
Decentralized Grid Scheduling
with Evolutionary Fuzzy Systems

Alexander Fölling, Christian Grimme,
Joachim Lepping, and Alexander Papaspyrou

Robotics Research Institute, TU Dortmund University, 44221 Dortmund, Germany
email: {firstname.lastname}@udo.edu

Abstract. In this paper, we address the problem of finding workload
exchange policies for decentralized Computational Grids using an Evo-
lutionary Fuzzy System. To this end, we establish a non-invasive col-
laboration model on the Grid layer which requires minimal information
about the participating High Performance and High Throughput Com-
puting (HPC/HTC) centers and which leaves the local resource man-
agers completely untouched. In this environment of fully autonomous
sites, independent users are assumed to submit their jobs to the Grid
middleware layer of their local site, which in turn decides on the dele-
gation and execution either on the local system or on remote sites in a
situation-dependent, adaptive way. We find for different scenarios that
the exchange policies show good performance characteristics not only
with respect to traditional metrics such as average weighted response
time and utilization, but also in terms of robustness and stability in
changing environments.

1 Introduction

Modern science more and more relies on experimental scientific discovery made
with extensive simulations, and during the last decade, Grid Computing has
become the key infrastructure in academia to support this development. The
use of Grid Computing, however, is not anymore limited to HPC/HTC-centric
communities such as High Energy Physics, Astronomy, or Climate Research,
which have a certain tradition of using such infrastructures. Other sciences—e.g.
Financial Services, Construction Engineering, and even arts and humanities—
also start to adopt Grid Computing as a tool for e-Science, and show an ever-
increasing demand for computing power and storage space.

While well-established approaches such as the EGEE environment [6] have
relied on centralized middleware infrastructures for whole e-Science communi-
ties, other—mostly emerging—efforts have chosen a Service Grid approach with
smaller, more community-tailored Grids. In the latter case, however, a strong
demand for enabling collaboration and cooperation on the infrastructure layer
between the different communities and Grids can be observed.

A major issue in such collaborations is the possibility of inter-community
resource usage: Although most communities run their own data centers, working

together in an ad-hoc manner by allowing alien workload to be run on commu-
nity hardware is still a tedious task and usually requires resorting to 1980s-style
command line interfaces and undesirable micro-management. This is mainly due
to technical issues: Many e-Science infrastructures show a lack of standardiza-
tion, and therefore, collaborations between the workload gateways (usually Grid
schedulers or brokers) fail on a compatibility level. There are, however, also
organizational issues: Each community Grid strives for delivering the highest
possible Quality of Service to its own users and, as such, is only interested in
participating in joint efforts if they are beneficial for all participants likewise.

This last aspect is an open research problem in the field of Grid scheduling,
see Grimme et al. [7, 8]: algorithms for the exchange of workload between differ-
ent Grid communities—with respect to common performance metrics—have to
perform at least as good as in the non-cooperative case. Otherwise, the motiva-
tion for participating in a HPC/HTC federation, vanishes quickly, since one of
the participating user communities will suffer from the collaboration. Here, we
can identify four important properties for such algorithms:

– Support for environments with very strict information policies: Although
almost every Grid provides various kinds of information services, data re-
garding the machines themselves such as their current or overall utilization,
average response times, or throughput is often kept confidential due to com-
petition reasons.

– Strict separation from local resource management systems (LRMS): Machine
owners usually have their own operational policies implemented on their
systems and obviously are not willing to cease control over the machines
they are obliged to fund.

– Situation-dependent, adaptive decision-making: The current state of the sys-
tem is crucial when deciding on whether to accept or decline foreign work-
load, e.g. allowing for additional remote jobs if the local system is already
highly loaded seems to be inappropriate.

– Robustness and stability in changing environments: Even with respect to fu-
ture, still unknown (and usually unpredictable) job submissions, it is crucial
that aspects such as complete site failures or even rogue participants are
handled gracefully with respect to the own and overall performance.

In the work at hand, we address these properties using a Fuzzy based ap-
proach for job exchange in Computational Grids, where the controller acts de-
pending on the current system state. The states are modeled by Fuzzy sets
which are represented by simple membership functions. Such Fuzzy System based
scheduling techniques have been successfully applied to online scheduling prob-
lems before, see for example Franke et al. [4]. They outperform most static
scheduling heuristic due to their ability to flexibly adapt decisions to changing
environments. As they have proven to be a reliable concept to tackle challenging
online scheduling problems, we decide to also apply them in the Grid context. In
order to establish good rules for the Fuzzy System, we furthermore use evolution-
ary algorithms for finding parameterization of the Fuzzy membership functions.
This approach is especially suitable because of the possibility to find a simple

and efficient encoding of the whole controller. This combination of Fuzzy Sys-
tems and evolutionary algorithm is commonly denoted as Evolutionary Fuzzy
Systems, see Cordón et al. [1]. We show that our approach, while respecting the
aforementioned requirements for Grid scheduling algorithms, shows adequate
performance characteristics in real setups.

The remainder of the paper is organized as follows: In Section 2, we establish
the basis for understanding our model, algorithm, and optimization. We then
introduce our system model in Section 3 and our Fuzzy Grid Scheduling approach
in Section 4. After discussing tools for performance measurement in Section 5,
we depict the evolutionary learning of rule sets in Section 6. Next, we evaluate
our approach with respect to adaptiveness in a Grid federation in Section 7
and robustness in unknown environments in Section 8 and conclude our work
Section 9.

2 Background

This section briefly introduces the basics of job scheduling on Massively Parallel
Processing (MPP) systems, Evolutionary Fuzzy Systems, and evolutionary al-
gorithms. These definitions and tools are applied throughout the paper to easily
describe the used Grid architecture as well as the proposed approach for realizing
job migration.

2.1 Job Scheduling for MPP Systems

The scheduling of MPP systems is an online problem as jobs are submitted
over time and the precise processing times of those jobs is unknown in advance.
Furthermore, information about future jobs are not available. We assume inde-
pendent rigid parallel batch jobs for our analysis, which are dominant on most
parallel computer systems. Those jobs are neither moldable nor malleable and re-
quire concurrent and exclusive access to the requested resources. Formally, each
job j is characterized by its degree of parallelism mj and its processing time pj .
Although many additional criteria are conceivable, see Feitelson et al. [3], we
restrict ourselves to only those two required job properties.

During the execution phase, job j requires the concurrent and exclusive access
to mj ≤ mk processing nodes with mk being the total number of nodes on the
MPP system at site k. The number of required processing nodes mj is available
at the release date rj of job j and does not change during the execution. As
the network does not favor any subset of the nodes and all nodes of a parallel
computer system are either identical or very similar, we assume that a job j can
be processed on any subset of mj nodes of the system.

Further, most current real installations of parallel computers do not use pre-
emption but let all jobs run to completion. The completion time of job j within
the schedule S is denoted by Cj(S).

2.2 Evolutionary Algorithms

Optimization algorithms that mimic the natural process of Darwinian evolution
are widespread in computer science and often applied for parameter optimization
when the fitness landscape of the optimization problem is unknown.

A specific type of these algorithms—Evolution Strategies [11]—operate on
a population of µ individuals, where each individual represents a real-coded
solution to the given optimization problem. These approaches apply variation
operators like mutation (a random change in genome) and recombination (com-
bining two or more parent individuals’ genomes) to breed λ offspring individuals
from those µ parental individuals, followed by a global selection process in which
the individuals compete against each other to form the new µ parents for the
next generation. The above described evolutionary loop is executed until a given
termination criterion, like a fixed number of generations or a quality level within
the objective space, is satisfied. Two versions of Evolution Strategies are distin-
guishable: In the (µ, λ)-strategy, the next parent generation is selected just from
the offspring individuals while the (µ + λ)-strategy selects the best individuals
of both the parent and offspring generations. All other individuals are removed
from the system and the next loop iteration starts.

2.3 Evolutionary Fuzzy Systems

Since their conceptualization in the early 1960s Fuzzy Systems have been widely
and successfully applied to various areas like for example control systems or clas-
sification. Especially in control systems, they are particularly suited for the rep-
resentation of problem specific knowledge, as imprecision or vague descriptions
are common properties of expertise. Currently, many decision making methods
(e.g. in the fields of resource management or robot behavior) solve problems
in a heuristic fashion. They give advices for actions in certain—often fuzzy
described—situations that have turned out to be profitable with respect to a
given objective. Such a collection of situation-dependent expertise is called a
knowledge base.

There are several advantages to represent a knowledge base by Fuzzy logic
within a Fuzzy System: The interpolative nature of Fuzzy Systems has the ability
to express partial and concurrent activations of behaviors and gradual transitions
between them. Further, the behavior can be conveniently synthesized by a set of
IF-THEN rules using linguistic terms to encode the expert knowledge. Finally,
due to its approximate reasoning capabilities, Fuzzy logic produces controllers
that are robust to uncertainty and imprecision. Especially, the latter property
is of great importance for the problem addressed in this paper, as we aim to
produce robust exchange mechanisms within changing environments.

However, one of the major drawbacks of classic Fuzzy Systems is their missing
learning ability. They always require a existing knowledge base that has to be
derived from experts knowledge which is often called training data. In many
cases, that data is not available and the design of Fuzzy Systems is not possible
at all. Also for the problem at hand we cannot revert to any kind of training

data. Therefore, we employ an evolutionary learning process to automate the
Fuzzy System design.

Evolutionary Fuzzy Systems are Fuzzy Systems derived and optimized by an
evolutionary learning process without any required a priori knowledge. For these
systems, an evolutionary algorithm is employed to learn or tune different com-
ponents. They are always applied, if neither expert knowledge nor training data
is available or cannot be transformed directly into corresponding rules. Those
algorithms do not require particular knowledge about the problem structure and
can be applied to various systems.

3 System Model

The problem of job distribution between federated compute clusters has been
continuously studied since the emergence of Grid computing in the beginning
of the 1990s. Early approaches favor a hierarchical scheduling structure, where
a central scheduler instance—often called Meta-Scheduler, Grid Scheduler, or
Broker—delegates submitted jobs to subordinated partner sites [10]. The most
profound problem of this scheduling structure is its bad fault-tolerance and lack
of scalability.

With respect to the basic parameters of modern e-Infrastructures regarding
organizational autonomy and equity, we therefore assume our Computational
Grid as a loose cooperation between different HPC centers—further referred to
as sites—and consider Massively Parallel Processing (MPP) systems as their ba-
sic entities. For every MPP entity we assume an own local user demand for com-
putational resources which is reflected by the sites’ originating workload. This
includes the submission characteristics, but also the adaptation of the submitted
jobs’ resource demand to the local configuration. This scenario is based on the
perception that, as a general rule, Grid environments are not build from scratch,
but emerge from collaborations between different organizational domains, each
of which already operating one or more MPP systems for internal purposes, in
order to serve a prescribed, project-driven community of users.

More formally, a Computational Grid consists of |K| independent sites. Each
site k ∈ K is modeled by mk parallel processors which are identical such that
a parallel job can be allocated on any subset of these machines. Splitting jobs
over multiple sites (multi-site computation) is not allowed. Moreover, we assume
that all sites only differ in the number of available processors, but not in their
speed: As we focus on the job exchange algorithms, the differences in execution
speeds can be neglected, see Schwiegelshohn et al. [12].

The workload management within the infrastructure is conducted by a two-
tier middleware, see Figure 1, comprising a Local Resource Management Sys-
tem (LRMS) and a Grid Resource Management System (GRMS) on each site.
While the LRMS takes care of assigning workload to resources for the local site
only, the GRMS decides on the delegation of jobs from and to the site. Users
submit their workload to the local site in the same manner as on classic LRMS

Fig. 1. Computational Grid scenario with independent sites in a federated environment

systems; a small submission component intercepts those and forwards them to
the local GRMS for further inspection.

That is, jobs that are submitted to the local site scheduler may not be ac-
cepted for execution elsewhere because of their resource demand being oversized
for some or all of the other sites. Ignoring the inter-site collaboration for a mo-
ment, we describe the local scheduling problem on MPP systems in the next
paragraph.

3.1 LRMS Layer

The Local Resource Management System (LRMS) layer consists of a waiting
queue and a scheduler. The waiting queue stores all locally submitted jobs while
the scheduler executes a specific scheduling strategy in order to assign jobs from
the waiting queue onto the available local resources. On MPP system layer, this
approach allows the realization of priorities for jobs of different user groups.

Usually, the scheduling strategies are formulated by the system provider to ful-
fill the users’ needs. Although many special-purpose algorithms exists that are
tailored for certain MPP system owner priorities, we use the basic and simple
First-Come-First-Serve (FCFS) algorithm as an example on LRMS. The heuris-
tic starts the first job of the waiting queue whenever enough idle resources are
available. Despite the very low utilization that is produced in the worst case this
heuristic works well in practice [13]. Please note that our job exchange method-
ology is not restricted to any kind of local scheduling algorithm but it serves for
any arbitrary scheduling algorithm on the LRMS layer.

3.2 GRMS Layer

The Grid Scheduling Resource Management System (GRMS) extends every site
by an additional layer on top of the LRMS, see Figure 1. The GRMS accepts
locally submitted jobs on behalf of the underlying LRMS. The actual exchange
behavior is realized exclusively by the GRMS and due to this strict layered
architecture the LRMS is kept completely unmodified. Both removal of jobs
from LRMS queues as well as any kind of intervention in the local scheduling
process is prohibited. Furthermore, the GRMS is transparent to local users and
the LRMS. From the users point of view, all submitted jobs are executed on
the local site, whereas each LRMS considers every job as a locally submitted
independent of its origin. Decisions about a job’s delegation to another GRMS
or local scheduling is made by a deployed exchange policy.

This exchange policy can be differentiated into two independent policies:

Location Policy
This policy becomes relevant if more than one exchange partner is available
in the Grid. Thus, there exists more than one possibility to delegate a job to
a remote Grid participant. For such scenarios, the location policy determines
as a first step the sorted subset of possible delegation targets À, see Figure 2.

Transfer Policy
After the location policy has been applied the transfer policy specifies whether
a job should be delegated to a certain partner or not. For this purpose the
policy is applied separately on each partner in an redetermined order. Every
time the transfer policy is consulted it decides whether the job should be ex-
ecuted locally Á or delegated to the considered partner Â. In the first case,
the job is sent to the remote LRMS Ã and in the other case the considered
partner is requested for a job’s acceptance. A request can be replied in two
different ways:
1. The job is accepted by the remote partner Ä. In this case, the job is

delegated to this partner and no other further delegation attempts have
to be made.

2. If the acceptance is declined the transfer policy is applied for another
partner in the Grid Å. This iterative procedure is continued until all
partners have been requested. If none of the Grid participants is willing
to accept the job, the requesting site must execute it locally Æ, Ç, and Ã.

Location Policy

Transfer Policy Transfer Policy

Deliver job to LRMS

[accept]

delegation attempt

Decline of

remote job

[try to delegate job]

[execute locally]

[decline]

Local Job

Offer

Remote Job

Offer

[decline]

[accept]

[no partner

accepted]

[at least one

partner has job accepted]

[site left]

[no site left]

1

2

3

4

5

6

7

8

9

10

Fig. 2. Decision making concept at GRMS layer

Further, the transfer policy has to decide about jobs that are offered from
remote sites and can choose between accepting or declining a job offer. In
the former case, the job is immediately forwarded to the LRMS È, while it
is rejected in the latter case É.

4 Fuzzy System Based Grid Scheduling Approach

For the design of our GRMS decision policy we apply the method of Fuzzy
inference proposed by Takagi, Sugeno and Kang, which is known as the Takagi-
Sugeno-Kang (TSK) model in Fuzzy Systems literature [14].

Such a decision policy is founded on a set of rules. Each specific rule describes
a system state in which decisions about the acceptance or refusal of jobs must be
made. Thus, each system state is described by a set of features. From the different
parts of the overall system various state describing features are conceivable. They
might be related to the current state of the LRMS layer or to the currently job

to decide. Please note that information about remote sites’ systems states is
assumed strictly classified.

Following the Fuzzy rule concepts, a rule consists of a feature describing
conditional part and a consequence part that decides on the acceptance or decline
of an offered job. The so composed rule base constitutes the core of the rule
system that can therefore be considered as a controller. The current system
is checked whenever a new job has been submitted to the local system or has
been offered from remote sites. In all those cases the current system state might
change and the controller output has to be changed if necessary. The controller
concept is described in the next paragraph.

4.1 Fuzzy System for Decision Making

The general TSK model consists of Nr IF-THEN rules Ri such that

Ri := IF x1 is g(1)
i and . . . and xNf

is g(Nf)
i

THEN yi = bi0 + bi1x1 + . . .+ biNf
xNf

(1)

where x1, x2, . . . , xNf
are input variables and elements of a vector x, and yi are

local output variables. Further, g(h)
i is the h-th input Fuzzy set that describes the

membership for a feature h. Thus, system state is described by a number of Nf
features. The actual degree of membership is computed as function value of an
input Fuzzy set which is characterized for example by a Gaussian Membership
Function (GMF). The here used Fuzzy sets are explained in the next section.
Furthermore, bih are real valued parameters that specify the local output variable
yi as a linear combination of the input variables x. The overall output of the
system yD(x) is computed by Equation 2.

yD(x) =

Nr∑
i=1

φi(x)yi

Nr∑
i=1

φi(x)
=

Nr∑
i=1

φi(x)(bi0 + bi1x1 + . . .+ biNf
xNf

)

Nr∑
i=1

φi(x)
(2)

where φi(x) is the degree of membership of rule Ri for a given input vector x,
which is defined as

φi(x) = g
(1)
i (x1) ∧ g(2)

i (x2) ∧ . . . ∧ g(Nf)
i (xNf

) (3)

Each rule’s recommendation is weighted by its degree of membership with re-
spect to the input vector x. The corresponding output value of the TSK-System
is then computed by the weighted average output recommendation over all rules.
In the following, we explain how this very general model is adapted to the here
addressed problem of decision making. The specific coding of rules and the out-
put computation will be detailed in the following paragraphs.

4.2 Encoding of Rules

For a single rule Ri every feature h of all Nf features is modeled by a (γ(h)
i , σ

(h)
i)-

Gaussian Membership Function (GMF)1 with no normalization as shown in
Equation 4.

g
(h)
i (x) = exp

−(x− γ(h)
i)2

σ
(h)
i

2

 (4)

This function is completely described by defining the γ(h)
i and σ

(h)
i values. The

γ
(h)
i -value adjusts the center of the feature value, while σ(h)

i models the region
of influence for this rule in the feature domain. In other words, for increasing
σ

(h)
i values the GMF becomes wider, while the peak value remains constant at

1. Using this property of a GMF we are able to steer the influence of a rule for
a certain feature by σ(h)

i .

ã1
(1) ó1

(1) ã1
(2) ó1

(2) ã1
(Nf) ó1

(Nf)…

ã2
(1) ó2

(1) ã2
(2) ó2

(2) ã2
(Nf) ó2

(Nf)…

y1

y2

R1

R2

…

RNr

R1 R2 R3 RNr
…

Rule Base

1/-1

1
(1)

1
(1)

1
(2)

1
(2)

1
(Nf)

1
(Nf)…

2
(1)

2
(1)

2
(2)

2
(2)

2
(Nf)

2
(Nf)…

y1

y2

R1

R2

…

RNr

R1 R2 R3 RNr
…

Rule Base

1/-1

Fig. 3. Encoding pattern for single rules and construction concept for a whole rule
base using concatenation.

Using this GMF as membership function a feature can be coded as a pair
of real values γ(h)

i and σ
(h)
i following the approach of Juang et al. [9].Using

this feature description, a single rule’s conditional part is composed as shown
in Figure 3. For the consequence part, the general model in Equation 2, can
be simplified as we have to deal with binary decisions only. Dependent on the
current system state, the Fuzzy decision maker has to decide whether to accept
an offered job or not. Thus, we represent the acceptance of a job by an output
value of 1 and the corresponding refusal of a job by -1. With this binary decision
1 Different from the common notation we denote the mean of the GMF by γ to avoid

conflicts with the parental population size of Evolution Strategies which is in this
paper denoted by µ.

concept, all weights except bi0 in Equation 2 are set to 0 and the TSK model
output becomes yi = bi0. As we have to decide between the acceptance/decline
of a job offer, the output values for a rule Ri can be chosen as

yi =

{
1, if job is accepted
−1, otherwise

(5)

This scheme allows the encoding of a single rule by a string of 2 · Nf real-
valued and one integer variable, see Figure 3. The whole rule base is encoded by
concatenation of single rules. A whole rule base consisting of Nr rules is therefore
entirely described by a set of

l = Nr(2 ·Nf + 1) (6)

parameters, see Equation 6. This encoding scheme is perfectly suited as individ-
ual representation within an evolutionary algorithm where individuals have the
length l.

4.3 Computation of the Controller Decision

To determine the actual controller output for a set of input states x the su-
perposition of all degrees of memberships for a single rule Ri is computed first.
For each rule Ri a degree of membership g

(h)
i (xh) of the h-th of all Nf features

is determined for all h. This value is computed as the function value of the h-
th GMF for the given input feature value xh. According to the general model,
see Equation 3, the multiplicative superposition of all these values as ”AND”-
operation leads to an overall degree of membership φi(x) for rule Ri as shown
in Equation 7.

φi(x) =
Nf∧
h=1

g
(h)
i (xh) =

Nf∏
h=1

exp

{
− (xh − γ(h)

i)2

σ
(h)2

i

}
(7)

Further, the final controller output YD can be computed by considering the
leading sign only, see Equation 8,

YD = sgn(yD(x)) (8)

where a positive number again represents the acceptance of the job and a neg-
ative values the decline. Note that the value zero corresponds to a decline as
well.

The TSK-model allows including an arbitrary number of features as con-
troller input. Thus, it is possible to achieve a preferably accurate state descrip-
tion. However, this would increase the number of adjustable system parameters
drastically as each feature requires an additional (γ, σ)-pair per rule. As the pro-
posed Fuzzy system is going to be optimized with an evolutionary algorithm the
number of system describing parameters must be kept as small as possible as

every additional parameter increases the search space of the optimization prob-
lem and might deteriorate the solution quality. Thus, we restrict ourselves to
only two features for the system state description and detail them in the next
paragraph.

4.4 Feature Selection for System State Description

For the description of the current system state we rely on only Nf = 2 different
features that will constitute the conditional part of a rule. We denote jobs that
have been inserted into the waiting queue ν at site k as j ∈ νk. In order to
cover comprehensive system information with only a single feature we consider
the Normalized Waiting Parallelism at site k (NWPk) as the first feature, see
Equation 9.

NWPk =
1
mk

∑
j∈νk

mj (9)

This feature indicates how many processors are expected to be occupied by all
submitted jobs (note that the number of requires processors mj is known at
release time) related to the maximum number of available processors mk at
site k. It reflects the efficiency of the currently running LRMS and measures the
near future expected load of the machine.

The second features focuses on the actual job that has to be decided. The
ratio of a job’s resource requirements mj and the maximum number of available
resources mk at the job’s submission site k is expressed by the Normalized Job
Parallelism (NJP), see Equation 10.

NJPj =
mj

mk
(10)

With those two selected features we approximate every possible system state.

4.5 Configuration of the Evolutionary Fuzzy System

Before we present the evaluation results the configuration of the Evolutionary
Fuzzy System and the further evaluation circumstances are detailed. We generate
our Evolutionary Fuzzy Systems with a fixed number of Nr = 10 rules. Previous
studies of Franke et al. [5] revealed that rule bases consisting of five to ten rules
yield good results. As we encode the whole rule base in one individual, we have
to optimize a problem with Nr · (Nf · 2 + 1) = 10 · (2 · 2 + 1) = 50 parameters,
see Equation 6.

For the tuning of the Fuzzy System we apply a (µ + λ)-Evolution Strategy.
During the run of 150 generation a continuous progress in fitness improvement
is observable. As recommended by Schwefel [11], the ratio of µ/λ = 1/7 should
be used for Evolution Strategies. We created a parent population of µ = 13
individuals which results in a children population of λ = 91 individuals. Hence,
91 individuals must be evaluated within each generation.

For the variation operators we used further the following configurations: The
mutation is performed with an individual mutation step-size for each feature.
As the two features vary in they possible value range by a ratio of 1:10, see
Section 4.4, we used a mutation step-size of 0.01 for NWP and 0.1 for NJP
respectively. This mutation is applied for the conditional part of the rule as they
are real values. For the binary consequence part we mutate values by flips from -1
to 1 or vice versa. Further, we apply discrete recombination in each reproduction
step.

The population is uniformly initialized within the ranges [0, 10] for the (γ, σ)-
values of NWP and [0, 100] for NJP respectively. As the fitness evaluation of an
individual is quite time consuming (from several minutes up to half an hour) we
evaluated the whole population in parallel on a 200 node cluster with Pentium
IV, 2.4Ghz machines.

5 Performance Evaluation

In order to evaluate the performance of our approach in the given scenario, we
introduce the tools we use for assessing the optimized exchange policies against
a realistic background. To this end, we define several well-known performance
indicators for job scheduling in the context of Grid computing, both from the
users’ and the providers’ point of view. Additionally, we discuss the workload
traces we use as input data that are derived from real-world setups.

5.1 Average Weighted Response Time

This objective is computed for all jobs j ∈ τk that have been initially submitted
to site k, see Equation 11. It is widely agreed that a short AWRT is the best way
to describe that on average users do not wait long for their jobs to complete.
Following Schwiegelshohn and Yahyapour [13], we use the resource consumption
(pj ·mj) of each job as weight. This ensures that neither splitting nor combination
of jobs can influence the objective function in a beneficial way.

AWRTk =

∑
j∈τk

pj ·mj · (Cj(S)− rj)∑
j∈τk

pj ·mj
(11)

Note that this also respects the execution on remote sites and, as such, the
completion time Cj(S) refers to the site that executed job j.

5.2 Squashed Area and Utilization

The first two objectives are Squashed Area SAk andUtilization Uk, both specific
to a certain site k. They are measured from the start of the schedule Sk, that is
minj∈πk

{Cj(Sk)−pj} as the earliest job start time, up to its makespan Cmax,k =

maxj∈πk
{Cj(Sk)}, that is the latest job completion time and thus the schedule’s

length.
SAk denotes the overall resource usage of all jobs that have been executed

on site k, see Equation 12.

SAk =
∑
j∈πk

pj ·mj (12)

Uk describes the ratio between overall resource usage and available resources
after the completion of all jobs j ∈ πk, see Equation 13.

Uk =
SAk

mk ·
(
Cmax,k − min

j∈πk

{Cj(Sk)− pj}
) (13)

Uk describes the usage efficiency of the site’s available machines. Therefore, it is
often serving as a schedule quality metric from the site provider’s point of view.

However, comparing single-site and multi-site utilization values is forbidden:
since the calculation of Uk depends on Cmax,k, valid comparisons are only ad-
missible if Cmax,k is approximately equal between the single-site and multi-site
scenario. Otherwise, high utilizations may indicate good usage efficiency, al-
though the corresponding Cmax,k value is very small and shows that only few
jobs have been computed locally while many have been delegated to other sites
for remote execution.

As such, we additionally introduce the Change of Squashed Area ∆SAk, which
provides a makespan-independent view on the utilization’s alteration, see Equa-
tion 14.

∆SAk =
SAk∑

j∈τk

pj ·mj
(14)

From the system provider’s point of view this objective reflects the real change of
the utilization when jobs are shared between site compared to the local execution.

5.3 Input Data

The Parallel Workloads Archive2 provides job submission and execution traces
recorded on real-world MPP system sites.Relevant details of the examined cleaned
traces are given in Table 1.

Naturally, the total number of available processors differs in workloads which
makes it possible to model unequally sized site configurations. Further, the orig-
inal workloads record time periods of different length. In order to be able to
combine different workloads in a multi-site simulations and to have a validation
set available, we shortened and separated the workloads to set of five and six
month respectively. To reflect different site configurations (e.g. small machine
and large machine) we combine only workloads that represent a long record pe-
riod to obtain meaningful results. Therefore, we created shortened versions of
2 http://www.cs.huji.ac.il/labs/parallel/workload/.

Identifier #Jobs mk AWRT U Cmax

KTH-5 11780 100 488387.49 64.84 13765377

KTH-6 16699 100 99236.27 68.52 16420782

CTC-5 35360 430 57897.77 63.74 13009718

CTC-6 41839 430 59118.15 67.05 16346403

SDSC05-5 28184 1664 56925.10 45.94 13078215

SDSC05-6 46719 1664 77463.52 70.97 16419455

SDSC00-6 16316 128 413957.04 73.38 17002360
Table 1. Workload characteristics of the used input data, including AWRT in seconds,
U in %, and Cmax in seconds for single site execution with FCFS.

the KTH, CTC, and SDSC05 workloads3. In the remainder of this work, the
five month sequence will serve as training sequences for the Evolutionary Fuzzy
Systems. The six month sequences are then used for application tests. In this
context, the SDSC00-6 trace will only be used to investigate the behavior of the
trained system when an previously unknown partner participates in the system.
Thus, we created no five month training sequence of the SDSC00 workload. It
is important to mention that the here described data only serve as simulation
input and do not contain any additional information concerning Fuzzy Systems
(e.g. knowledge base, see Section 2.3).

We do not shift the traces regarding their originating timezones. We restrict
our study to workloads which are all submitted within the same timezone. There-
fore, the known diurnal rhythm of job submission is similar for all sites in our
scenario and time shifts cannot be availed to improve scheduling. In a global grid
the different timezones even benefit the job scheduling as idle machines at night
can be used by jobs from peak loaded sites at noon, see Ernemann at al. [2].
As we cannot benefit from timezone shifts the presented results might be even
better in a global grid.

We simulated the workload on their original machines with a LRMS that
applied FCFS, see Section 3.1 for the local scheduling. The results for the above
described performance metrics as well as other relevant job characteristics are
listed in Table 1. We will refer to this non-cooperative case for the matter of
comparison in the rest of this paper.

6 Learning a Basic Rule Set

So far, we presented our Fuzzy controller concept at the GRMS layer, explained
how the complex decision making process can be adjusted by a set of parameters,
and discussed metrics and test data for the system’s performance evaluation.
Now, we will introduce the learning process of rule sets for the Fuzzy system,
detail the evolution-driven optimization procedure, and present corresponding
results.
3 http://www.it.irf.uni-dortmund.de/˜lepping/traces/.

Starting with no rule set at all, we need to bootstrap the system: A first,
basic set of rules has to be learned. Although it is generally necessary to create
rule sets for both location and transfer policy, see Section 3.2, we start with
a pair-wise training approach in order to reduce other partners’ influences as
much as possible. To this end, we limit job exchange to a single partner only—
thus needing no location policy at all—and concentrate on the optimization
of the transfer policy. Furthermore, we evolve only one site at a time while
applying a static transfer policy on the other site. This policy realizes an Accept
When Fit (AWF) behavior, which accepts all jobs offered to the GRMS layer
for local execution if they do not require more than the currently free resources.
Otherwise, the job is offered to the other participants.

The motivation for using a static transfer policy for the training partner
and refraining from developing both sites together lies in the application of
evolutionary optimization methods: A simultaneous training of two rule bases
would lead to a mutual adaption of both training partners. This however, would
result in an environment subject to continuous change, making an evolutionary-
guided adaptation very difficult: A rule base that leads to good results during one
generation might fail completely in the next generation if the partner site changes
its behavior completely, too. The aspired robustness in changing environments
will be achieved by additional refinements of the concept in the next sections.

6.1 Results for Training Sequences

The training results are listed in Table 2; gray-shaded lines indicate the evolved
site while the other lines indicate the static site as described above. As expected,
the optimization leads to significant improvements of the AWRT in all examined
setups.

Setup Site AWRTk Uk ∆AWRTk ∆Uk ∆SAk ∆Cmax,k

I
KTH-5 66100.77 sec. 35.33% 86.47% -45.51% -48.56% 5.60%
CTC-5 63534.29 sec. 71.40% -9.74% 12.01% 12.15% -0.14%

II
KTH-5 62884.33 sec. 73.00% 87.12% 12.58% 6.40% 5.49%
CTC-5 54745.53 sec. 62.70% 5.44% -1.64% -1.60% -0.05%

III
KTH-5 59409.60 sec. 45.15% 87.84% -30.36% -34.04% 5.28%
SDSC05-5 58799.15 sec. 47.34% -3.29% 3.06% 3.04% 0.01%

IV
KTH-5 70561.62 sec. 53.39% 85.55% -17.66% -21.75% 4.97%
SDSC05-5 54773.39 sec. 46.85% 3.78% 1.98% 1.94% 0.02%

V
CTC-5 45997.73 sec. 58.55% 20.55% -8.14% -8.15% 0.01%
SDSC05-5 57013.44 sec. 47.27% -0.16% 2.90% 2.91% -0.02%

VI
CTC-5 57069.59 sec. 63.30% 1.43% -0.69% -0.51% -0.20%
SDSC05-5 49916.01 sec. 46.04% 12.31% 0.22% 0.18% 0.02%

Table 2. Results for the pair-wise rule base training. The gray shaded rows indicated
the optimized rule base.

This results in larger AWRT for the partner site that does not adapt its
behavior. For instance in Setup I, the AWRT improves by 86.47% compared to
FCFS, see Table 1, while the AWRT for the CTC worsens for almost 10%. Note
that this corresponds to a strong shift of work as the Squashed Area (∆SA)
is 48.56% lower for the KTH and approximately 12% higher on the CTC site.
However, when the focus is changed, see Setup II, and CTC is optimized we
achieve also improvements of 5.44% for AWRT and slight load relief for the
CTC site. Besides that, the AWRT is still significantly improved in Setup II
although we do not focus on the KTH. This is due to the worse performance in
the non-cooperative case and indicates that Grid computing is for this site very
advantageous.

Furthermore, in Setup III and IV the small KTH interacts with the very large
SDSC05 compute center and naturally the KTH benefits from more available
resources. It is remarkable that also the SDSC05 can improve its AWRT for
more than 3%, see Setup IV. At the same time, the Squashed Area is slightly
increased which indicated that an improvement in AWRT is not necessarily
caused by smaller utilization.

When the CTC interacts with a large compute center, see Setup V, the CTC
also strongly benefits as its AWRT is decreased by more than 20%. Likewise,
the SDSC05 can benefits from the cooperation with a medium size compute
installation like the CTC, see Setup VI.

6.2 Robustness of Trained Rule Sets

To test the robustness of the pair-wise learned rule bases, we apply them to the
6 month workloads within the same setups. To this end, only two site Grids are
considered and every partner applies its egoistically learned rule base. Note that
AWF is not used in these scenarios anymore.

In Figure 4(a), the changes in AWRT and SA are depicted when both partners
apply their learned rule bases to previously unknown job submissions.

-10.00

-5.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

Im
p

ro
v

em
en

ts
in

%

AWRT-RB

SA

KTH-6 CTC-6

KTH-6 SDSC05-6

SDSC05-6CTC-6

(a) Application to non-trained data sets.

-15.00

-5.00

5.00

15.00

25.00

35.00

Im
p

r
o
v
e
m

e
n

ts
in

%

AWRT for RB

AWRT for AWF

KTH-6 CTC-6 KTH-6 SDSC05-6 CTC-6 SDSC05-6

(b) RB approach compared to AWF.

Fig. 4. AWRT and SA improvements for the optimized rule sets.

Obviously, the Evolutionary Fuzzy Systems still decrease the AWRT signifi-
cantly in all cases. This indicates a high robustness with respect to submission
changes.

Further, we show in Figure 4(b) the AWRT improvements in comparison to
the AWF transfer policy. Although AWF performs good for KTH and leads to
slight improvements for SDSC05 it completely fails for the CTC workload trace.
However, the rule based transfer policy outperforms AWF in all cases and leads
even to shorter AWRT values for the SDSC05 together with the much smaller
KTH.

7 Coping with more than one partner

After setting up the basic rule sets for job exchange in a controlled environment
with a single partner, we now focus on the applicability of the rule bases in a
Grid scenario with more participants. To this end, KTH, CTC, and SDSC05
are combined and the unknown submissions from the remaining six month of
the traces are used. This time, however, a location policy needs to be applied in
order to prioritize the options of delivering jobs to another participant.

7.1 An AWRT-based Location Policy

In order to create a prioritization of the available potential delegation targets we
follow a two-step approach. As first step, we generate the subset of sites that in
total provide enough machines to execute the job. That is, we sort out all sites
with mk < mj ∀ k ∈ K.

As second step the generated subset is sorted according to their former
achievement with respect to a delegation source. Good achievements can be
measured by short AWRT of jobs on the corresponding sites. For the here pro-
posed location policy, a site calculates the AWRT metric with respect to every
exchange partner. To this end, only jobs are considered that have been deliv-
ered to the corresponding partner. The AWRT indicates how long the delegation
source had to wait for the completion of its delivered jobs in the past. This met-
ric is based on the assumption that a short AWRT for delivered jobs in the past
is expected to yield also short AWRT values for future delegated job.

7.2 Results for Multiple Partners

The results in Figure 5(a) clearly indicate that the AWRT is still significantly
improved for all sites while the utilization decreases for the small partner. How-
ever, although the CTC and SDSC05 are slightly more utilized it does again
improve their objective values.

8 Coping with Alien Partners

Until now, our learning approach was suited to generate a pool of rule bases for
partners that are known in advance. This, however, requires knowledge about
the submitted workload in order to tune the transfer policies. With respect to
the robustness requirement, we therefore extend our approach to being able to
perform well in an environment with previously unknown Grid participants. This
requires the automatic adjusting of transfer behavior to partners that were not
part of a training scenario.

8.1 Selection of Rule Base

As mentioned in Section 3.2, the rule based transfer policy is applied to each
partner site separately. If a new partner arises a transfer policy has to be selected
from the pool of all learned transfer policies. To identify the best suitable transfer
policy we assume a correlation between delegation targets’ maximum amount of
available resources and their transfer behavior. We conjecture that the behavior
within the grid mainly depends on a site’s resource number. Thus, we categorize
the various trained rule bases by the machines sizes they belong to. Among the
whole trained pool of transfer policies the best fitting one, with respect to the
number of maximum available resources, is selected to make the decision for a
submitted job.

8.2 Results for Alien Partners

Finally, we investigate the performance of the rule base selection concept and
add the SDSC00 as a site with mk = 128 processors to the Grid. Following the
rule base selection concept, every site uses the KTH learned rule base for the
interaction with SDSC00 as it has the greatest similarity with respect to the
machine size. The SDSC00 site, in turn, uses AWF for exchange purpose.

In Figure 5(b) the results for interaction with three other partners are de-
picted and, again, we observe strong AWRT improvements. Similarly to the
KTH, also SDSC00 shows a poor performance for exclusive single site execu-
tion. Therefore, there is a high potential to improve the AWRT. However, it is
important to see that not only this partner can improve its AWRT but also other
participants are able to improve their AWRT for at least 10%.

Summarizing, the learned Evolutionary Fuzzy Systems realize a beneficial job
exchange for several cooperative computing environments. The examined Grid
sizes range from two to four sites and include unknown job submissions as well as
previously unknown Grid participant. In all cases, the AWRT can be significantly
decreased which results in improvements of about 10%-20% for large sites and
40%-80% for larger sites. It has been shown, that the job exchange policies
show a strong robustness with respect to both new sort of job submissions and
environmental changes.

-25.00

-15.00

-5.00

5.00

15.00

25.00

35.00

45.00

Im
p

ro
v
em

en
ts

in
%

AWRT

SA

KTH-6 CTC-6 SDSC05-6

(a) Three-site Grid scenario

-20.00

0.00

20.00

40.00

60.00

80.00

Im
p

r
o
v
e
m

e
n

ts
in

%

AWRT

SA

KTH-6

SDSC00-6 CTC-6 SDSC05-6

(b) Four-site Grid scenario

Fig. 5. AWRT and SA improvements for the optimized rules in a three-site Grid sce-
nario on non-trained data sets (a) and in a four-site Grid scenario with SDSC00 as
unknown participant (b).

9 Conclusion and Future Work

We presented an Evolutionary Fuzzy System approach to finding non-invasive,
situation-adaptive, and robust algorithms for workload distribution in decen-
tralized Computational Grids. Such environments assume full autonomy of the
participating HPC/HTC centers and strict confidentiality of dynamic system in-
formation and demand Grid middlewares that do not interfere with the running
LRMS.

In our model, we introduced a decoupled GRMS layer on top of the available
systems, which decides upon execution on the local system or delegation to a
remote site for user-submitted jobs in an online, non-clairvoyant manner. The
decision mechanism is established by using a Fuzzy controller system with flexible
rule sets that are optimized using evolutionary computation, using a pair-wise
training approach and performance metric-based rule base selection.

The presented system shows that—using real-world data—it is possible to
establish job exchange policies which lead to significantly improved performance
for all user communities in terms of response time and utilization. We further
find that our approach behaves robustly with respect to fluctuations in the work-
load pattern and shows situational adaptiveness even under circumstances of un-
known submission characteristics. Overall, we think that the derived controllers
provide a stable basis for workload distribution and interchange in Computa-
tional Grids, and may qualify as a promising technology for future Service Grid-
based e-Science infrastructures.

References

1. O. Cordón, F. Herrera, F. Hoffmann, and L. Magdalena. Evolutionary Tuning
and Learning of Fuzzy Knowledge Bases. In GENETIC FUZZY SYSTEMS, vol-
ume 19 of Advances in Fuzzy Systems - Applications and Theory. World Scientific,
Singapore, July 2001.

2. Carsten Ernemann, Volker Hamscher, and Ramin Yahyapour. Benefits of global
grid computing for job scheduling. In Proceedings of the Fifth IEEE/ACM Interna-
tional Workshop on Grid Computing (GRID’04), pages 374–379. IEEE Computer
Society, 2004.

3. D. G. Feitelson and B. Nitzberg. Job characteristics of a production parallel scien-
tific workload on the NASA ames iPSC/860. In D. G. Feitelson and L. Rudolph,
editors, Proceedings of the 1st Job Scheduling Strategies for Parallel Processing, vol-
ume 949 of Lecture Notes in Computer Science (LNCS), pages 337–360. Springer,
1995.

4. Carsten Franke, Frank Hoffmann, Joachim Lepping, and Uwe Schwiegelshohn. De-
velopment of Scheduling Strategies with Genetic Fuzzy Systems. Applied Soft
Computing, 8(1):706–721, January 2008.

5. Carsten Franke, Joachim Lepping, and Uwe Schwiegelshohn. Genetic Fuzzy Sys-
tems applied to Online Job Scheduling. In Proceedings of the 2007 IEEE Interna-
tional Conference on Fuzzy Systems, pages 1573–1578, London, June 2007. IEEE
Press.

6. Fabrizio Gagliardi, Bob Jones, Francois Grey, Marc-Elian Begin, and Matti
Heikkurinen. Building an infrastructure for scientific grid computing: status and
goals of the egee project. Philosophical transactions. Series A, Mathematical, phys-
ical, and engineering sciences, 363(1833):1729–1742, 2005.

7. Christian Grimme, Joachim Lepping, and Alexander Papaspyrou. Prospects of
Collaboration between Compute Providers by means of Job Interchange. In Ei-
tan Frachtenberg and Uwe Schwiegelshohn, editors, Proceedings of Job Scheduling
Strategies for Parallel Processing, volume 4942 of Lecture Notes in Computer Sci-
ence (LNCS), pages 132–151. Springer, June 2007.

8. Christian Grimme, Joachim Lepping, and Alexander Papaspyrou. Discovering Per-
formance Bounds for Grid Scheduling by using Evolutionary Multiobjective Opti-
mization. In M. Keijzer et al., editors, Prococeedings of the Genetic and Evolution-
ary Computation Conference (GECCO 2008), pages 1491–1498, Atlanta, Georgia,
USA, July 2008. ACM, ACM Press.

9. C.-F. Juang, J.-Y. Lin, and C.-T. Lin. Genetic Reinforcement Learning through
Symbiotic Evolution for Fuzzy Controller Design. IEEE Transactions on System,
Man and Cybernetics, 30(2):290–302, April 2000.

10. Dan C. Marinescu, Ladislau Boloni, Ruibing Hao, and Kyung koo Jun. An alter-
native model for scheduling on a computational grid. In Proceedings of ISCIS’98,
the Thirteenth International Symposium on Computer and Information Sciences,
Antalya, pages 473–480. IOP Press, 1998.

11. H.-P. Schwefel. Evolution and Optimum Seeking. John Wiley & Sons, New York,
1995.

12. Uwe Schwiegelshohn, Andrei Tchernykh, and Ramin Yahyapour. Online scheduling
in grids. In 22nd IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS 2008). IEEE Press, April 2008. CD-ROM.

13. Uwe Schwiegelshohn and Ramin Yahyapour. Fairness in parallel job scheduling.
Journal of Scheduling, 3(5):297–320, 2000.

14. T. Takagi and M. Sugeno. Fuzzy Identification of Systems and Its Applications
to Modeling and Control. IEEE Transactions on Systems, Man, and Cybernetics,
SMC-15(1):116–132, 1985.

