
Adaptive Scheduling for QoS Virtual Machines
under Different Resource Availability—First

Experiences

Angela Sodan

University of Windsor, Windsor ON N9B3P4, Canada
acsodan@uwindsor.ca

Abstract. The current trend in CPU design is toward many-core CPUs
which will create SMP servers with large numbers of cores and require
jobs to be parallel. To provide performance guarantees (QoS) and sup-
port functional separation, virtual machines are an important approach
in such environments. Very promising for job scheduling in such envi-
ronments is adaptive scheduling which can adjust sizes of parallel jobs
to consider different load situations and different resource availability.
If applied to virtual machines and resource partitioning on many-core-
CPU / multiple CPU servers, the resource allocation can be determined
at virtual-machine level and propagated down to the job sizes. The pa-
per investigates job re-shaping and virtual-machine resizing, the effects
which the efficiency curve of the jobs has on performance, and the poten-
tial for predictability of performance under different resource allocation.

Keywords: adaptive job scheduling, molding, prediction, utilization

1 Introduction

Multi-core CPUs have become the current approach in CPU design to reduce
power consumption and to continue performance growth of CPUs in spite of
physical limits imposed on the performance improvement of individual cores
[16]. The trend is likely toward many-core CPUs with many more than just 2 or
4 cores per CPU. To exploit the performance of many-core CPUs per individual
program, parallelization of applications will be a must [23]. (System) virtual
machines are already now an important approach to safely share servers among
different applications or user groups, and are likely to become more important
on many-core servers with large numbers of cores. Virtual machines provide
functional separation (with potentially even different operating systems) but also
a framework for performance guarantees (QoS) if controlling resource allocation
among virtual machines.

If resource allocation per virtual machine changes over time, this has im-
plications on suitable sizes of parallel jobs. Adaptive job scheduling which can
adjust job sizes according to the current load and resource availability is already
well investigated in the literature and will likely become an important approach

for scheduling on many-core/virtual-machine servers. Adaptive job scheduling
may mean deciding the job size at start time (molding jobs) or adjusting it at
runtime (malleable jobs). Though the latter is more flexible it requires special
support in the runtime system of the application, whereas start-time adaptation
was found to be applicable to the majority of jobs [3]. In this paper, we therefore
only consider size adaptation at job start-time.

The presented work studies the effects of changing the (virtual) machines
size and the size allocation of the jobs, including the effects of the jobs’ effi-
ciency/scalability curve. The evaluations are mainly done by keeping the origi-
nal scheduler unchanged and adjusting all job sizes equally, i.e. without looking
into specific scheduling contexts. This permits investigation of effects indepen-
dent of the scheduling algorithm, whereas previous research mixed efficiency
and scheduler considerations. Thus, as one of the contributions, this paper
looks separately into the benefits obtained from size changes under constant
efficiency (work-conserving adaptation) and different levels of efficiency changes
(non-work-conserving adaptation). The experiments were performed with 1) a
standard scheduler and FCFS and priority policies and 2) with our Scojo-PECT
preemptive scheduler [5][19][18] which can assign different priorities to different
job type (currently defined on the basis of runtimes) via different time shares
but is FCFS per job type. Though benefits may be expected from mere reduc-
tion in sizes by easier fitting of jobs and smart scheduling approaches, the results
demonstrate that the change in efficiency and subsequently work load constitutes
the dominating performance factor.

2 Related Work

Most adaptive approaches apply molding only. The approach of Cirne and Ber-
man [3] molds jobs at the time of job submission, whereas later research showed
performance improvements [22] by setting limits for the maximum job size in
dependence on the current system load and on the job’s size requests and by
making decisions at job start time rather than submission time. Both approaches
applied the Downey scalability model [4] which describes typical application scal-
ability/efficiency curves and includes the possibility to model different scalability
by modifying the corresponding scalability factor σ . In [22], the evaluations of
the proposed adaptive scheduling algorithm were done with different σ values.
However, in our work, we not only test different efficiency but separate efficiency
effects from the scheduling algorithm. Most of these approaches exploit adapta-
tion with the goal to adapt to varying system load. The approach by Naik et al.
[12] also adapts resource allocation at runtime and attempts to schedule all jobs
from the queue, though setting a limit for medium and long jobs to keep space
for short jobs. Other approaches apply limits on job sizes in relation to machine
size to keep space for future arrivals [8][14]. In addition to load adjustments,
some approaches additionally try to reduce fragmentation in dependence on the
specific resource/scheduling situation [13][21].

The two basic approaches to decide about the job sizes are resource-based
partitioning and efficiency-based partitioning [6]. Resource-based partitioning
typically comes in the form of EQUI partitioning which means assigning the
same number of resources to each job. This approach yields suboptimal per-
formance in the general case as it does not consider how well the jobs use the
resources [2][11]. Efficiency-based partitioning exploits the efficiency character-
istics of the applications and allocates more resources to jobs that make better
use of them, which typically leads to the overall best results [2][11]. Similar to
resource-based partitioning, efficiency-based partitioning may be applied in the
form of providing equal efficiency to all jobs in the system (EQUI-EFF).

3 Work-Conserving and Non-Work-Conserving Job-Size
Adaptation—Myths and Reality

3.1 Space Sharing and Scojo-PECT Time Sharing

For our experiments, we use a standard space-sharing scheduler which employs
either a FCFS policy or priority scheduling. Priorities are based on runtime
classes, and classes with shorter runtime receive higher priority. To avoid starva-
tion, the implementation which is used here ages jobs to the next higher priority
level if their wait time exceeds 10 times their runtime.

Scojo-PECT [5] employs preemption to support scheduling of shorter jobs in
the presence of longer-running jobs. Scojo-PECT preempts jobs to swap space
which is easy to support in the machine environment. This avoids the memory
pressure which gang scheduling imposes and the hard-to-support checkpointing
which is necessary for migration. However, Scojo-PECT subsequently imposes
the constraint that preempted jobs are later restarted on the same resources. To
make preemption to disk affordable and to avoid that jobs are delayed because of
problems in getting access to their resources again, Scojo-PECT employs coarse-
grain time slices that preempt all jobs. Jobs are sorted per job class/type, and
slices associated with job types. The slice time for each job type is determined
on the basis of typical job-type mixes and the administrator’s policies and can
be recalculated in regular time intervals. One slice for each type is scheduled per
interval (since short jobs backfill into other slices in most cases, their slice is only
scheduled if short jobs are waiting), and the slice times can be decided at the
beginning of each interval. This permits controlling the resource allocation via
different policies at different times of the day or via adaptive allocation which
considers the current load of the machine [18]. In the context of this paper, the
relative slice times of different job classes are kept static. Jobs per job type are
scheduled in FCFS, and either EASY or conservative backfilling is applied. Since
the separation of jobs into different types is likely to increase fragmentation be-
cause job sizes and job runtimes tend to be correlated, Scojo-PECT employs
additionally safe non-type slice-backfilling. This means that preempted or wait-
ing jobs of a different type may be backfilled into a slice-with this backfilling
only being valid until the end of the slice-if they do not delay any job of the slice

type or any of their own type jobs according to the backfilling approach applied.
In [5] and [19], this optimization is shown to be crucial for good performance.

All schedulers are configured to support 3 job classes based on their runtime:
short (S), medium (M), and long (L) jobs. The original classification is kept if
resizing the jobs. We use A to denote results for all jobs. The backfilling approach
applied is for all schedulers conservative backfilling.

3.2 Test Setup

Thus, the following schedulers were tested:

– Standard space-sharing with FCFS (FCFS)
– Standard space-sharing with priorities (Prio10)
– Scojo-PECT coarse-grain time sharing with separation of job types (PECT)

The parameters of Scojo-PECT were set to 30% relative time share for M jobs
and 70% for L jobs, 60 sec overhead per time slice for preemption/resumption
of the jobs, and 1 h time intervals for scheduling one S (optional), one M , and
one L time slice. Jobs are classified as S if they run ≤ 10 minutes, as M if they
run ≤ 3 hours, and as L otherwise.

The schedulers were tested with the Lublin-Feitelson workload model [9],
setting the original machine size to 128 nodes, and with the CM5 trace from the
Feitelson workload archive [7]. The Lubin-Feitelson model creates one process
per node. The CM5 trace has 32 CPUs per node and sizes only come in multiple
of 32 (i.e. do not differentiate the use per node)—thus, all sizes (including the
original machine size measured in 1024 CPUs) were divided by 32 to map them to
the model of one process per node. In each test run, 10,000 jobs were simulated.

Job size was modified by certain factors FA in the range between 1.5 and 0.3.
For the basic tests without modification of the scheduling algorithm, the same
FA was applied to all jobs per experiment. Job sizes were always rounded up.
Note that the Lublin-Feitelson model creates about 25% serial jobs which never
change their size. The jobs with maximum size never grow beyond this size and
can only become smaller. The job sizes and corresponding runtimes created by
the Lublin-Feitelson model or the trace were taken as the original sizes/runtimes
with FA=1.0. Runtimes are considered to be correct estimates.

An efficiency model was built on top of the created workload and the following
efficiency parameters tested:

– Equal efficiency for all resource allocations, which means that the jobs can
be size adapted in a work-conserving manner (WC)

– Efficiency described via typical efficiency speedup curves, which were mod-
eled with a simple phase-wise linear approximation between pairs of 4 sizes:
a) 1, b) 0.5 * original size, c) original size, and d) 2 * original size, using
efficiencies of
1. 1, 0.8, 0.65, and 0.4 (E1)
2. 1, 0.75, 0.65, and 0.5 (E2)
3. 1, 0.7, 0.65, and 0.6 (E3)

This is similar to the idea of Secvik’s modeling approach presented in [15] and
sufficient for the purpose of our experiments to only study the principle effects
of different efficiencies. With the same argument, the efficiency is assumed to be
the same for all jobs. In other work, we develop efficiency/scalability models for
applications on multi-core CPUs [10].

For tests with different resource allocation to virtual machines, the original
machine size is modified by a factor FV M , while still using the job sizes and run-
times generated for the original machine sizes, adjusted by specified FA factor.
Resizing of virtual machines is assumed to be done without any performance
impact (slowdown) from other virtual machines which may share the server.

Throughout the paper, the evaluation uses average response times R and
average bounded relative response times (bounded slowdowns) RR. RR which
relates response times to runtimes is calculated vs. the pure runtime of the job
(without time slicing) and always vs. the original runtime without size modi-
fication. The graphs evaluate relative worsening, i.e. RRA/RR − 1, if FA > 1,
and relative improvement, i.e., RR/RRA − 1, if FA < 1 to obtain a balanced
presentation (rather than one end providing results in the range [0,1] which are
hard to differentiate).

3.3 Formal Results for Work-Conserving and Non-Work-Conserving
Job Re-Shaping

Before presenting the results of the experiments, below some simple theoretical
considerations are presented to help explain some effects in the experiments.

Theorem 1: We assume that all job runtimes T are equal, have equal original
size Sz with Sz = Mz (machine size), and constant and equal efficiency under
different sizes. Additionally, we assume off-line scheduling of a fixed set of jobs.
This means that jobs can be reshaped in a work-conserving manner. NJ is the
number of jobs resized to fit together into memory rather than being scheduled
serially, and N is the overall number of jobs in the system, NG = N/NJ the
number of groups under re-shaping, then serial scheduling gives average response
times φR of

φRSerial = T ∗ (
∑

i=1,N

i)/N = T ∗ (N ∗ (N + 1)/2)/N = T ∗ (N + 1)/2 (1)

and re-shaped-job adaptive scheduling gives

φRAdaptive,WC = NJ ∗ T ∗ (
∑

i=1,NG

i)/NG (2)

If rewriting (1) for better comparison, this gives:

φRSerial = T ∗ (
∑

i=1,NJ

i)/NJ + NJ ∗ T ∗ (
∑

i=1,NG−1

i)/NG (3)

Proof: Under serial scheduling, the first job’s response time is T , the second
one has a wait time W of T and a runtime of T , i.e. a response time of R = T +

W = 2T , etc., which means that φRSerial = (
∑

i=1,N (i∗T))/N = T ∗∑i=1,N i/N
(q.e.d.)

Under reshaping, the runtime per job changes to NJ ∗ T . The response time
is equal for all the jobs in the group, with the first group having an average
response time of NJ ∗ T , the second group a wait time of NJ ∗ T and a runtime
of NJ ∗ T , i.e. an average response time of 2 ∗ NJ ∗ T , etc., which means that
φRAdaptive,WC = (

∑
i=1,NG

(iNJ ∗ T))/NG = NJ ∗ T ∗∑
i=1,NG

i/NG (q.e.d.)
However, the runtime of the overall group is equal to the sum of the serial

runtimes of those jobs, i.e. the average wait time for the next group of jobs is
the same under both approaches. Thus, (1) can be transformed into (3).

Comparing (2) and (3) shows that the term NJ ∗ T ∗ (
∑

i=1,NG−1 i)/NG

is common. Thus, for large NG, the difference becomes small. However, the
difference can matter if NG is very small. This means high load makes the
difference insignificant, whereas low load makes it relevant. In regards to the
detailed difference, the remaining term in (2) is tr,Serial = T ∗ (

∑
i=1,NJ

i)/NJ

and the remaining term in (3) is tr,Adaptive,WC = NJ ∗ T . Thus, tr,Serial <
tr,Adaptive,WC for NJ > 1 since (NJ + 1)/2 < NJ for NJ > 1. This means that
serial scheduling performs typically slightly better and that, for small NG, the
difference between serial and adaptive scheduling is more significant if NJ is
larger.

Theorem 2: If reshaping is non work-conserving, i.e. jobs run with better
efficiency if becoming smaller or lower efficiency if becoming larger, the runtimes
are affected by the change in efficiency E, with EFA=1.0 being original and EFA=X

the efficiency after adaptation:

φRAdaptive,E = NJ ∗ T ∗ EFA=1.0/EFA=X ∗ (
∑

i=1,NG

i)/NG (4)

φRAdaptive,E = NJ ∗ T ∗ EFA=1.0/EFA=X +

NJ ∗ T ∗ EFA=1.0/EFA=X ∗ (
∑

i=1,NG−1

i)/NG (5)

If comparing (3) and (4), tr,Serial = T ∗(∑i=1,NJ
i)/NJ is not necessarily less

than tr,Adaptive,E = NJ ∗T ∗EFA=1.0/EFA=X since (
∑

i=1,NJ
i)/NJ = (NJ +1)/2

may not be less than EFA=1.0/EFA=X ∗NJ if NJ is small and EFA=X is much
better than EFA=1.0. Thus, as can be easily seen from the formulation in (5),
with larger NG, adaptation reduces average response time by approximately
EFA=1.0/EFA=X .

Thus, if assuming EFA=0.5 = 0.8 and EFA=1.0 = 0.65 (which corresponds to
E1), NJ = 2, and N = 2 (TG = 1)), φRAdaptive,E = EFA=1.0/EFA=0.5 ∗ NJ =
1.625, whereas φRSerial = 1.5. φRSerial can be expected to be better than
φRAdaptive,E under low load and to be increasingly worse with increasing load
which is shown with the following calculations:

– NJ = 2 and N = 4 (TG = 2): φRSerial = 2.5 and φRAdaptive,E = 1.625∗1.5 =
2.4375 which means that adaptation is already slightly better

– NJ = 2 and N = 6 (TG = 3):
φRSerial = 3.5 and φRAdaptive,E = 1.625 ∗ 2 = 3.25

– NJ = 2 and N = 100 (TG = 50):
φRSerial = 50.5 and φRAdaptive,E = 1.625 ∗ 25.5 = 41.4 which means their
ratio (1.21) is already close to the ratio of the efficiencies (1.23).

The writing as presented in (5) shows average runtime φT as the first term
and average wait time φW as the second term. As can be seen from comparison
to (2), with reshaping, φT becomes longer by NJ ∗ EFA=1.0/EFA=X and φW is
reduced by EFA=1.0/EFA=X . The latter dominates for larger NG.

In realistic scheduling, we face additionally packing problems, different run-
times and sizes, and potentially different efficiency. Moreover, submissions are
dynamic. However, the above considerations give some basic clues about the
expected performance behavior.

3.4 Experimental Results for Work-Conserving and
Non-Work-Conserving Job Re-shaping

Before showing adaptation results which mostly look into relative performance
under different adaptation, a note about absolute performance under FA = 1.0.
If setting resource shares for equal service, Scojo-PECT provides similar service
to M and L jobs as the priority scheduler but improves overall response times
by about 45% by serving S jobs better. The simple FCFS scheduler performs by
about 60% worse for all jobs and by about 20% worse if only considering M and
L jobs.

In the following, we investigate performance under different job re-shaping,
while keeping the machine size at original size. Note that only the sizes of the
jobs are changed and no special adaptive scheduler is used.

In regards to re-shaping, we can expect that

– If decreasing jobs sizes, the smaller sizes might provide better options for
packing. If increasing job sizes, packing possibilities might worsen.

– A counter effect under work-conserving re-shaping as per (3) shows in phases
of low load, while performance is approximately the same if the load is very
high.

– Improvements under non-work-conserving re-shaping according to (4) show
if reducing the job sizes, while performance is worsened if increasing the job
sizes.

In our experiments, we explored the corresponding aggregate effects on RR
for the 3 schedulers FCFS, Prio10, and PECT . The results are shown in Figure
1, Figure 2, Figure 3, and Figure 4, differentiated for M , L, and A jobs.

As we can see, under work-conserving re-shaping, the sizes make no relevant
difference in regards to RR if scheduling with FCFS or PECT (though RR is
shown, the same applies to R). Obviously any effects from better packing and
extended wait times under low load cancel each other out, though improvements

FCFS WC

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3

M

L

A

FCFS E2

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3

M

L

A

FCFS E3

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3

M

L

A

FCFS E1

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3

M

L

A

Fig. 1. RR improvement for Lublin-Feitelson workload under FCFS with different
efficiency, shown over different size-modification factors.

Prio10 WC

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5

M

L

A

Prio10 E2

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3

M

L

A

Prio10 E3

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3

M

L

A

Prio10 E1

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3

M

L

A

Fig. 2. RR improvement for Lublin-Feitelson workload under Prio10 with different
efficiencies, shown over different size-modification factors.

PECT WC

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3

M

L

A

PECT E2

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3

M

L

A

PECT E3

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3

M

L

A

PECT E1

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3

M

L

A

Fig. 3. RR improvement for Lubin-Feitelson workload under PECT with different
efficiencies, shown over different size-modification factors.

FCFS CM5 WC 32

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

1 0.5 0.5 0.5 0.5 0.5

M

L

A

PECT CM5 WC 32

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

1 0.9 0.8 0.7 0.6 0.5

M

L

A

FCFS CM5 E1 32

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

3.5

1 0.5 0.5 0.5 0.5 0.5

M

L

A

PECT CM5 E1 32

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

1 0.9 0.8 0.7 0.6 0.5

M

L

A

Fig. 4. RR improvement for CM5 trace under FCFS and PECT with work-conserving
and with E1 efficiency, shown over different size-modification factors.

in packing might have been expected to make more of a difference. For Prio10,
smaller sizes provide a benefit of up to a factor of 1.4.

The likely explanation is that packing and backfilling do not behave signifi-
cantly different and that mostly the load of the jobs in the system matters (which
is further investigated in Section 6.1.

Since, however, the overall load and the length of the queue may matter,
Figure 5 shows results for the original load L1 with U = 0.76, L2 with U = 0.66
and L3 with utilization U = 0.56 (loads are modified by increasing interarrival
times via the α parameter from 10.33 to 10.65 and 10.9). Figure 5 also includes
results for the interarrival times being changed to exponential without daily
cycles which significantly reduces average queue lengths φQsystem of jobs in
the system (waiting or running) though they are almost independent of FA

(φQsystem is about 13 for M and 31 for L with L1; about 5 for M and 15 for L
with L3; and reduces to about half if interarrival times are exponential without
daily cycles). However, the RR results are all similar. Even if queue lengths
become shorter, FA only changes the number of jobs fitting into the machine
by maximally a factor of 2 (NJ = 2), i.e. (NJ + 1)/2 = 1.5 which means that
the difference for small NG is low. Thus, the results behave as expected for the
theoretic consideration that were done for the simple off-line case with equal job
sizes.

Under non-work-conserving job re-shaping, all factors FA < 1.0 would sug-
gest an improvement in R and RR which is indeed the case. The improvements
are higher if the efficiency improvement is higher, i.e. best for E1 and lowest for

PECT WC L1/L2/L3

-0.25

0.25

0.75

1.25

1.75

L1 L2 L3 L1 Exp L2 Exp L3 Exp

M

L

A

PECT E1 - L1/L2/L3

-0.25

0.25

0.75

1.25

1.75

L1 L2 L3 L1 Exp L2 Exp L3 Exp

M

L

A

Fig. 5. Improvement for FA = 0.5 vs. FA = 1.0 with different loads, and either standard
interarrival times of model or exponential interarrival times without daily cycles (Exp).

E3. If looking at R from the theoretic consideration in (5), E1,FA=0.5/E1,FA=1.0 =
0.8/0.65 = 1.23. The real improvements due to higher efficiency should be lower
since not all jobs change sizes (such as serial jobs always remaining serial). How-
ever, the measured RL improves by a factor of 2.28 and the measured RM by
a factor of 1.67. Correspondingly, the measured RRL improves by a factor of
2.34, RRM by a factor of 1.65, and RRA by a factor of 1.65. Thus, the changes
in R and RR are almost identical. The higher-than-expected benefits may be
partially due to better packing but likely also to less queue-up of work in the
systems, as will be discussed in Section 6.1. To check the effect of the load on the
improvements, again lower Loads L2 and L3 were tested (see Figure 5). Load
L2 and L3 also show improvements though they are relatively lower than for
L1 This can be explained by less difference in the work queuing up. Indeed, if
looking at average wait times, they are—if changing from FA = 1.0 to FA = 0.5
and using L1—reduced from 9.3h to 2.4h for M jobs and from 33h to 7.4h for
L jobs, which is much more than the predicted factor of 1.23 from (4).

Looking at the effect on runtimes, the change from FA is limited: with FA =
1.0, φT is 4.55h for M and 7.3h for L jobs and, with FA = 0.5 and E1, φT is
5.9h for M and 10.3h for L jobs—which is a factor of 1.3 for M and a factor
of 1.41 for L jobs. Predicted would be a factor of 1.625 for both (from 2 ∗
EFA=1.0/EFA=0.5) = 2 ∗ 0.65/0.8 = 1.625) for adaptable jobs. With 25% serial
jobs this reduces to a factor of 1.47. However, the lower load, especially for M
jobs, also makes more non-type slice backfilling possible which improves service
and reduces runtimes more than expected.

4 Adaptive Scheduling with Efficiency and Load
Considerations

4.1 Scheduling with Adaptation to Load

As seen in Section 3.4, non-work-conserving scheduling provides significant bene-
fits already from improved efficiency. Note that the scheduler simply re-shaped all
jobs. In the following, we put more intelligence into the scheduler (Scojo-PECT)
to consider different load situations and create a truly adaptive scheduler. The

PECT E1

0

1

2

3

4

5

6

M L A

AllA

LoadA

AllA-noB

LoadA-noB

Fig. 6. RR for PECT with static FA = 0.5, with (AllA) and without (AllA noB)
application of the same factor to backfilled jobs, and for adaptive PECT with dy-
namic FdynA between FA,min = 0.5 and FA,max = 1.0, with (LoadA) and without
(LoadA noB) application to backfilled jobs.

adaptive scheduler is applied separately and independently per job type M and
L. Since FA = 0.5 performed best in the basic experiments, we use this factor in
the following experiments with an adaptive scheduler. Adaptation is performed
according to the following steps:

1. The resource needs are calculated as the sum of the sizes of all waiting jobs
(assuming that ideally all jobs should be allocated). The factor used for
adaptation Fdyn,A in the dynamic scheduling context is then adjusted as

max(Ftry,A, FA,min) ≤ Fdyan,A ≤ min(Ftry,A, FA,max) (6)

with FA,min = 0.5 and FA,max = 1.0 in the following.
2. All jobs of a specific job type which the scheduler tries to fill into the machine,

are then reshaped by Fdyan,A unless the jobs are relatively long-running in
their own jobs class. Thus, if the original job runtime is > 45 min (M jobs)
or > 7 h (L jobs), the factor FA,min is used for reshaping.

The result of applying this approach (called LoadA) are shown in Figure 6.
The improvement is relatively low. However, not adapting backfilled jobs made
a difference and best results were obtained if combining both, load adaptive re-
sizing and keeping the original size for backfilling (LoadA noB). However, the
improvements are still moderate. (Note that further improvements may be ob-
tained by looking at each scheduling situation in detail to reduce fragmentation.
However, previous work [21] suggests that the improvements would be minor.)

The obtained moderate additional improvements with dynamic job-size adap-
tation suggest that a substantial part of the benefits obtained in previous re-
search with adaptive schedulers may been due to improved efficiency.

5 Job Re-Shaping for Virtual Machines of Adaptive Size

In the following, we show results from changing the size of the machine by a
factor FM which corresponds to different resource allocation to virtual machines
if partitioning core numbers among them. At the same time, the sizes of the
jobs per virtual machines are adjusted by a static factor FA. We tested resulting
virtual-machine sizes of 96, 112, 144, and 160 nodes, using the Lublin-Feitelson
workload for 128 nodes and E1 efficiency. The results are shown in Figure 7.

The sizes delivering similar results as FA = 1.0 does for 128 nodes are FA =
0.5 (still somewhat higher) for 96 nodes, FA = 0.75 for 112 nodes, FA = 1.07 for
144 nodes, and FA = 1.21 for 160 nodes. The results demonstrate that certain
performance (QoS) can be kept over different resource allocations per virtual
machine if re-shaping the jobs accordingly.

The sizes delivering similar results as FA = 1.0 does for 128 nodes are FA =
0.5 (still somewhat higher) for 96 nodes, FA = 0.75 for 112 nodes, FA = 1.07 for
144 nodes, and FA = 1.21 for 160 nodes. The results demonstrate that certain
performance (QoS) can be kept over different resource allocations per virtual
machine if re-shaping the jobs accordingly.

6 Predicting R under Varying Resource Allocation

6.1 Dependence of R and RR on Utilization

Trying to generalize the performance in dependence on different virtual machine
sizes, different job-reshaping factors, and different efficiencies, Figure 8 and Fig-
ure 10 plot RR and Figure 9 and Figure 11 plot R in dependence on the mea-
sured utilization for the corresponding test runs. Though M and L jobs perform
differently, we observe a clear correlation between relative response times and
utilization per job type. The correlation is stronger for L jobs but still reason-
ably clear for M jobs. This permits the conclusion that utilization changes from
running jobs at better efficiency are the major source of improvements in adap-
tive job scheduling and that utilization makes a good predictor for performance
if changing virtual-machine and job sizes (cf. (5)).

This is a nice property since utilization is easy to predict if knowing the
efficiency changes and the mix of the sizes (especially the percentage of serial
jobs), as utilization corresponds to the submitted load (work over time).

The explanation of the response times not matching the simplified off-line
case is that we are dealing with dynamics in interarrival times, daily cycles, job
runtimes, and job sizes which can temporarily lead to very long queues. Thus,
the proper approach is a queuing model which, however, is hard to establish due
to the many contributing statistical distributions.

6.2 A Simple Predictive Model

If knowing queue lengths, response times can be predicted via Little’ Law which
is independent of the specific statistical distributions and the scheduling policies

PECT E1 96

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

0.55 0.5 0.4 0.3

M

L

A

PECT E1 112

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

0.85 0.8 0.7 0.6 0.5 0.4 0.3

M

L

A

PECT E1 144

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

1.251.201.131.071.000.900.800.700.600.50

M

L

A

PECT E1 160

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5

M

L

A

Fig. 7. RR with different resizing of the machine combined with different re-shaping
of the workload, using PECT and E1.

PECT E1/E2/E3

0

1

2

3

4

5

6

7

8

9

10

0.5 0.6 0.7 0.8 0.9

RR E1 M

RR E3 M

RR E2 M

RR E1 L

RR E3 L

RR E2 L

Fig. 8. RR for PECT and E1, E2, and E3 with different FA, shown over corresponding
measured utilization.

PECT E1/E2/E3

0

5

10

15

20

25

30

35

40

45

0.5 0.6 0.7 0.8 0.9

R E1 M

R E3 M

R E2 M

R E1 L

R E3 L

R E2 L

Fig. 9. R for PECT and E1, E2, and E3 with different FA, shown over corresponding
measured utilization.

PECT E1 96-112-128-144-160

0

5

10

15

20

25

0.5 0.6 0.7 0.8 0.9 1

RR 96 M

RR 112 M

RR 128 M

RR 144 M

RR 160 M

RR 96 L

RR 112 L

RR 128 L

RR 144 L

RR 160 L

Fig. 10. RR for PECT and E1 with different virtual-machine sizes and different FA,
shown over corresponding measured utilization.

PECT E1 96-112-128-144-160

0

10

20

30

40

50

60

70

80

90

100

0.5 0.6 0.7 0.8 0.9 1

R 96 M

R 112 M

R 128 M

R 144 M

R 160 M

R 96 L

R 112 L

R 128 L

R 144 L

R 160 L

Fig. 11. R for PECT and E1 with different virtual-machine sizes and different FA,
shown over corresponding measured utilization.

and says that
φQsystem = λ ∗ φR (7)

with λ being the average arrival rate and φQsystem the average number of jobs
in the system (waiting and running). However, the law applies to a single-server
system. We approximate the packing of multiple jobs into the machine as a
variation of service time to obtain a single-server model. This simplification
appears to be feasible, considering the predictions shown in Figure 12. The results
show a few cases of prediction from the standard model and the exponential
interarrival times without daily cycles. As we can see, the predictions are very
accurate—a little too high for the standard interarrival model and a little too
low for the exponential interarrival model.

PECT E1

0

5

10

15

20

25

30

35

40

45

M L M L M L M L

FA=1.0 FA=0.5 FA=1.0 FA=0.5

L1 L1 Exp

Real R

Pred R

Fig. 12. Real and predicted R (from Qsystem) for PECT and E1 with different FA.
Both standard model and exponentially distributed interarrival times without daily
cylces are shown.

Our final goal is predicting response times for different resource allocations
FA and different FM from a base resource allocation which in our case is FA = 1.0
and Mz = 128. As mentioned above, the change in utilization can be directly
calculated from the workload. Since the queuing model can capture the multi-
node server behavior, we use an M/G/1 model to predict R from the utilization,
which means

φQsystem = U + U2(1 + C2S)/(2 ∗ (1− U))) (8)

With this simplified model, all variations of daily cycles, sizes, backfilling,
and runtimes are mapped to the variation coefficient of the service time C2S.

The concrete parameter is obtained from fitting the curve for FA = 1.0 which
reflects predicting from a base-case allocation.

PECT E1/E2/E3 Prediction

0

5

10

15

20

25

30

35

40

45

0.5 0.6 0.7 0.8 0.9

R E1 M

R E3 M

R E2 M

R E1 L

R E3 L

R E2 L

P R M

P R L

Fig. 13. Real and predicted R (from U) for PECT and E1 with different FA, shown
over utilization.

The results from applying this simple prediction approach based on (7) and
(8) to our workload are shown in Figure 13 and Figure 14. Considering that
the actual R curves shows some irregularities, the prediction is a good fit (and
worked better than all more detailed models tried). However, the curves match
a little less well if utilization decreases and would be completely off if utilization
increases beyond 0.9. The reason is that variation increases with lower utilization
and decreases with very high utilization. For utilization beyond 0.9, the wait
times are in the order of days, i.e. daily cycles have little impact, and backfilling
opportunities can be expected to saturate. However, the extremely long wait
times make such allocations anyway undesirable. Thus, the simple prediction
model works well for practically relevant cases.

7 Summary and Conclusion

The experiments in this paper have investigated the effects on relative response
times merely obtained from reshaping all jobs statically to run with smaller sizes
(and correspondingly longer runtimes), with or without changing the (virtual)
machine size. The results show that under constant machine size and FCFS
scheduling, the results remain the same if reshaping the jobs in a work-conserving
manner (no gains from efficiency). However, significant benefits are obtained
if jobs reshaped to smaller size run at higher efficiency. Any further benefits
obtained from an adaptive scheduler which decides job sizes dynamically at job

PECT E1 86-112-128-144-16 Prediction

0

10

20

30

40

50

60

70

0.5 0.6 0.7 0.8 0.9 1

R 96 M

R 112 M

R 128 M

R 144 M

R 160 M

R 96 L

R 112 L

R 128 L

R 144 L

R 160 L

P R M

P R L

Fig. 14. Real and predicted R (from U) for PECT with different virtual-machine sizes
and different FA, shown over utilization.

start time according to the machine load are relatively small. Simple formulas
looking at the off-line schedules of a series of jobs can only partially explain
the effects but dynamic measurement of utilization proves to show a strong
correlation to the obtained relative response times under varying virtual-machine
and job-size adjustments. Ongoing work is to establish a more detailed predictive
model for response times under varying resource allocation via different job sizes
and different virtual-machine sizes.

References

[1] Barsanti, L., Sodan, A.C.: Adaptive Job Scheduling via Predictive Job Resource
Allocation. Proc. of JSSPP Workshop, Saint-Malo, France, Springer, LNCS 4376
(June 2006) 115-140

[2] Chiang, S.-H., Vernon, M.K.: Dynamic vs. Static Quantum-Based Parallel Pro-
cessor Allocation. Proc. Workshop on Job Scheduling Strategies for Parallel Pro-
cessing (JSSPP), Springer, LNCS 1162 (May 1996) 200-223

[3] Cirne , W., Berman, F.: When the Herd is Smart-Aggregate Behavior in the
election of Job Request. IEEE Trans. on Par. and Distr. Systems, 14(2) (Feb.
2003)

[4] Downey, A.: A Model for Speedup of Parallel Programs. Technical Report CSD-
97-933, Univ. of California Berkeley (Jan. 1997)

[5] Esbaugh, B., Sodan, A.C.: Coarse-Grain Time Slicing with Resource-Share Con-
trol in Parallel-Job Scheduling. Proc. High Performance Computing and Com-
munication (HPCC), Houston, September, Springer, LNCS 4782 (2007)

[6] Feitelson, D.G., Rudolph, L., Schwiegelsohn, U., Sevcik, K.C., Parsons, W.: The-
ory and Practice in Parallel Job Scheduling. Proc. Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP), Springer, LNCS 1291 (1997)

[7] Feitelson Workload Archive, available at http://www.cs.huji.ac.il/
labs/parallel/workload/logs.html (ast retrieved January 2008)

[8] Ghosal, D., Serazzi, G., Tripathi, S.K.: The Processor Working Set and Its Use in
Scheduling Multiprocessor Systems. IEEE Trans. Software Engineering, 17(5),
(May 1991) 443-453

[9] Lublin, U., Feitelson, D.G.: The Workload on Parallel Supercomputers-
Modelling the Characteristics of Rigid Jobs. Journal of Parallel and Distributed
Computing, 63(11) (Nov. 2003) 1105-1122

[10] Machina, J., Sodan, A.C.: Predicting Cache Needs and Cache Sensitivity
for Applications in Cloud Computing on CMP Servers with Configurable
Caches. Workshop on System Management Techniques, Processes, and Services
(SMTPS) of IPDPS, Proc. IPDPS, IEEE, Rome (May 2009)

[11] McCann, C., Zahorjan, J.: Processor Allocation Policies for Message Passing
Parallel Computers. Proc. SIGMETRICS Conf. Measurement & Modeling of
Computer Systems (May 1994) 208-219

[12] Naik, V.K., Setia, S.K., Squillante, M.K.: Processor Allocation in Multipro-
grammed Distributed-Memory Parallel Computer Systems. Journal of Parallel
and Distributed Computing, 46(1) (1997) 28-47

[13] Parsons, E.W., Sevcik, K.C.: Implementing Multiprocessor Scheduling Disci-
plines. Proc. Workshop on Job Scheduling Strategies for Parallel Processing
(JSSPP), Springer, LNCS 1291 (1997)

[14] Rosti, E., Smirni, E., Serazzi, G., Dowdy, L.W.: Analysis of Non-Work-
Conserving Processor Partitioning Policies. Proc. Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP) (1995)

[15] Sevcik, K.C.: Characterization of Parallelism in Applications and Their Use in
Scheduling. Performance Evaluation Review 17 (1989) 171-180

[16] Sodan, A.C., Deshmeh, A., Esbaugh, B., Machina, J.: Thread-Level Parallelism
in Modern CPUs. Submitted to journal.

[17] Sodan, A.C.: Dynamic Job Scheduling for Computational Grids. Book chapter
in Grid Computing Research Progress, Nova Science Publisher, Inc., Hauppauge,
NY (August 2008)

[18] Sodan, A.C.: Autonomic Share Allocation and Bounded Prediction of Response
Times in Parallel Job Scheduling for Grids. Workshop on Adaptive Grid Com-
puting (NCA-AGC), Proc. IEEE Int. Symp. on Network Computing and Appli-
cations (NCA), Cambridge (July 2008) 307-314

[19] Sodan, A.C., Esbaugh, B.: Service Control and Service Prediction with the Pre-
emptive Parallel Job Scheduler Scojo-PECT. Submitted to journal.

[20] Sodan, A.C., Lan, L.: LOMARC Lookahead Matchmaking for Multiresource
Coscheduling on Hyperthreaded CPUs. IEEE Transactions on Parallel and Dis-
tributed Systems, 17(11) (Nov. 2006) 1360-1375

[21] Sodan, A.C., Huang, X.: Adaptive Time/Space Sharing for Workload Adaptation
and Fragmentation Reduction. IJHPCN, 4(5/6) (2006) 256-269

[22] Srinivasan, S., Subramani, V., Kettimuthu, R., Holenarsipur, P., Sadayappan,
P.: Effective Selection of Partition Sizes for Moldable Scheduling of Parallel Jobs.
Proc. HiPC (2002)

[23] Sutter, H.: The Free Lunch is Over-A Fundamental Turn Toward Concurrency
in Software. Dr. Dobb’s Journal, 30(3) (March 2005)

[24] Weinberg, J., Snavely, A.: Symbiotic Space-Sharing on SDSC’s DataStar System.
Proc. of JSSPP Workshop, Saint-Malo, France, Springer, LNCS 4376(June 2006)

