloads
Archive [3]. All traces were in the standard workload format, from which we
read the job arrival time, processors requested, actual running time, and user-
estimated runtime (when available). For actual runtime, we used field 4 (“run
time”) if it was available and field 6 (“Average CPU time used”) if it was not. We
also used the status field (number 11) to identify failing jobs, but only as a post-
processing step. Cleaned versions of the traces were used when available; the full
filenames for the used traces are given in Fig. 1. We excluded the SHARCNET
trace from our simulations because of its extraordinarily-high failure rate.

3.1 Ninety second trial runs

We compared FCFS and EASY schedulers to their timed-run counterparts
using average and maximum waiting time. We used waiting time since it is in
line with our goal to minimize the absolute time before detecting a failure. It also
lessens the emphasis on small jobs relative to slowdown or bounded slowdown.
Note that the waiting times we record for a job under the timed-run scheduler is
until that job starts the run that finishes, NOT the wait until the job gets a trial
run. Put another way, the waiting time of a job is its completion time minus its
arrival time minus its actual running time.

Our initial simulations used a trial-run length of 90 seconds. Fig. 4 gives
the results with the average or maximum taken over all jobs. Fig. 5 shows the
percent improvement in average response time achieved by switching from a
normal scheduler to a timed-run scheduler. (The traces are numbered in the
order they appear in Fig. 1.) From the results, the timed-run scheduler generally
performs as expected, decreasing average waiting time in nearly all cases. The
exceptions are all in the DAS2 family of traces. These traces, from a group of
clusters used for distributed computing research, have quite low utilization (all
less than 20%) so they are not representative of typical production workloads.
Quite a few of the improvements in the other traces are significant, particularly
with the FCFS base scheduler.

Also importantly, the improvement in average waiting time does not occur
at the expense of increased maximum waiting time. Instead, maximum waiting
time is largely unchanged, with the worst result an increase of less than 4%. On
the KTH-SP2 and LANL-CM5 traces, using timed-run scheduling with FCFS
actually improves it by a significant margin.



The results were better for FCFS than EASY. This is unsurprising since trial
runs can act as an ad hoc version of backfilling. When working with FCFS, there
are many opportunities for jobs to move up and the result is a significantly better
schedule. The EASY base scheduler does a better job keeping the processors busy
and so offers less room for improvement.

Average waiting time Max waiting time
Trace Regular Timed % Imp. Regular Timed % Imp.

FCFS CTC-SP2-1995 1,510,879 375,397 75.2 4,591,814 4,523,823 1.5
CTC-SP2-1996 17,404 9,075 47.9 151,596 149,117 1.6
DAS2-fs0 542 593 -9.4 61,016 61,884 -1.4
DAS2-fs1 194 221 -13.9 148,765 148,765 0
DAS2-fs2 1,259 2,121 -68.5 943,142 943,322 -0.0
DAS2-fs3 1,724 14 99.2 139,955 139,955 0
DAS2-fs4 1,790 715 60.1 213,849 214,185 -0.2
KTH-SP2 389,892 42,893 89.0 1,018,341 535,982 47.4
LANL-CM5 79,474 35,659 55.1 470,233 422,697 10.1
LANL-O2K 6,626 1,716 74.1 195,670 195,676 -0.0
LLNL-Atlas 76 24 68.4 23,256 20,792 10.6
LLNL-Thunder 14,815 2,610 82.4 119,059 117,149 1.6
LLNL-uBGL 343 332 3.2 9,478 9,478 0
LPC-EGEE 212 130 38.7 57,115 57,829 -1.3
SDSC-Par95 31,748 7,181 77.4 384,382 356,854 7.2
SDSC-Par96 30,217 12,669 58.1 211,381 207,343 1.9

EASY CTC-SP2-1995 30,832 25,279 18.0 3,433,169 3,255,087 5.2
CTC-SP2-1996 3,325 2,932 11.8 148,392 152,919 -3.1
DAS2-fs0 326 584 -79.1 61,796 62,170 -0.6
DAS2-fs1 185 217 -17.3 148,765 148,765 0
DAS2-fs2 543 1,526 -181.0 943,142 943,322 -0.0
DAS2-fs3 9 9 0 139,955 139,955 0
DAS2-fs4 1,213 712 41.3 213,849 214,185 -0.2
KTH-SP2 6,856 5,607 18.2 262,194 264,395 -0.8
LANL-CM5 8,242 7,489 9.1 180,064 180,884 -0.5
LANL-O2K 588 573 2.6 195,026 195,676 -0.3
LLNL-Atlas 29 22 24.1 25,669 25,669 0
LLNL-Thunder 338 227 32.8 117,757 117,900 -0.1
LLNL-uBGL 337 332 1.5 9,478 9,478 0
LPC-EGEE 212 130 38.7 57,115 57,829 -1.3
SDSC-Par95 4,768 3,991 16.3 331,475 330,651 0.2
SDSC-Par96 8,853 7,320 17.3 192,838 190,935 1.0

Fig. 4. Waiting time for all jobs with 90 second trial run length. All times are in
seconds.

Since our main motivation was to promptly identify failing jobs so their users
could be notified soon after the jobs have been submitted, we also compare the
failing job waiting times between regular scheduling and timed-run scheduling
in Fig. 6. Surprisingly, the results were not as good for failing jobs as they
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were for all jobs. The percentage improvements for average waiting time are
generally smaller for FCFS and they essentially disappear for EASY. The other
patterns are still there, though; FCFS is improved much more than EASY, the
DAS2 traces contributed negative outliers to the percent improvement in average
waiting time, and the affect on maximum waiting time of adding trial runs ranges
is minimal with some improvements and a couple of good values.

We explain this with the observation that failing jobs are not necessarily
short jobs. Although failing jobs ending prematurely is consistently one of the
explanations given for the poor quality of user estimates, it turns out that job
failures do not cause the short jobs in these traces. Figure 7 gives the percent of
all jobs and the percent of failed jobs that are short in each trace. For all but
3 of the 16 traces, short jobs make up a smaller percentage of failing jobs than
they represent of the trace as a whole. Only in LLNL-uBGL of these three is the
difference large. However, there seems to be no relationship between the results
in Fig. 4 and Fig. 6 and the percentage of failed jobs that are short. This could
be due to the fact that the total number of failed jobs that are short is small
compared to the total number of jobs that are short.

Figure 8 shows the average and maximum waiting times for short jobs. Pro-
viding jobs with trial runs does result in short jobs waiting for considerably less
time before running. Figure 9 shows the average and maximum waiting times for
failed short jobs. The results were similar for average waiting time, but consid-
erably improved for maximum waiting time. Here again, there is no relationship
between the results in Fig. 8 and Fig. 9 and the percentage of all and failed
jobs that are short because the numbers of short failed jobs are much smaller



Average waiting time Max waiting time
Trace Regular Timed % Imp. Regular Timed % Imp.

FCFS CTC-SP2-1995 1,380,025 425,579 69.2 4,591,772 4,523,823 1.5
CTC-SP2-1996 16,934 10,115 40.3 147,977 149,117 -0.8
DAS2-fs0 179 336 -87.7 51,403 30,776 40.1
DAS2-fs1 374 373 0.3 71,090 71,090 0
DAS2-fs2 24,187 19,516 19.3 583,024 583,204 -0.0
DAS2-fs3 554 231 58.3 91,801 85,929 6.4
DAS2-fs4 3,718 272 92.7 153,213 105,992 30.8
KTH-SP2 372,511 53,781 85.6 1,011,003 521,937 48.4
LANL-CM5 78,565 52,569 33.1 470,188 419,325 10.8
LANL-O2K 8,293 2,804 66.2 195,004 154,073 21.0
LLNL-Atlas 94 43 54.3 20,792 20,792 0
LLNL-Thunder 16,451 2,369 85.6 118,490 117,149 1.1
LLNL-uBGL 960 939 2.2 9,478 9,478 0
LPC-EGEE 80 76 5 39,890 19,183 51.9
SDSC-Par95 36,868 29,690 19.5 303,115 243,298 19.7
SDSC-Par96 27,604 26,353 4.5 192,790 191,162 0.8

EASY CTC-SP2-1995 40,435 37,759 6.6 3,377,733 3,199,651 5.3
CTC-SP2-1996 3,805 3,426 10.0 139,269 123,526 11.3
DAS2-fs0 59 333 -464.4 5,134 30,735 -498.7
DAS2-fs1 341 365 -7.0 71,090 71,090 0
DAS2-fs2 1,573 1,617 -2.8 583,024 583,204 -0.0
DAS2-fs3 170 85 50 3,728 4,130 -10.8
DAS2-fs4 250 264 -5.6 105,838 105,992 -0.1
KTH-SP2 6,746 6,066 10.1 248,239 250,350 -0.9
LANL-CM5 9,997 10,959 -9.6 168,939 177,924 -5.3
LANL-O2K 747 740 0.9 44,053 44,703 -1.5
LLNL-Atlas 60 48 20 25,669 25,669 0
LLNL-Thunder 390 306 21.5 115,287 117,446 -1.9
LLNL-uBGL 953 939 1.5 9,478 9,478 0
LPC-EGEE 80 76 5 39,890 19,183 51.9
SDSC-Par95 13,108 13,667 -4.3 153,504 152,767 0.5
SDSC-Par96 16,138 16,688 -3.4 181,275 190,935 -5.3

Fig. 6. Waiting times for failing jobs with 90 second trial run length. All times are in
seconds.



short jobs as... % of jobs % of failed jobs
CTC-SP2-1995 27.4 (19,404 jobs) 12.6 (880 jobs)
CTC-SP2-1996 21.6 (16,699 jobs) 15.0 (2,507 jobs)
DAS2-fs0 61.5 (134,991 jobs) 50.4 (1,331 jobs)
DAS2-fs1 65.6 (25,803 jobs) 33.1 (514 jobs)
DAS2-fs2 64.5 (42,191 jobs) 10.4 (207 jobs)
DAS2-fs3 76.1 (50,321 jobs) 74.6 (853 jobs)
DAS2-fs4 42.9 (14,129 jobs) 48.0 (289 jobs)
KTH-SP2 32.9 (9,375 jobs) 28.5 (2,267 jobs)
LANL-CM5 30.2 (36,910 jobs) 8.1 (1,650 jobs)
LANL-O2K 30.9 (36,132 jobs) 20.6 (4,877 jobs)
LLNL-Atlas 51.9 (19,809 jobs) 47.5 (4,872 jobs)
LLNL-Thunder 59.1 (70,246 jobs) 65.2 (5,176 jobs)
LLNL-uBGL 56.7 (11,008 jobs) 92.3 (6,306 jobs)
LPC-EGEE 69.9 (154,221 jobs) 9.7 (1,013 jobs)
SDSC-Par95 60.9 (32,845 jobs) 0.1 (1 job)
SDSC-Par96 44.4 (14,268 jobs) 0.5 (4 jobs)

Fig. 7. Short jobs by trace

than the numbers of short jobs and a meaningful comparison cannot be made
between the two.

3.2 Varying trial-run length

We also investigated the effects of varying the length of the trial-run. An
ideal length would balance catching failing jobs and increasing responsiveness by
letting short jobs finish during their trial-run against making jobs wait too long
while trial-runs occur. For this experiment, we tried trial-run lengths increasing
from 0 (no trial-runs) to 400 seconds.

For our experiment, performance was based on the average and maximum
for job waiting times. We generated separate statistics for long jobs (those that
do not finish during their trial run), short jobs (jobs that finish during their trial
run) and all jobs (long and short). We did this to see how long potential failed
jobs that could be identified (short jobs) would have to wait. It was also useful
to see how long and short jobs affect the performance of the scheduling strategy.

The results from our experiment are presented in Fig. 10–15. Figures 10 and
11 show the average waiting time for short jobs. Note that a “short” job is one
shorter than the trial run length so the jobs considered varies with the trial run
length. This figure provides an idea of how much time jobs failing within their
trial run need to wait. Quick trial runs go through all available jobs faster, and
so short job waiting times are lower since they get to finish quickly. However, the
data have a distinct spike for extremely short trial-run lengths. This is because
there are only a few jobs having extremely low runtimes, and when they do
appear in the system, they need to wait for long jobs to finish and free processors
before they get a chance to run. The average waiting time decreases after the
spike since there are now more short jobs and they do not all need to wait for



Average waiting time Max waiting time
Trace Regular Timed % Imp. Regular Timed % Imp.

FCFS CTC-SP2-1995 1,318,476 228 100.0 4,590,152 44,471 99.0
CTC-SP2-1996 16,699 168 99.0 136,578 44,812 67.2
DAS2-fs0 368 38 89.7 61,016 30,829 49.5
DAS2-fs1 99 81 18.2 148,765 148,765 0
DAS2-fs2 193 17 91.2 493,691 5,184 99.0
DAS2-fs3 2,233 8 99.6 139,955 139,955 0
DAS2-fs4 2,971 363 87.8 213,849 167,308 21.8
KTH-SP2 385,907 1,447 99.6 1,011,593 332,674 67.1
LANL-CM5 88,619 774 99.1 469,988 131,094 72.1
LANL-O2K 4,333 48 98.9 195,670 194,164 0.8
LLNL-Atlas 80 2 97.5 18,650 13,159 29.4
LLNL-Thunder 13,601 21 99.8 119,015 27,750 76.7
LLNL-uBGL 600 583 2.8 9,478 9,478 0
LPC-EGEE 198 63 68.2 52,944 31,915 39.7
SDSC-Par95 31,669 488 98.5 377,558 93,456 75.2
SDSC-Par96 34,299 902 97.4 209,900 69,317 67.0

EASY CTC-SP2-1995 16,522 990 94.0 1,796,427 893,478 50.3
CTC-SP2-1996 1,281 319 75.1 76,878 46,473 39.5
DAS2-fs0 169 39 76.9 61,796 30,919 50.0
DAS2-fs1 96 81 15.6 148,765 148,765 0
DAS2-fs2 43 16 62.8 14,867 3,902 73.8
DAS2-fs3 10 8 20 139,955 139,955 0
DAS2-fs4 2,476 363 85.3 213,849 167,308 21.8
KTH-SP2 4,810 1,877 61.0 196,289 196,212 0.0
LANL-CM5 5,334 925 82.7 149,382 122,215 18.2
LANL-O2K 289 66 77.2 194,962 194,164 0.4
LLNL-Atlas 20 3 85 18,036 18,036 0
LLNL-Thunder 119 14 88.2 103,251 18,501 82.1
LLNL-uBGL 593 583 1.7 9,478 9,478 0
LPC-EGEE 198 63 68.2 52,944 31,915 39.7
SDSC-Par95 2,386 858 64.0 150,065 97,707 34.9
SDSC-Par96 4,524 1,082 76.1 124,194 69,317 44.2

Fig. 8. Waiting times for short jobs with 90 second trial run length. All times are in
seconds.



Average waiting time Max waiting time
Trace Regular Timed % Imp. Regular Timed % Imp.

FCFS CTC-SP2-1995 1,269,261 130 100.0 4,577,842 9,826 99.8
CTC-SP2-1996 13,863 223 98.4 136,139 44,812 67.1
DAS2-fs0 231 7 97.0 51,403 2,869 94.4
DAS2-fs1 22 1 95.5 5,063 402 92.1
DAS2-fs2 27,366 124 99.5 493,691 1,605 99.7
DAS2-fs3 168 35 79.2 498 434 12.9
DAS2-fs4 5,376 44 99.2 153,213 3,882 97.5
KTH-SP2 375,074 1,902 99.5 1,009,877 123,851 87.7
LANL-CM5 88,591 1,085 98.8 468,623 91,456 80.5
LANL-O2K 9,043 122 98.7 195,004 37,286 80.9
LLNL-Atlas 91 5 94.5 15,384 13,159 14.5
LLNL-Thunder 18,610 100 99.5 117,910 20,144 82.9
LLNL-uBGL 1,040 1,017 2.2 9,478 9,478 0
LPC-EGEE 199 24 87.9 39,890 10,052 74.8
SDSC-Par95 214 62 71.0 214 62 71.0
SDSC-Par96 12,777 623 95.1 43,400 2,355 94.6

EASY CTC-SP2-1995 22,819 2,356 89.7 1,429,601 679,629 52.5
CTC-SP2-1996 1,980 440 77.8 76,878 46,473 39.5
DAS2-fs0 31 7 77.4 3,524 2,869 18.6
DAS2-fs1 3 1 66.7 1,149 402 65.0
DAS2-fs2 437 124 71.6 6,284 1,606 74.4
DAS2-fs3 168 35 79.2 498 434 12.9
DAS2-fs4 49 44 10.2 3,882 3,882 0
KTH-SP2 3,791 1,696 55.3 196,289 196,212 0.0
LANL-CM5 6,893 1,217 82.3 118,805 91,075 23.3
LANL-O2K 461 183 60.3 37,194 41,770 -12.3
LLNL-Atlas 36 6 83.3 18,036 18,036 0
LLNL-Thunder 146 14 90.4 49,357 3,085 93.7
LLNL-uBGL 1,033 1,017 1.5 9,478 9,478 0
LPC-EGEE 199 24 87.9 39,890 10,052 74.8
SDSC-Par95 62 62 0 62 62 0
SDSC-Par96 2,356 875 62.9 7,269 2,355 67.6

Fig. 9. Waiting times for failed short jobs with 90 second trial run length. All times
are in seconds.



long jobs to finish. The waiting time increases after that because we are adding
more overhead time for each job to have a trial run, and that also allows more
jobs to enter the system.
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Fig. 10. Average waiting time for short jobs with varying trial run lengths (FCFS)
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Fig. 11. Average waiting time for short jobs with varying trial run lengths (EASY)

Figures 12 and 13 show the overall average waiting time for all jobs over
increasing trial-run lengths. The two behaviors we see are gradually decreasing
and gradually increasing average waiting time. For the most part we see a gradual
decrease in average waiting time as the trial time is increased. This is probably
due to an increasing number of jobs becoming short and having their waiting
times dramatically reduced. In the one trace (LANL-CM5) where this does not



happen, the waiting time increases probably due to the overhead time for each
job to have a trial run.
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Fig. 12. Average waiting time for all jobs with varying trial run lengths (FCFS)
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Fig. 13. Average waiting time for all jobs with varying trial run lengths (EASY)

Long jobs have a higher maximum waiting times than short jobs. Figures 14
and 15, which show the maximum waiting time for all jobs, are also the same
graphs as the maximum waiting time for long jobs. The two behaviors we see are
the steps downward and the gradually increasing maximum waiting time. The
reasons for both are simple. For the flat-line in the steps, that maximum waiting
time is due to the same long job waiting in the base scheduler. However, when
the trial runs are long enough, that job gets to run as a short job and does not
need to wait in the base scheduler. So the maximum waiting time drops.
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The gradual increase in the maximum waiting time is due to the extra over-
head time from running each trial for a longer duration. This also allows more
jobs to enter the system which increases the chances of jobs getting pushed
further back.

From Fig. 10–15, we see that both the sixty seconds of Chiang and Vernon [2]
and the ninety seconds of Mu’alem and Feitelson [10] give a reasonable balance
between finding failures and minimizing wasted time during trial runs. The value
of 180 seconds suggested by Lawson and Smirni [7] is also reasonable, but perhaps
a bit too high, particularly for the LANL-CM5 trace.

4 Background and Related Work

Several other researchers have devised schedulers around the observation that
many short jobs are submitted with greatly inflated estimates. The most similar
idea appears in a system described by Perković and Keleher [12]. Their scheduler
uses a number of different techniques, but among them are “speculative test
runs” and “speculative backfilling”. Speculative test runs are a version of our
trial runs; jobs with long estimated running time (over 3 hours) are allowed a
brief run on the machine (5–15 minutes) in the hopes of finishing early. This
differs from what we do in that we give a trial run to all jobs whereas Perković
and Keleher [12] give speculative test runs only to some fraction of the jobs and
do so primarily as part of a larger speculative scheduling phase.

The other part of Perković and Keleher’s speculative scheduling phase is
speculative backfilling: starting a job in a “hole” that occurs in the schedule
even when that job will not be able to complete unless its running time is over-
estimated. At the end of the hole, the speculatively backfilled job is killed if
it has not already finished. In this way, only processors that would have been
idle anyway are used in the speculation. This is similar to what our scheduler
does when it continues to run jobs whose trial runs have expired, but we do not
purposely start jobs speculatively after their single trial run (though we could).
Again, this differs from our scheduler because we give trial runs to all jobs. The
other main difference between our work and that of Perković and Keleher [12] is
in our tighter focus; due to the number of ideas presented in their paper, they
describe the idea only briefly and do not analyze the effect of this optimization
alone or the effect of varying the length of a speculative execution.

Snell et al. [14] explored an idea similar to speculative backfilling. They
allowed jobs to backfill even when there was not enough time in the schedule
for them to complete, killing running jobs as needed to honor reservations. They
considered a number of criteria for selecting the jobs to kill, finding that it was
best to either kill the job with the most (estimated) time remaining or the job
that was most recently started. These strategies improved system performance,
but by relatively small amounts, apparently because of the work lost when jobs
were killed. (Unlike in our strategy, they might kill a job that had already been
processed for a considerable period of time.)



Lawson and Smirni [7] also use speculative execution to identify jobs that
are much shorter than estimated. There algorithm is based on work by Lawson
et al. [6] that places jobs into separate queues based on their running time. Each
queue is serviced by part of the system so that short jobs do not wait for long
jobs but no job can starve. The base algorithm assumes that job durations were
estimated accurately, but Lawson and Smirni [7] found that similar ideas work
when using estimated running times as long as jobs whose estimated running
time exceeds 1,000 seconds were given a 180-second speculative run as soon as
possible to detect over-estimates. Their algorithm was shown to improve the
slowdown of nearly all types of jobs, but sometimes hurt the very longest jobs.
They also considered the effect of jobs having different priorities or some of the
jobs having predetermined reservations, but did not consider changing the length
of the speculative run.

A manual version of timed-run scheduling was also proposed by Chiang et
al. [1]. They were concerned with the accuracy of user estimates and felt that
users would be able to more accurately predict the runtime of many jobs by
first making a “test run” on a smaller version of the problem or with slightly
different input parameters. They tested the effect of test runs equaling 10% of the
estimated run time but not more than 1 hour and then users submitting the real
job with reasonably accurate estimates. They showed that such a scheme would
lead to performance improvements despite the overhead of the test runs. As with
our algorithm, their test runs have the effect of identifying and finishing short
jobs quickly. Our system differs in that it makes trial runs automatically rather
than assuming users would make them manually. The runs themselves are less
time-consuming in our scheduler, but also do not provide improved estimates.

Others who have considered similar ideas to timed-run scheduling have done
so in the context of systems that support preemption, which is much more flex-
ible than the job restarts that we allow. Most related is work by Chiang and
Vernon [2]; they consider backfilling with “immediate service”, which attempts
to give each newly-arriving job a one-minute run before putting it in the queue.
It does this by preempting the currently-running jobs with lowest current slow-
down among jobs that have not been preempted in 10 minutes. They showed
that this strategy significantly improves average slowdown while having mini-
mal effect on 95th percentile waiting time. This is similar to our results with the
FCFS base scheduler, but preemption allows them to improve even on a sched-
uler with backfilling. For other strategies utilizing preemption, see Kettimuthu
et al. [5] and its references.

Although technically dissimilar, our overall goal is analogous to that of
Shmueli and Feitelson [13], who argue that user productivity is a better met-
ric than waiting time or slowdown. Their scheduler attempts to prioritize jobs
whose submitter is likely to still be waiting for the result. Thus, jobs that can
be finished shortly after submission are more critical than either long jobs or
jobs that have already waited for a significant period of time. This is done so
that users are able to continue working rather than needing to switch to another
task and incurring a human “context switch” when they refocus on the task



requiring the supercomputer system. Intuitively, the success of our algorithm
in quickly identifying failing or unexpectedly short jobs should have a similar
benefit. Evaluating this would require modeling the user (as Shmueli and Feit-
elson [13] do) so that system performance affects job arrival rather than relying
on the trace-based simulations we present here.

Our results can also be considered related to the work considering the ef-
fect of user estimates on scheduling performance. Many authors (e.g. [10]) have
noted that user estimates tend to be dramatically high, partially because of very
short jobs (including quick failures) and partially because users tend to reuse
estimates once they find something that works and also strongly prefer “round”
numbers (e.g. 5 minutes, 1 hour, etc). Accounts initially differed on whether
overestimates improved [10, 18] or hurt [1] performance. These observations were
eventually reconciled with the finding that overestimates initially help but that
extreme overestimates eventually hurt performance [15, 17]. Regardless of this,
it seems reasonable that good estimates could be useful since they provide more
information to the scheduler. This has led to work trying to get users to improve
their estimates [8] as well as work to have a system generate its own estimates [4,
11, 16].

5 Discussion

Our results in Section 3 show that timed-run scheduling can more quickly
alert users about jobs that fail and benefit short jobs in general. In some cases,
it has even been shown to improve average and maximum waiting times for
the entire trace. We feel that this approach is promising and deserves further
investigation.

The most obvious open problem is to adapt this strategy to other backfilling
schemes. As mentioned in Section 2.1, it is not clear how to preserve the benefits
of reservations when the reservations themselves may be violated when trial runs
are granted to new jobs. One solution would be to rebuild the estimated schedule
whenever trial runs cause reservations to be violated. Another solution would be
to give initial guarantees with some slack to allow for trial runs by later arriving
jobs. Each of these solutions has its own drawbacks, and we believe more research
is necessary to address reservations.

Additionally, experiments with some of our policy decisions in Section 2.1
could further improve the performance of timed-run scheduling. Specifically, the
decision that long jobs must wait for their turn in the base scheduler could be
replaced by a policy similar to the speculative backfilling of Perković and Kele-
her [12]. Also, more realism can be introduced into the simulations by modeling
the overhead associated with terminating and restarting jobs.

It would also be interesting to evaluate the performance of our algorithm
on user models such as those of Shmueli and Feitelson [13] to see if our quick
completion of short jobs improves user satisfaction and productivity.
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