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Abstract. This paper analyzes the effect of overbooking for scheduling systems
in a commercial environment. In this scenario each job is associated with a release
time and a finishing deadline as well as a fee for a successful execution and a
penalty for violating the deadline. The core idea is to exploit overestimations of
required job execution times, providing an opportunity to aggressively schedule
additional jobs. The proposed probabilistic scheduler is based on histories of job
execution times, device failure rates, and penalties for SLA service violations.
This paper includes a theoretical background and a mathematical model of the
overbooking approach and a simulative evaluation with a synthetic workload on
a single-processor system.

1 Introduction

The commercial use of grid and cloud infrastructures is steadily growing. Current de-
velopments in automatic negotiation of service level agreements (SLAs) and the provi-
sion of quality of service (QoS) with fault tolerance mechanisms will further increase
its commercial acceptance and adoption [1]. This acceptance allows providers to think
about new business cases to foster their competitiveness in the emerging global service
economy.

Grid or Cloud contracts will be based on the negotiation of SLAs between the ser-
vice providers and their customers. During SLA negotiation, the customers reserve the
amount of required computing and storage resources for a given time period. If the
computation takes longer than expected, jobs are commonly killed at the end of the
SLA-defined lifetime. Therefore, users are cautious not to lose their jobs and tend to
overestimate their job’s execution time and reserve resources accordingly. In practice,
this leads to underutilized resources, as jobs finish often much earlier than expected.

Overbooking is used in many commercial fields, where more people buy resources
than actually use them. To improve profit, airlines have e.g. become used to sell seat
reservations more than once [2, 3]. The number of reservations that will not be used is
estimated based on prior experiences and used in the planning processes. This estimated
number is only correct with a specific probability. Consequently, if more passengers
appear than expected and not enough seats are available in the aircraft, the airline has
to pay a penalty to its customers.

Obviously, the objective of overbooking is to improve the expected profit. Instead
of selling each seat once, profit can be increased by selling them several times. This



opportunity has to be compared with the risk implied by overbooking, i.e. the compen-
sation for the buyer if no seat is available combined with the probability of that event.
The best estimation of risk and opportunity will provide the best profit.

In this paper, we propose different overbooking strategies for grid, cloud or HPC
infrastructure providers to increase their profit and competitiveness. These strategies
differ in many aspects from traditional overbooking strategies for aircraft seats or hotel
beds. On the one side, the number of concurrent users of a compute resource is smaller
than the number of passengers of an airplane, making it harder to predict expected
behavior. On the other side, computing jobs can be started nearly anytime, while a
plane only takes off once for each flight.

Conservative scheduling strategies, which do not use overbooking, do not accept a
job, if the maximum estimated job duration is even slightly longer than any gap in the
current schedule. Applying overbooking, the scheduler can assess the risk to place the
job in a gap that is smaller than the estimated execution time. For such an overbooked
job, the probability of failure is no longer only dependent on machine failure rates (as
in conservative scheduling), but it also depends on the likelihood that the real execution
time of the job is longer than the gap length.

The proposed strategies are based on an analytical model for overbooking that uses
the convolution of the probability density functions of the runtime estimates of the jobs
to calculate the probability of failure (PoF) for a SLA. When the calculated risk is
acceptably small in comparison to the opportunity, the service provider can accept the
SLA.

The experimental evaluation of the strategies is based on real job traces, which show
the benefits as well as associated risks of overbooking, especially if the customer base
is diverse or unknown to the service provider. The job traces are derived from a one
year record of job estimates and actual runtimes on a 400 processor cluster at the Pader-
born Center for Parallel Computing (PC2). To focus on the influence of overbooking,
we have reduced the dimension of the job traces from a parallel machine to a single
resource. However, we plan to generalize the described approach to overbooking in
parallel machines.

The paper is organized as follows: In the next section we discuss the technical foun-
dations of our work, followed by a description of our model and strategies for risk-
aware overbooking in Section 3. In Section 4, we evaluate the risk and opportunity of
overbooking mechanisms for Grid providers.

2 Related Work

This chapter summarizes relevant related work. Firstly, it discusses scheduling ap-
proaches in distributed environments, followed by related work on overbooking.

2.1 Scheduling

Most scheduling strategies for cluster systems are based on a first-come first-serve
(FCFS) approach that schedules jobs based on their arrival times. FCFS guarantees



fairness, but leads to a poor system utilization as it might create gaps in the sched-
ule. The gaps can occur, because each job description does not only contain execution
time information, but also information about its earliest starting time / release time.
Start times in the future are common for interactive jobs or for jobs which are part of
a workflow. Interactive jobs are monitored and adopted by the users and the job run-
times have therefore to be known in advance by the user and have to fit to his working
times and schedules. Workflow jobs can in principle run at arbitrary times, but depen-
dencies between sub jobs enforce that the start time of a sub job is after the deadline
of the preceding one. Gaps can therefore arise, if a new job arrives with a starting time
after the end time of the last job in the current schedule. As standard FCFS schedules
jobs strictly according to their arrival times, resulting gaps will remain idle and waste
resources.

To increase system utilization and throughput in this scenario Backfilling has been
introduced [4]. Backfilling schedules a new job not necessarily at the end of the plan,
but is able to fill gaps if a new job fits in. The additional requirement for the ability to
use backfilling instead of simply FCFS is an estimation about the runtime of each job.
This allows to determine if the job fits in a gap in the schedule.

The EASY (Extensible Argonne Scheduling sYstem) backfilling approach [4] can
be used to improve system utilization. Within EASY backfilling putting a job in a gap
is acceptable if the first job in the queue is not delayed. This preserves starvation and
leads to an increased utilization of the underling system. However, EASY backfilling
has to be used with caution in systems guaranteeing QoS aspects, since jobs in the queue
might be delayed.

Therefore, [5] introduced the conservative backfilling approach which only uses
free gaps if no previously accepted job will be delayed. Thus, conservative backfilling
still preserves fairness. Additionally, it is possible to plan a job, this means to determine
the latest start time for every job. The latest start time is the time a job starts when all
its predecessors use their complete estimated runtime.

Simulations show that both backfilling strategies help to increase overall system
utilization [6] and reduce the slowdown and waiting time of the scheduling system. The
work also shows that the effect of both described backfilling approaches is limited due
to the inaccurate user estimation concerning the runtime of their jobs.

Several papers analyzes the effect of bad runtime estimations to the scheduling per-
formance. The interesting effect is that bad estimations can lead to a better performance
[7]. However, references [8] approach to improve the scheduling results by adding a
fixed factor to the user estimated runtimes shows no advantage while using real job
traces. Therefore, effort has been taken to develop methods to cope with the bad run-
time estimations and have more accurate estimations. Reference [9–11] tried to auto-
matically predict the application runtimes based on the history of similar jobs. Tsafier et
al. present a backfilling approach which uses system-generated runtime predictions in-
stead of given user runtime estimations [12]. The paper presents a scheduling algorithm
similar to the EASY approach (called EASY++) that uses system-generated execution
time predictions and shows an improved scheduling performance for the jobs’ waiting
times. The approaches show that automatically runtime prediction can improve back-



filling strategies, but the usability of the automatically runtime predicting approaches
lack on wrong decisions according the runtime.

The approaches found in literature are not directly applicable to our work. Aim of
the shown algorithms is to improve the system utilization as whole and decrease the
slowdown of the single jobs. They assume to run in a queuing based scheduling system
which tries best effort and does not deal with strict deadlines, thus SLA are not usable.
Our work instead assumes a planning based scheduling scenario with strict SLAs and
tries to improve a providers profit by overbooking ressources.

2.2 Overbooking

Overbooking is widely used and analyzed in the context of hotels [13] or airline reser-
vation systems [3, 2]. However, overbooking of grid or cloud resources significantly
differs from those fields of applications. The grid does not require fixed starting times
for a resource, while e.g. a seat in an airplane cannot be occupied after the aircraft has
taken off. As a consequence, results and observations from overbooking in the classical
application fields cannot be reused for grid computing.

2.3 Use of Overbooking for Planning and Scheduling

Overbooking for web and internet service platforms is presented in [14]. It is assumed
that different web applications are running concurrently on a limited set of nodes. The
overbooking approach is based on firstly deriving an accurate estimate of application
resource needs by profiling applications on dedicated nodes, and then by using these
profiles to guide the placement of application components onto shared nodes. By over-
booking cluster resources in a controlled fashion, the approach is able to provide per-
formance guarantees to applications even when overbooked. The difference between
this and our approach is that nodes are typically exclusively assigned. Therefore, it is
at least difficult to share resources between different applications, while it is possible to
use execution time length overestimations, which are not applicable for web hosting.

Overbooking for high-performance computing (HPC), cloud, and grid computing
has been proposed in [15] or [16]. However, the references only mention the possibility
of overbooking, but do not propose solutions or strategies. In the grid context, over-
booking has been integrated in a three-layered negotiation protocol [17]. The approach
includes the restriction that overbooking is only used for multiple reservations for work-
flow sub-jobs, which were queried by the negotiation protocol for optimal workflow
planning. Chen et al. [18] use time sharing mechanisms to provide high resources uti-
lization for average system and application loads. At high load, they use priority based
queues to ensure responsiveness of the applications. Sulisto et. al [19] try to compensate
no shows of jobs with the use of revenue management and overbooking. However they
do not deal with the fact that jobs can start later and run shorter than estimated.

Nissimov and Feitelson [20] introduce a probabilistic backfilling approach where
user runtime estimations and a probabilistic assumption about the real finish of the
job allows to use a gap smaller as the estimated execution time. A job is allowed to
be backfilled if the probability that the backfilling postpones the start of the rst job
in the queue is less than a given trashold. If the job runs longer than the gap size the



following jobs are delayed. In scope of assessing the success of putting a job in a gap the
probabilistic backfilling approach is similar to our overbooking scenario. The difference
in the concepts are that the acceptance test of [20] is applied to an already scheduled
job with aim to reduce its slowdown while in our approach each job has a deadline and
the acceptance test is applied at arrival time to determine if the job could be executed
before the deadline.

We propose to combine backfilling with overbooking concerning the acceptance
test in a commercial scenario with focus on increasing profit of a grid or could provider.
This instrument should increase system utilization and should not affect already planned
jobs. To successfully use overbooking strategies, we have to be able to calculate the
risk of violating SLAs and therefore we have to know the distribution of job execution
time overestimations. The probability of success (PoS) for overbooking can then be
calculated based on the likelihood that the job finishes in the given gap and the chance
that the resource lives at the beginning of the planned execution and survives the job.

3 Overbooking Model and Algorithms

This section depicts the details of the applied overbooking model and our algorithmic
approach, which is presented in Section 3.1. As we want to improve the profit by over-
booking certain time slots, we need to estimate the PoF and PoS, which is (1- PoF),
for each overbooked schedule. The accuracy of the PoF depends on the quality of the
predicted job execution times (see Section 3.2).

Overbooking means to put a job in a gap in a schedule that is smaller than the job’s
maximum execution time. In fact, this job may actually try to use more time than the
available size of the gap, leading either to a loss of this job or to a postponement of the
following job. Both cases might lead to a penalty for the service provider. We assume

Table 1: Job scheduling information

Variable Content Comment
r release time earliest start time
ω estimated execution time given by the user

ddl deadline given by the user
s start time planned start time
f finish time of the job planned job end

a system with a single resource that has a failure rate λ and a repair rate µ, which are
distributed according to a Poisson distribution. A job j has an earliest release time r, an
estimated execution time ω, and a deadline ddl (see also Fig. 1). When the job is placed,
the start time s is either its release time or the finish time of the previous job. The finish
time f is important if the scheduling strategy follows conservative backfilling, where
the job should not delay following jobs. Therefore, the job will be killed at f = snext.





   



Fig. 1: Example of job information in a schedule.

3.1 Overbooking Algorithm

This paragraph briefly defines possible scheduling strategies for backfilling with over-
booking. Generally, the scheduler holds a list of all jobs in the schedule. For each new
job jnew arriving in the system, the scheduler computes the PoS for the execution of
this job in every space free in the schedule where the job might be executed. For the
concrete implementation of the scheduling algorithm, several decision strategies could
be applied.

– A conservative approach could be chosen, where the job is placed in the gap with
the highest PoS.

– A best fit approach uses the gap providing the highest profit, while still ensuring an
acceptable PoF.

– A first fit approach, where the job is placed in the first gap with an acceptable PoS.

If the job is not placeable within the schedule, it can be planned as last job, if it is
still executable before the user given deadline of the job. The calculation of the PoS is
defined in Section 3.3 and decent PoF threshold values are evaluated in Section 4. In
this paper we will further investigate an overbooking strategy based on first fit.

3.2 Job Execution Time Estimations

Evaluations of job execution time estimations ω and their corresponding real execution
times x show that the job duration is typically overestimated by a factor of two to three
[21]. A closer look on job traces shows that the distribution of the actual to estimated
execution times seems to be uniform and has two peaks a the beginning and end of the
spectrum forming a bathtub [6]. The first peak can be explained by jobs missing their
input data and test jobs. The second peak includes 15% to nearly 30% of the jobs, which
underestimate their execution time and which are killed after the negotiated execution
time. The theoretical examples inside this paper assume the execution time distribution
of the jobs to be uniform (see Fig. 2). However, it is important to notice that all results
inside this paper do not depend on the shape of the execution time distributions. The
simulations shown in Section 4 therefore also use other distributions that are derived
from real job run traces.



For the calculation of the probability that the job 2 ends at time t, it is necessary to
calculate the expected joint probability density function for the execution time distribu-
tion for job 2 and its predecessor job 1, P1(t) and P2(t). If jobs are scheduled following
to each other, three different cases can be distinguished:

Jobs do not overlap: The jobs are not interfering if r2 > f1. In this case, the original
probability distribution remains unchanged for each job.

Jobs are overlapping and have the same release time: The expected joint execution
time distribution of two jobs P1(t) and P2(t) with the same release time can be calcu-
lated by a convolution of the execution time distributions of the two jobs.

The convolution leads to a distribution as shown in Fig. 3, if ω1 < ω2 and it leads
to a simple triangle, if ω1 = ω2. If three or more jobs with the same release time r are
convolved, the resulting distribution converges against a Gaussian distribution.

Jobs can overlap: The next job j2 has a release time r2 with r1 < r2 < r1 + ω1. Here
the probability distribution of job 2 has only to be convoluted with P1(t) for t > r2.
Furthermore, the probability p to end job 1 before r2 has to be multiplied with the
distribution of the original distribution of the job 2 and added to the convolution.

Pnew
2 = p · P2 + P2 ◦ P1(t > r2)

In most cases, the convolution has to be calculated numerically, as no (reasonable)
closed formula exists.

3.3 PoS for Overbooking

The probability to successfully complete an overbooked job depends on the probability
of a machine failure and the probability of the new job to finish in time. To finish in
time means that the job has an execution time that fits into a gap between jprev and jnext.

For the calculations we will define a job with a tuple [r, ω, ddl].

P(t)

Prob. to use estimated runtime !  

0% 100%50%

Fig. 2: The probability density function for a single job.
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Fig. 3: The probability density function for two jobs with same release time.

 




 

Fig. 4: The job can only be accepted using overbooking.

PoS(jnew) The probability PoS(jnew) depends on the probability Pavailable(s) that the
resource is operational at start time s, the probability Pexecutable(jnew) that the job is able
to end with its given maximum execution time, and Psuccess(jnew) which is given by the
machine failure rate λ and the job’s execution time.

PoS(jnew) = Pavailable(s) · Pexecutable(jnew) · Psuccess(jnew)

Pavailable(s) The probability that the resource is operational at the start time is

Pavailable(s) =
MTTF

MTTF + MTTR
=

1
λ

1
λ + 1

µ

=
1

1 + λ
µ

where MTTF is the mean time to failure 1
λ and MTTR is the mean time to repair 1

µ .

Pexecutable(jnew) The calculation of the probability to execute successful Pexecutable(jnew)
is described in in detail in Section 3.2. If the job jnew has no predecessor it is sched-
uled at its release time and Pexecutable(jnew) is given by the execution time distribution



and the maximal execution time x of the job. For a uniform distribution it holds that
Pexecutable(jnew) = x

ω . If x = ω then Pexecutable(jnew) = 1.
If the job jnew has a direct predecessor jprev the convolution of the execution time

distribution has always to be computed with the previous job’s distribution. The reason
for calculating the distribution with the previous job results from the fact, that due to
overbooking the job jnew has no defined start time any more. jnew starts at the end of its
predecessor jprev. As the distribution of jprev already includes the distributions from all
possibly influencing previously planned jobs the convolution has only to be done with
jprev. Pexecutable(jnew) = 1 if the job has its full estimated execution time ω available and
less if the job is overbooked and s + ω < ddl.

Psuccess(jnew) The probability that the job’s resources survive the execution time is
given by their failure probability which is determined by the machine failure rate λ and
the job’s execution time x. Psuccess(jnew) = e−λ·x

Decision Making: During SLA negotiation a simple equation can decide whether it is
beneficial to accept an SLA with overbooking or not:

If(PoSSLA · ChargeSLA > PoFSLA · PenaltySLA) accept the SLA.
else reject the SLA.

Nevertheless, in the following we will use an overbooking strategy that bases its
decision only on a threshold for the probability of failure PoF to investigate the influence
of different, more or less aggressive strategies. If the ratio between charges and penalties
is constant, then it is possible to derive the results for the presented decision making
strategies by simply setting the threshold to the learned best ratio.

4 Evaluation

This section evaluates the possible additional profit that a provider can earn with over-
booking. Generally, the expected profit for a job E[profitjob] for overbooking is:

E[profitjob] = Chargejob · PoSjob − Penaltyjob · PoFjob

As this section will show, the additional profit strongly depends on the quality of
the prediction of the execution times.

4.1 Simulation Model

Several parameters influence the simulation results:

Simulation Resources: Actually, only a single resource is considered. We plan to extend
the simulation to be able to cope with n ∈ N resources.

Simulation Metrics For simplification, the simulation considers the relation of charge
to penalty as equal, of for each booked time unit. However, Section 4.8 shows that the
relation of charges to penalties does not affect PoF values for maximum profit.



Job Creation Model

– The average job length is exponentially distributed with a mean of 72 time units.
– The earliest release time of the jobs also follows an exponential distribution with a

mean of 30 time units which is added to the release time of the previously created
job.

– After the creation process for the jobs, their release times are monotonously in-
creasing in the job number. But an increasing order of release times would simply
favor FCFS and would not be realistic according to our scenario. Therefore, the
order is afterwards randomly permuted to create a more realistic release time dis-
tribution.

– The deadline of each job is set to its release time plus five times the estimated
execution time (ddl = r + 5 ∗ ω).

The mean of the release time distribution compared to the mean of the job length
directly describes possible load of the system. If the mean of the release times is bigger
as the mean job length more jobs are arriving as feasible in the scheduling system.
The chosen simulation parameters enforce that more jobs are submitted than the system
could successfully execute. Each simulation ends after the deadline of the last accepted
job.

Resources Stability

– The resource’s MTTF is 14505 time units or λ = 0.00165.
– The resource’s MTTR is 12 time units or µ = 0.0833.

These assumptions are taken for most of the shown simulation. We will additionally
show in Section 4.8 that different MTTF values only lead to an offset in the profit curve
for the overbooking strategies.

Simulations Usage: For each test run, the incoming jobs, job length, and release times
as well as the up and downtime of the resource have been randomly chosen. Based on
this input data, the three strategies have been applied and the results of the strategies
have been evaluated and aggregated to the following figures. For each test point, we
have performed 10000 runs with 100 incoming jobs per run. Therefore, every result is
based on 600000 schedules.

Execution Time Distribution: The required execution time of a job is calculated based
on the applied execution time distribution. We have evaluated four different distribution
schemes. The first one is the simple uniform distribution. The second one is a bathtub
distribution, which seems most realistic if applied to a huge number of jobs and users
[6]. This bathtub curve could also be derived from the traces of our local cluster system.
The next execution time distributions are derived from traces of two dedicated users of
our cluster system. They should depict the fact that given enough information (traces
from jobs) of a single user, better overbooking results could be achieved.



Simulations result We calculate a threshold Pmax that will provide the maximum PoF
acceptable by the scheduler for different situations. To evaluate the best threshold for
overbooking, we have implemented FCFS and conservative backfilling to be able to
compare the overbooking strategies with standard implementations. The overbooking
strategy of accepting jobs is based on the PoF given by the convolution of the execution
time distribution with the distribution of the previous jobs. A job is placed in the first
gap where the calculated PoF is lower than Pmax.

4.2 Uniform Execution Time Distribution

The evaluation starts with the assumption that the execution time distribution follows
an uniform distribution. The simulation results for each test run contain the charge and
the penalty of each strategy. The profit of a test run is its charge minus the penalty.
Penalties for FCFS and backfilling without overbooking can only occur, if the machine
fails during the execution of a job (see Figure 5).

Depicted results shown in the figure 5 are

– y-axis charge and penalty for each strategy
– x-axis maximal PoF Pmax accepted
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Fig. 5: Charge and penalties with different scheduling strategies.
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Fig. 6: The accumulated profit for uniform execution time distributions.

In the Figure 6 and following figures showing simulation results are

– y-axis profit.
– x-axis maximal PoF Pmax accepted

The simulation starts with a maximum acceptable PoF for a job of 0.05 and ends
with 1. The x-axis has, besides fluctuations of the randomized measurement parameters,
no influence on FCFS and backfilling without overbooking. Markers around the values
in the figures show the 95 % confidence intervals.

For a uniform execution time distribution, the FCFS strategy fills on average 1100
time units per schedule, while the backfilling strategy has a mean planned execution
time of 2200 time units per schedule. The overbooking strategy is able to fill on average
2570 time units, depending on the accepted PoF Pmax and varying from 2440 to 2630
time units per schedule. It is also shown in Figure 5 that the penalties for overbooking
start lower than for conservative backfilling. This is caused by the fact that conservative
backfilling is mostly unable to re-start a job after a resource outage, because the remain-
ing time slot is not long enough. In contrast, overbooking still has the opportunity to fill
the new, smaller gap in the schedule.

Due to space limitations, we will only present the accumulated profit in the follow-
ing. The profits with overbooking are, until a Pmax = 0.8, better than with simple back-
filling (see Figure 6). Overbooking strongly depends on Pmax. The profit is increasing
at the beginning due to additionally accepted jobs and is shrinking at the end again due



to the increasing amount of violated SLAs caused by too high accepted values of Pmax.
For these assumptions, Pmax = 0.3 should be chosen to maximize profit, increasing the
profit by 20 % compared to a conservative backfilling strategy.

4.3 Bathtub Distribution

The following simulations are based on a job execution time analysis of the year 2007
for the Arminius HPC cluster system at the Paderborn Center for Parallel Computing
(PC2). Within the analyzed 23286 jobs, 6109 jobs used less than 1 % of the booked
execution time, while 3553 jobs used 100 %. For the simulation, we have assumed that
26 % of the jobs have zero execution time, 15 % use 100 % percent of their execution
time and 59 % of the jobs are uniformly distributed in between.

Figure 8 shows the profit similar to Section 4.2. FCFS and conservative backfilling
do not dependent on the quality of the runtime estimations and we will not discuss
their behavior again. The overbooking strategy fills on average 2490 time units for each
schedule, varying from 2330 to 2610 time units for different Pmax. It is shown in Figure
8 that the maximum profit after subtracting the penalties is achieved for Pmax = 0.6.
Starting with Pmax = 0.9, overbooking induces negative effects. The profit is increased
compared to a conservative backfilling strategy by 19 % for Pmax = 0.6.

4.4 Simulations with precise execution time estimations

This section analyses overbooking approaches for customers with very precise execu-
tion time estimations. The simulation uses input data of a user which nearly always
uses 88.2 % of the reserved execution time. There are some jobs which have been killed

Fig. 7: Execution time distribution on a real cluster system for the year 2007.
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Fig. 8: Profit with different scheduling strategies for a bathtub distribution.

due to missing input data and some which have underestimated their required execution
time (see Figure 9).

The results of this simulation are shown in Figure 10. The overbooking strategy
fills on average 2370 time units, varying from 2320 to 2390 time units per schedule. At
Pmax = 0.35 the maximum profit is available. Then, until Pmax = 0.95, the additional
profit is nearly stable. Starting from Pmax of 0.95, overbooking jobs for this customer
has a negative effect. The profit is increased compared to a conservative backfilling
strategy by 13 % for Pmax = 0.35.

4.5 Execution Time Distributions with Near-Bathtub behavior

The following simulations are based on a user profile, where the user rarely uses more
than 60 % of the reserved execution time. There is a peak in the distribution at zero
and at 100 % and a high probability that the user consumes between 1 % to 60 %. This
interval includes 85 % of all jobs and the interval from 60 % to 99 % only contains 5 %
of the jobs (see Figure 11). The overbooking strategy fills on average 2660 time units,
varying from 2340 to 2780 time units per schedule. The maximum profit is achieved
for Pmax = 0.4. Then, until Pmax = 0.9, the additional profit is nearly stable. Starting
from Pmax = 0.97, overbooking jobs of this customer has a negative effect. The profit
is increased compared to a conservative backfilling strategy by 22 % for Pmax = 0.4.



Fig. 9: Execution time distribution with a peak at 88 % for a single user.
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Fig. 10: Profit with different scheduling strategies for precise user estimations.



Fig. 11: Job execution time distributions with a near bathtub characteristic.
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Fig. 12: Simulation results for user with most of the jobs gathered between 1% to 60% of the
execution time.
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Fig. 13: Here a bathtub execution time distribution occurs while the scheduler assumes a uniform
distribution.

4.6 Uniform vs. Bathtub

In the previous sections, the calculation for the overbooking strategies have been based
on the same runtime distributions as the simulated jobs. We will investigate in the fol-
lowing sections the influence of imprecise runtime estimations on the quality of the
scheduling. Figure 13 shows the case in which the overbooking strategy assumes a
uniform job length distribution, while the simulated jobs behave according to bathtub
distribution from section 4.3.

The overbooking strategy fills on average 2570 time slots, varying from 2450 to
2610 time units per schedule. The maximum profit can be achieved for Pmax = 0.15.
Starting from Pmax = 0.8, overbooking jobs of this customer has a negative effect.
The profit is increased compared to a conservative backfilling strategy by 19 % for
Pmax = 0.15. For these comparable probability density functions, overbooking is still
able to produce very good results.

4.7 Uniform vs. Peak

Now, the simulation evaluates a very different user behavior compared to the runtime
prediction. The simulation still assumes a uniform distribution, while the simulated jobs
are created according to the peak distribution from Section 4.4 .
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Fig. 14: Here a peak execution time distribution occurs while the scheduler assumes a uniform
distribution.

The overbooking strategy fills on average 2210 time units per schedule, varying
from 1980 to 2380 time units per schedule. At Pmax = 0.05 the maximum profit is
available there the profit is increased compared to a conservative backfilling strategy
by 9 %. Already starting from Pmax = 0.15, overbooking jobs of this customer has a
negative effect and starting from Pmax = 0.8 the profit is worser than with FCFS.

It is clear that in this case overbooking has a very bad impact on the schedule, as the
user does a very exact assessment and the overbooking assumes a uniform distribution.
The result shows that for users which are able to accurately predict their job runtimes,
overbooking has to be applied very carefully.

4.8 Dependency on Penalty and MTTF

The previous simulation results assumed equal profit and penalty for each time unit.
Figure 14 contains results for different ratios of profit and penalty, starting from factor
one and going up to a factor of five. As input we have chosen the results of the mea-
surement of Section 4.3. It is clear that an increased penalty decreases the achievable
profit. However, the shape of the curves is not affected.

Figure 16 shows additional simulations concerning resource stability. They were
performed to evaluate the impact of the machine failure rates on the predictions for
overbooking. The result shows that the value of Pmax is nearly independent of the ma-
chine outage characteristics.
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Fig. 15: The resulting profit with different penalty factors

The evaluation shows that the impact of overbooking in Grid, Cloud, or HPC envi-
ronments is dependent on the accuracy of the underlying assumptions of the relation of
booked to real used runtime. With the given data of a real cluster system and assuming
SLA negotiations, it is possible to increase the profit of a cluster system by 20 %. Fur-
thermore, the simulations show that assuming accurate assumptions for user’s runtime
estimations the profit of a cluster system can be further increased. On the other hand,
incorrect assumptions can have a negative impact on the profit.

5 Conclusion and Future Work

This paper has motivated the need for overbooking in Grid, Cloud or HPC environ-
ments and outlined the limitations of current scheduling algorithms. Thereafter, the idea
of using overbooking to increase the ability to accept more SLAs has been shown. As
overbooking increases the risk of SLA violations, mechanisms for determining whether
or not it is worthy to use overbooking have been shown followed by an evaluation of
the impact from the proposed methods on the ability to successfully accept additional
SLAs. Therefore, a threshold Pmax has been defined with which a provider can max-
imize the profit for a overbooking strategy. The evaluation shows that the additional
profit depends on the accuracy of the underlying runtime estimations and can be given
real runtime distributions around 20 % of additional utilisation.
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Fig. 16: The resulting profit with different penalty factors

An interesting point of future work will be to define overbooking strategies which
will be able to combine multiple resources and that can be used for parallel jobs. It might
also be interesting to determine if there are user and application specific distributions
which would allow to increase the quality of the risk estimations for overbooking. With
this knowledge, the quality of the estimations could be further increased.
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