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Abstract. Grids reliability remains an order of magnitude below clus-
ters on production infrastructures. This work is aimsed at improving
grid application performances by improving the job submission system.
A stochastic model, capturing the behavior of a complex grid work-
load management system is proposed. To instantiate the model, detailed
statistics are extracted from dense grid activity traces. The model is
exploited in a simple job resubmission strategy. It provides quantitative
inputs to improve job submission performance and it enables quantifying
the impact of faults and outliers on grid operations.

1 Introduction

In response to the growing consumption of computing resources and the need for
global interoperability in many scientific disciplines, inter-continental production
grid infrastructures have been deployed over recent years. Grids are understood
here as the federation of many regular computing units distributed world-wide,
taking advantage of high-bandwidth Internet connectivity. Productions grids
are systems exploiting dedicated resources administrated and operated 24/7,
as opposed to desktop grids that federate more volatile individual resources.
The production systems operated today (e.g. EGEE1, OSG2, NAREGI3...) have
emerged as a global extension of institutional clusters. They federate computing
centers which operate pools of resources almost autonomously. The grid mid-
dleware is designed to sit on top of heterogeneous, existing local infrastructures
(typically, pools of computing units interconnected through a LAN and shared
through batch systems) and to adapt to different operation policies.

These complex systems have passed feasibility tests and are exploited as
the backbone of many research and industrial projects today. They provide
users with an unprecedented scale environment for harnessing heavy compu-
tation tasks and building large collaborations. Their exploitation has led to
1 Enabling Grids for E-sciencE, http://www.eu-egee.org
2 Open Science Grid, http://www.opensciencegrid.org
3 NAREGI, http://www.naregi.org
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new distributed computational models. However, they also introduce a range
of new problems directly related to their scale and complex software stacks:
high variability of data transfer and computation, heterogeneity of resources,
many opportunity for faults, hardware failures, difficulty with bug tracking, etc.
The workload management system of grid infrastructures is probably one of the
most critical and most studied service provided. Despite the tremendous efforts
invested in guaranteeing reliable and performing workload managers, the current
records demonstrate that grid reliability remains an order of magnitude lower
than clusters reliability, and performances may be disappointing when compared
to the promise of virtually unlimited resources aggregation. As a consequence,
grid users are directly exposed to system limitations. They adopt empirical ap-
plication level strategies to cope with the problems most commonly encountered.

Production grid infrastructures remain to a large extent complex systems
with behavior that is little understood and for which “optimization” strategies
are often empirically designed. The reason for this cannot be attributed to the
youth of grid systems alone. The complexity of software stacks, the split of re-
sources over different administrative domains and the distribution at a very large
scale makes it particularly difficult to model and comprehend grid operations.
Structured investigation techniques are needed to analyze grids behavior and
optimize grid performances. Considering the grid workload management sys-
tems in particular, users are often in charge of manually resubmitting jobs that
failed. They need assistance to adopt smart resubmission strategies that improve
performance according to global criteria.

1.1 Objectives and organization

In this paper we analyze the operation of the EGEE production grid infrastruc-
ture and more particularly its Workload Management System (WMS) in order
to assist users in performing jobs submission reliably and improving application
performance. Experience shows that EGEE users are facing a significant ratio
of faults when using the WMS and their applications’ performance is impacted
by very variable latencies. Each job submitted to the grid may succeed, fail, or
become an outlier (i.e. get lost due to some system fault). The execution time
of successful jobs is impacted by the system latency. Faulty jobs and outliers are
similarly introducing variable delays before the error is detected and the jobs can
be resubmitted. From the user point of view, the overall waiting time, including
all necessary resubmissions, should be minimized. Ad-hoc fault detection and
resubmission strategies are typically implemented on a per-application basis.
Determining the optimal grace delay before resubmission is difficult though, due
to the absence of notification of outliers and the impact of faults. The objective
of this study is to provide quantitative input and optimal resubmission timing.

Previous works have demonstrated that statistics collection on the live grid
system and derived probabilistic models could help in optimizing grid perfor-
mance according to user-oriented and system-oriented criterions [1, 2]. However,
the statistics utilized so far were collected through invasive probing of the grid
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infrastructure, thus leading to rather sparse and incomplete data retrieval, dif-
ficult to update although grid workload is non-stationarity. This work describes
a more structured approach leveraging on the international effort to set up a
Grid Observatory4 which tackles the problems related to grid operation traces
collection in order to provide accurate, dense and relevant statistics for modeling
and optimizing the infrastructure.

In the remainder, the EGEE grid architecture, and more specifically its Work-
load Management System, is introduced. The Grid Observatory implementation,
based on grid service log files analysis and merging, is then described. The data
extracted and its exploitation for deriving a novel probabilistic model of the
grid job latencies is presented. Finally, a simple job resubmission strategy is
optimized, based on the probabilistic model proposed.

1.2 Related work

Frachtenberg and Schwiegelshohn [3] have pointed that in case of failure, re-
scheduling is needed in order to reduce submission cost. They also pointed out
that very few real production grid workload traces and models are available.
A few local pieces os work have been done however, such as on the Auvergne
regional part of EGEE by Medernach [4]. An initiative of data publication and
organization is the Grid Workloads Archive [5] which proposes a workload data
exchange format and associated analysis tools in order to share real workload
data from different grid environments.

Early work such as [6] have set up a methodology of statistical workload
modeling from real data with the characteristics observed on Grids: heavy tailed
distribution and rare events. More recent works have proposed to model different
parameters such as job inter-arrival time, job delays, job size and their correlation
on different platforms: the EGEE grid [7, 8] or the Dutch DAS-2 multi-cluster
environment [9] for different periods of time from 1 month to 1 year.

Real workload models are mandatory to test new algorithms at different
stages of jobs life-cycle such as submission (client side) or scheduling (middleware
side). Authors of [8] have used their data to compare two user-level schedulers
algorithms.

Workload models are also used for platform analysis and comparison. For
example, authors of [7] have compared their results on the EGEE Grid with a
real local cluster and an ideal cluster.

Finally, workload models will also enable more realistic simulations when
used in Grid simulator such as SimGrid [10].

2 EGEE grid infrastructure

EGEE is an unprecedented large scale federation of computing centers, each op-
erating internal clusters in batch mode. EGEE today accounts for more than

4 Grid Observatory, http://www.grid-observatory.org
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80,000 CPU cores distributed in greater than 250 computing centers of various
sizes. With more than 9,000 users authorized to access the infrastructure and
more than 200,000 computing tasks handled daily, EGEE experiences very vari-
able load conditions and strong latencies in user requests processing, mostly due
to the middleware latency and the batch queuing time of requests.

EGEE operates the gLite middleware5. gLite is a collection of interoperat-
ing services that cover all functionality provided, including grid-wide security,
information collection, data management, workload management, logging and
bookkeeping, etc. A typical gLite deployment involves many hosts distributed
over and communicating through the WAN. The main services provided by gLite
are: the security foundational layer (based on GLOBUS Toolkit 2), the Infor-
mation System collecting status information on the platform hierarchically, the
Data Management System providing a unified view of files distributed over many
sites, and the Workload Management System (WMS) in charge of dispatching
and monitoring computing tasks. Each of these systems is a compound, dis-
tributed architecture in its own right.

EGEE is a multi-sciences grid and EGEE users and resource are grouped into
Virtual Organizations (VOs) which define both communities of users sharing a
common goal and an authorization delineation of the resources accessible to each
user group.

2.1 EGEE Workload Management System

The EGEE WMS is seen from the user as a two-level batch system: the User
Interface (client) connects to a Workload Manager System (WMS). The WMS is
interfaced to the grid Information System to obtain indications on the grid sites
status and workload conditions. It queues user requests and dispatches them to
one of the sites connected. The sites receive grid jobs through a gateway known as
Computing Element (CE). Jobs are then handled through the sites’ local batch
systems. To comprehend the complexity of the system, a more complete view of
the WMS architecture, extracted from the WMS user guide [11] is depicted in
figure 1.

When submitting a job, the client User Interface connects to the core Work-
load Manager through a WMProxy Web Service interface on the Network Server.
The Workload Manager queries the Resource Broker and its Information Super-
Market (repository of resource information) to determine the target site that will
handle the computation task, taking into account the job specific requirements.
It then finalizes the job submission through the Job Adapter and delegates the
job processing to CondorC. The job evolution will be monitored by the Log Mon-
itor (LM) which intercepts interesting events (affecting the job state machine)
from the CondorC log file. Finally, the Logging and Bookkeeping service (LB)
logs job events information and keeps a state machine view of the job life cycle.
The user can later on query the LB to receive information on her job evolution.

5 gLite middleware, http://www.glite.org
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Fig. 1. gLite Workload Management System architecture; source: WMS user guide.

For load balancing and system scalability, the EGEE infrastructure operates
around a hundred of similar WMS. However, if those WMSs share the same pop-
ulation of connected CEs, they are not interconnected and they do not perform
internal load balancing. It is up to the clients to select their WMS at submission
time. The client User Interface implements a simple round-robin WMS selection
policy to assist users in their job submission process.

In the remainder we are particularly interested in the impact of the grid
middleware on the job execution time, i.e. the latency induced by the middleware
operation, that is not related to the job execution itself. This latency is a measure
of the middleware overhead. In case of faults (scheduling problems, middleware
faults...) this latency will arbitrarily increase and the job needs to be considered
lost after a long waiting time enough to prevent application blocking.

2.2 Job’s life cycle

The job’s life cycle is internally controlled through a state machine displayed in
figure 2 (source: WMS user guide).

The normal states assigned to a job are underlined in boxes with thick borders
(they correspond to the case of a job completed successfully):

SUBMITTED the job was received by the WMS and the submission event is
logged in the LB

WAIT the job was accepted by WM, waiting to match a CE
READY the job is sent to its execution CE
SCHEDULED the job is queued in the CE batch manager
RUNNING the job executes on a worker node of the target site
DONE (ok) the job completed successfully.
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Fig. 2. Jobs life cycle state machine; source: WMS user guide.

Other states may also be encountered:

ABORT in any state, the middleware can abort the operation. An additional
status reason is usually returned.

DONE (failed) some errors may prevent correct job completion. An additional
status reason is usually returned.

DONE (cancelled) in any state, the submission user can cancel her job.
CLEARED after outputs of a completed job have been retrieved by the user,

the job is cleared.

2.3 Grid observatory

The basis of our work on the WMS behavior modeling is the collection of statis-
tical information on job evolution on the live grid infrastructure. The relevant
information for performance modeling is the duration of jobs, including fine de-
tails on the intermediate times spent between transitions of the state diagram.
This information collection step is difficult by itself. In a previous work [12], we
collected such information through poll jobs submission on the infrastructure
and monitoring of the polls life-cycle. Although this strategy is easy to imple-
ment (all that is needed is a user interface connected to the infrastructure), it is
both restrictive (the polls are specific short duration jobs, the jobs are limited
to the resources accessible to the specific user performing submission) and has
limited accuracy (only a limited number of polls can be simultaneously submit-
ted to avoid disturbing normal operation, the traces are collected by periodic
polling and the period selected impacts the accuracy of results).

A more satisfying approach is to collect traces from regular jobs submitted
on the grid infrastructure during normal grid operation, thus assembling a com-
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plete and accurate corpus of data. However, there are much more difficulties in
implementing this approach than would be expected, including:

– traces are recorded by different inter-dependent services (WM, CondorC,
LM, LB...) that are tracing partly redundant and partly complementary
information;

– traces are collected on many different sites (operating different WMSs) ad-
ministrated independently: agreement to collect the data has to be negoti-
ated with the (many) different site administrators;

– different versions of the middleware services co-exist on the infrastructure
and traces are produced by slightly varying sources (including changes in
states, labels, spell fixing in messages returned, etc);

– traces are recorded on different computers which clocks are not always well
synchronized (although NTP should be installed on every grid hosts);

– traces collected are incomplete as parts of them can be lost (log files loss,
disk crashes, etc) and all job states are not always recorded (middleware
latency and faults cause some transition losses);

– as it will appear in the rest of this paper, the traces recorded often do not
match precisely the information documented in the existing guides (state
name changes, etc).

The most accurate source of traces available on the EGEE grid today is the
Real Time Monitor6 (RTM) implemented at the Imperial College London for the
need of real time grid activity monitoring and visualization. The RTM gathers
information from EGEE sites hosting Logging and Bookkeeping (LB) services.
Conforming to our college policy, information is cached locally at a dedicated
server at Imperial College London and made available for clients to use in near
real time.

The system consists of 3 main components: the RTM server, enquirer and
an apache Web Server which is queried by clients. The RTM server queries the
LB servers at fixed time intervals, collecting job related information and storing
this in a local database. Job data stored in the RTM database is read by the
enquirer every minute and converted to an XML format which is stored on the
Web Server. This decouples the RTM server database from potentially many
clients which could bottleneck the database.

The RTM also provides job summary files for every job as text files (“Raw
Data”). These data are analysed off-line and fixed record length tuples are cre-
ated on daily basis, one file per LB server. These files are used for the analysis
presented in this paper.

The systematic collection of grid traces for studying grid systems has been
recognized as a key issue and significant effort has been recently invested in
setting up a Grid Observatory7 which aims at collecting information and easing
access to it through a portal. The grid observatory has long term objectives of
curating and harmonizing the data. It currently provides access to first data
corpuses collected in Paris regional area (GRIF) and by the RTM.
6 Real Time Monitor, http://gridportal.hep.ph.ic.ac.uk/rtm
7 EGEE Grid Observatory, http://www.grid-observatory.org
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3 Statistical data

The data considered in this study are RTM traces of the EGEE grid activity
during the period from September 2005 to June 2007. 33,419,946 job entries were
collected, each of them representing a complete job run. Among the information
recorded in an entry can be found: the job ID, the resources used (UI, RB, CE,
WN), the VO used, the job specific requirements, the job life cycle concatenated
field and a complementary ”final reason” text detailing the reason for the final
state reached. Different epoch times are given, allowing to measure the duration
of each step of the job life cycle:

epoch regjob ui: registration of a job on a User Interface
epoch accepted ns: job accepted by the network server
epoch matched wm: job matched to a target CE
epoch transfer jc: job accepted and being transfered to the CE
epoch accepted lm: job accepted by the CE
epoch running lm: job started running (logged by the LM)
epoch done lm: job completed (successfully or not)
epoch running lrms: job started running (logged by the LRMS)
epoch done lrms: job completed (successfully or not)

The last two couples of epoch data can be redundant: one is given by the LM
while the other is given by the local resource management system (LRMS) or
batch system. The LM data is less accurate than the LRMS, but the LRMS data
does not exist for all CEs.

The life cycle field holds information on the different states the job has
encountered during its life cycle (see figure 2). It is composed of the concate-
nation of the different state names, considering some minor variations in names
(e.g. RAN corresponds to a past RUNNING state; REGISTERED corresponds
to a job registered on the UI it has been SUBMITTED to). In the data con-
sidered in this paper, 77 different values of the life cycle field have occurred
with different frequency. They correspond to different situations: job success-
fully terminated and data retrieved (REGISTERED DONE RAN CLEARED),
job aborted (REGISTERED ABORT), etc. The top 5 life cycle values with their
frequencies are given in table 1.

REGISTERED DONE RAN CLEARED 41.3 %
REGISTERED ABORT 29.4 %
REGISTERED DONE RAN 22.8 %
REGISTERED DONE 2.7 %
REGISTERED ABORT RAN 0.9 %

Table 1. Top 5 life cycle values with their frequencies

To give more information on the reason for the final state of a job (especially
in case of error), the final reason field provides a user readable message. Un-
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fortunately, the set of possible values is larger, due to the diversity of cases that
may occur but also to the different versions of middlewares, sometimes display-
ing different messages for the same reason. Combined with the life cycle field,
we counted 315 different cases. Some final reason fields were shortened to ex-
clude non relevant specific information such as particular file name or site name
appearing in the message. For instance, the text "cannot retrieve previous
matches for https://lcgrb01.gridpp.rl.ac.uk:9000/XCKb1dsA3fXbzsY7Q"
was replaced by "cannot retrieve previous matches for".

RDRC REGISTERED-DONE-RAN-CLEARED
RDR REGISTERED-DONE-RAN
RA REGISTERED-ABORT
RAC REGISTERED-ABORT-CLEARED
RD REGISTERED-DONE
UA UNDEFINED-ABORT
Una UNDEFINED-na
RE REGISTERED-ENQUEUED
RnaR REGISTERED-na-RAN
UDR UNDEFINED-DONE-RAN
UDRC UNDEFINED-DONE-RAN-CLEARED
RRR REGISTERED-RUNNING-RAN
RT REGISTERED-TRANSFER

Table 2. Abbreviations for some type values.

Before exploiting the data, some curation was needed for proper interpre-
tation. Namely: data sources were selected when redundant information was
available (LM and LRMS traces redundancy); specific text final reason fields
were truncated; and rare events were neglected in order to reduce the number of
cases to analyze (an experimental justification if given in paragraph 5.3). As a
result, table 3 details the 37 most frequent cases, representing 99.4% of the total
data. This selection is a compromise between data completeness and number of
cases to analyze. The last column of table 3 proposes a classification of the cases
into 3 classes that are detailed below.

3.1 Successful jobs

The first class corresponds to jobs that have started running and either termi-
nated successfully or were canceled by the user. We consider that these jobs
were possibly successful job even if the intervention of the user changed the final
status or if some produced files were not retrieved nor used. For these jobs, we
denote by R the job latency, i.e. the time between the epoch of registration on
the UI and the epoch where the job starts running. Due to some clock synchro-
nization problems it may happen that a latency value R is negative: such entries
have been excluded from the study. Of course, such problem may also alter some
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case type and final reason occurrences % class

1 RDRC Job terminated successfully 11,563,331 34.6% R (9,999,928)
2 RDR Job terminated successfully 5,639,638 16.9% R (5,035,776)
3 RA Job RetryCount (0) hit 3,838,380 11.5% outlier
4 RA Cannot plan: BrokerHelper: no compa 3,422,319 10.2% F
5 RDRC - 1,299,235 3.89% R (1,138,324)
6 RDRC There were some warnings: some file 1,004,800 3.01% R (884,932)
7 RDR There were some warnings: some file 911,500 2.73% R (813,405)
8 RDR - 877,229 2.62% R (750,473)
9 RD Aborted by user 863,094 2.58% R (875,89)

10 RA Job RetryCount (3) hit 582,152 1.74% outlier
11 RA - 557,055 1.67% F
12 RA Job proxy is expired. 495,519 1.48% F
13 RA cannot retrieve previous matches fo 322,839 0.97% F
14 RAR Job proxy is expired. 267,890 0.80% F
15 Una - 235,458 0.70% R (10,632)
16 RDR Aborted by user 188,421 0.56% R (15,3479)
17 RA Job RetryCount (1) hit 165,231 0.49% outlier
18 UA Error during proxy renewal registra 149,095 0.45% F
19 RA Unable to receive 115,867 0.35% F
20 RE - 109,089 0.33% F
21 RA Cannot plan: BrokerHelper: Problems 89,553 0.27% F
22 UA Unable to receive 70,215 0.21% F
23 RA Job RetryCount (2) hit 63,595 0.19% outlier
24 RnaR - 56,044 0.17% R (53,055)
25 RD - 45,400 0.14% R (2,091)
26 RAC cannot retrieve previous matches fo 35,887 0.11% F
27 UDR Job terminated successfully 31,722 0.09% R (236)
28 RAR - 26,268 0.08% F
29 RDRC There were some warnings: some outp 25,868 0.08% R (20,341)
30 RDR There were some warnings: some outp 23,178 0.07% R (18,315)
31 RRR - 22,983 0.07% R (19561)
32 RA Submission to condor failed. 22341 0.07% F
33 RA Job RetryCount (5) hit 22,260 0.07% outlier
34 RT Job successfully submitted to Globu 18,972 0.06% R (3,768)
35 RT unavailable 18,065 0.05% F
36 RA Job RetryCount (7) hit 17,328 0.05% outlier
37 RA hit job shallow retry count (0) 16,863 0.05% outlier

Table 3. The 37 most frequent cases of type and final reason field values are totalizing
99.4% of the total data. Type values have been abbreviated for readability of the table,
using table 2. The last column distinguishes correctly running jobs with latency (R
with number of data entries remaining after cleaning), failed jobs (F) and outliers.
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positive values. However, these events are rare and the synchronisation difference
are small compared to the values considered.

It also happens that either LM or LRMS traces are available. Since LRMS
values are more accurate, we decided to keep only data where LRMS values were
available. The number of remaining data is given for each case in table 3 inside
the parenthesis after the R symbol. This class is composed of 18,991,905 entries.

Figure 3 displays the distribution of latency values for all successful cases
from table 3. We observe that all profiles are similar although the frequencies
differ, and the first class represents most of the data. Figure 4 displays the prob-
ability density function (pdf) of the latency on top and its cumulative density
function (cdf) on bottom. This laws are known to be heavy tailed [13] meaning
that the tail is not exponentially bounded (see figure 5):

∀λ > 0, lim
t→∞

eλt(1− FR(t)) = +∞

3.2 Failed jobs

The second class corresponds to jobs that have failed for different reasons, leading
to abortion by the WMS (no compatible resources, proxy error, BrokerHelper
problem, CondorC submission failure...). Most jobs are aborted after a delay,
denoted by the variable F , computed from the epoch of job registration until
the done state epoch corresponding to the abortion instant. The delay F is one of
the subjects of this study. Similarly to the previous class, some synchronization
clock problems led to exclude some data. Moreover, the terminal “done” status
may not be reached in some cases, as for example 18 and 22. We have decided
to assume that the fault was immediately reported to the system in these cases.
This class is finally composed of 5,607,329 entries.

The different fault latency profiles (F ) for the different cases of table 3 la-
belled as faults are displayed in figure 6. Contrarily to the study of successful jobs,
we observe that the profiles of the curves corresponding to each case conducting
to fault are quite different. The corresponding pdf and cdf of F are plotted in
figure 7. They corresponds approximately to the profile of case number 4 even if
they have been computed on all failed jobs: case number 4 is predominant (10.2%
of entries compared to second larger, case number 11 with 1.67% of entries).

3.3 Outliers

Jobs with type “REGISTERED-ABORT” and final reason “Job RetryCount
(any number) hit” are jobs that have failed at least once at a site and been
submitted to other sites until the user defined maximum number of retries is
reached at which point the WMS gives up on the jobs. The WMS is aware of
such failures either because it is notified of the job failure or because the job
times out.
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Fig. 3. Occurrences of latency values for different cases (see table 3) of successful jobs.
The figure below gives more details for low values. The first two cases (1 and 2) are
plotted thicker for an easier reading.
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The final reason for a large part of these jobs is known after a very long delay
(few 100000s seconds) when compared to other failed jobs. They correspond to
jobs that never return due to some middleware failure or network interruption
(jobs may have been sent to a CE that has been disconnected or crashed and the
LB will never receive notification of the completion). They are usually detected
using a timeout value by the WMS. This last class of jobs, labelled as outliers,
contains 4,705,809 entries.

3.4 Summary

We denote as ρ the ratio of outliers and φ the ratio of faulty jobs. In the complete
data set considered, we measure:

outliers : ρ = 16.1%
faults : φ = 19.1%
successful : 1− ρ− φ = 64.8%

When comparing the distribution of F to the one of R, we observe that,
even if faults are not always known immediately, they are usually identified in a
shorter time than the latency impacting most successful jobs. We will now study
the impact of the delay before faults detection on the total latency of a job.
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Fig. 7. pdf (top) and cdf (bottom) of the latency for fault detection in all the cases
examined in figure 6.
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4 Resubmission after fault

4.1 Probabilistic modeling

In the remainder, a capital letter X traditionally denotes a random variable with
pdf fX and cdf FX . Let R denote the latency of a successful job and F denote
the failure time. Assuming that faulty jobs are resubmitted without delay, let
L denote the job latency taking into account the necessary resubmissions. L
depends on the distribution of the jobs failure time. With ρ the ratio of outliers
and φ the ratio of failed jobs, the probability, for a job to succeed is (1− ρ−φ).

A job encounters a latency L < t, t being fixed, if it is not an outlier and
either:

– the job does not fail (probability (1−ρ−φ)) and its latency R < t (probability
P (R < t) = FR(t)); or

– the job fails at t0 < t (probability φfF (t0)) and the job resubmitted encoun-
ters a latency L < (t− t0)

The cumulative distribution of L is thus defined recursively by:

FL(t) = (1− ρ− φ)FR(t) + φ

∫ t

0

fF (t0).FL(t− t0)dt0

where the distributions of R and F are numerically estimated from the statistical
data set described in the previous section. However, in this equation, the cdf FL
appears both in left and right sides. Moreover, its value at time t does appear
in both terms.

In order to compute the cdf FL, we discretize this equation with some con-
siderations:

– No successful job has a null latency: FR(0) = 0
– We introduce the second as the discretization step for the variable t. Indeed,

in practice we know that we cannot have a higher precision than the second
for our measurements. The discretization step is chosen accordingly.

– Some jobs are immediately known to fail (for example if the fault occurs on
the client side). We thus consider FF (0) 6= 0

Since no job has a null latency, this is also the case with resubmitted jobs:
FL(0) = 0. Supposing now t > 1, we get:

FL(t) = (1− ρ− φ)FR(t) + φ

t−1∑
t0=0

fF (t0)FL(t− t0)

This equation is resolved differently in the cases t = 1 and t > 1. For t = 1, it
simplifies to:

FL(1) = (1− ρ− φ)FR(1) + φfF (0)FL(1)⇒ FL(1) =
1− ρ− φ

1− φfF (0)
FR(1)



18 D. Lingrand, J. Montagnat, J. Martyniak, D. Colling

For t > 1, we can write:

FL(t) = (1− ρ− φ)FR(t) + φfF (0)FL(t) + φ

t−1∑
t0=1

fF (t0)FL(t− t0)

leading to:

FL(t) =
1

1− φfF (0)

[
(1− ρ− φ)FR(t) + φ

t−1∑
t0=1

fF (t0)FL(t− t0)

]

On the right side of this equation, the terms in FL are in the form FL(u) with
u ∈ [1 ; (t − 1)]. FL(t) can therefore be computed recursively. The complete
formula is given by equation 1:

FL(0) = 0

FL(1) =
1− ρ− φ

1− φfF (0)
FR(1)

FL(t > 1) =
1

1− φfF (0)

[
(1− ρ− φ)FR(t) + φ

t−1∑
u=1

fF (t− u)FL(u)

] (1)

4.2 Exploitation of the grid traces

Figure 8 displays the cdfs of several variables. FR and FF have been estimated
from the grid traces data. Equation 1 enables to compute FL, the cdf of successful
jobs including resubmission in case of failures. We clearly observe the impact of
failures in this latency L when compared to R. FL’s curve is lower: the probability
of achieving a given latency when faults occur is thus lower. In order to see more
precisely the impact of failures, we also plotted (1 − ρ)FR which corresponds
to the outliers and the successful jobs, ignoring failed jobs. This last curve is
slightly above FL: while L displays a probability of 50% for jobs to have a
latency lower than 761 seconds, it reduces to 719 seconds when ignoring failures
(or the difference of probability is 1% for the same latency value).

Having established the distribution properties of L, we will now focus on the
exploitation of the data for implementing a realistic resubmission strategy that
aims at reducing the latency experienced by users.

5 Resubmission strategy

5.1 Modeling

As seen in the previous section, the probability for a job to terminate before a
given instant t is given by FL(t). We consider the resubmission strategy devel-
oped in [13] where a job is canceled and resubmitted if its latency is higher than
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a given timeout value t∞ which value needs to be optimized. The work presented
in [13] was based on probe jobs that neglected faults (they were excluded from
the data) but some jobs did not return and were labelled as outliers. We denote
F̃R(t) the probability for a job to face a latency lower than t. When neglecting
faults, F̃R is related to the distribution of latency FR and the ratio of outliers:

F̃R(t) = (1− ρ)FR(t)

We denote J the total latency including resubmissions after waiting periods
of t∞. From [13], we can express the expected total latency EJ , considering
resubmissions at t∞ as:

EJ(t∞) =
1

F̃R(t∞)

∫ t∞

0

(1− F̃R(u))du (2)

Thanks to the more complete workload data studied in this paper, we can
refine the model by taking the latency for fault detections into account. We
thus consider the following resubmission strategy: jobs for which the latency L,
including resubmissions due to failures, is greater than a timeout value t∞ are
canceled and resubmitted. Observing that FL(t) corresponds to the probability
for a job to succeed with a latency lower than t, we can replace, in equation 2,
F̃R by FL:

EJ(t∞) =
1

FL(t∞)

∫ t∞

0

(1− FL(u))du (3)
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Minimizing this equation leads to the estimation of the optimal timeout t∞
value.

5.2 Experiments: taking into account faults in the model.

The profile of the expectation of the total latency, including all resubmissions and
computed from equation 3 is plotted in figure 9. The curve reaches a minimum
value EJ = 584s for an optimal timeout value t∞ = 195s.
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Fig. 9. Expectation of total latency with respect to timeout value t∞. The first curve
is obtained from equation 3. The result is compared with the case ignoring failures and
the case where failures are accounted as outliers.

Two others profiles are plotted for comparison. The first one is the case
ignoring the failures and corresponding to equation 2 with F̃R = (1 − ρ)FR. In
that case, the minimum is reached at t∞ = 191s, leading to EJ = 529s which is
under-evaluated.

The second comparison is performed with the assumption that failures can
be considered as outliers, thus leading to a total of 35% of outliers. In this case,
EJ reaches a minimum at t∞ = 185s, which is underestimated and conducts to
minimal value EJ = 704s, highly overestimated.

This experiment shows that taking into account a model of latency for faults
detection has an influence on the parameters for this particular resubmission
strategy.

5.3 Experiments: reducing the number of cases.

In section 3, we have retained the 37 most frequent cases, displayed in table 3.
Here, results obtained with different number of most frequent cases are com-
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pared, in order to measure the relevance of reducing the number of cases to be
taken into account. Figure 10 presents the variation of EJ with respect to the
timeout value t∞ for different numbers of most frequent cases. The optimal val-
ues of t∞ leading to minimal EJ values are given in table 4. We observe that
reducing the number of cases from 37 to 30 does not impact the results of the
resubmission strategy, showing that not taking care of all possible cases (315
cases) does not impact the final result, since we are considering the most fre-
quent ones. However, reducing the number to 20 or less cases impacts the final
result. In table 4, results concerning the model including faults and the previous
model without including faults are displayed. These results shows that reducing
the number of cases to less than 20 cases impacts more than not considering the
faults in the model.
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Fig. 10. Variations of the expected total latency (EJ) including resubmissions with
respect to the timeout value, for different number of cases from table 3. We observe no
visual difference between 37 and 30 cases. For less cases, we observe variations of EJ .

6 Conclusions and perspectives

Probabilistic models of the grid jobs latency enable us to capture the complex
behavior of grid workload management systems. The model proposed in this pa-
per relies on statistic collection of job execution traces in order to estimate the
cdf of several parameters stochastically modeled. As compared to previous work,
the model as been enriched to take into account normal operations, outliers and
faults, which frequency is high on grids and therefore significantly impacts job
execution time. The model is exploited to optimize a simple job resubmission
strategy that aims at optimizing applications performance using objective infor-
mation. The more jobs a grid application is composed with, the more it will be
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nb. of with faults (FL) without faults (F̃R)
cases opt. t∞ min. EJ opt. t∞ min. EJ

37 195s 584s 191s 529s
30 194s 584s 191s 529s
20 195s 577s 191s 524s
10 192s 558s 189s 530s
4 199s 606s 197s 570s

Table 4. Influence of the number of most frequent cases taken into account in the
model on the estimation of optimal timeout value (t∞) and minimal expectation of
total latency including resubmission (EJ). Comparison of the results in two cases: with
or without faults included in the model.

sensitive to such fault recovery procedures. In the future, more elaborate sub-
mission strategies commonly implemented on grids, such as multiple submission
of a same task, will be considered.

This paper also emphasizes on the practical difficulties encountered when
collecting and then exploiting traces on a large scale, heterogeneous production
grid infrastructure. The set up of a Grid Observatory with well established proce-
dures for traces collection, harmonization and curation is critical for the success
of such grid behavioral analysis. It will allow to focus on modeling and exper-
imentation without having to consider heavy-weight technical problems in the
context of each new study. In addition, the Grid Observatory ensures dense data
collection for accurate estimations without disturbing the normal grid operation.

The preliminary work detailed in this paper exploits a consistent but archived
set of traces for a posteriori analysis. In the future, the Grid Observatory is
expected to provide live information for tackling the non-stationarity of the grid
workload manager and enabling relevant estimate of the grid running conditions.
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