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Abstract. Multi-core nodes of parallel machines may only provide grad-
ual performance improvement per application due to competition on
resources like the cache. As shown in our earlier work, spreading out
applications over as many nodes as possible or letting different applica-
tions with potentially complementary characteristics (semi time) share
each node by allocating different cores to them may provide better per-
formance. In the latter case, groups of jobs may be necessary to obtain
balanced resource utilization due to different sizes of jobs. We present
a scheduler G-LOMARC-TS which can match groups of jobs and con-
sider both space- and time-sharing allocation. Since matchmaking may
select jobs further down in the waiting queue, fairness in regards to
possible delays of the other jobs is watched and delays are kept within
certain bounds. This results in a large number of possible combinations.
A number of heuristics to select the most promising combinations make
it possible to deal with the NP-completeness of the problem. We show
that our scheduler improves utilization of high-load phases by about 27%
and subsequently average response times by about 36% (and 53% for
long jobs) compared to space sharing scheduling for normal workloads.
Additionally the scheduler can handle much higher workloads than a
space-sharing scheduler.

Keywords: space sharing, semi time sharing, lookahead matchmaking,
job groups

1 Introduction

Multi-core nodes in cluster are becoming widespread though the additional
cores may only provide gradual performance improvement due to competition
on shared resources such as memory, network, and potentially caches. In ear-
lier work, we have shown that better results may be obtained if rather using
the additional cores for other applications with complementary characteristics
[14][16][20], as also found by other researchers [18]. We call such resource allo-
cation semi time sharing since the cores are partitioned among the applications,
i.e. space-shared, but the other resources may be shared.

Our LOMARC scheduler [16] first proposed such semi time sharing on nodes
with hyperthreaded CPUs, assuming that the second virtual CPU per CPU/node



would either be allocated to a second application or remain unused. We proved
that many combinations of the NAS benchmarks ran very well together. Under
the conditions mentioned, LOMARC improved average response times by 30%
to 50%. In other work, we showed that even if the choice is between using
fewer nodes exclusively (space sharing) vs. more nodes coscheduled with another
application (semi time sharing), semi time sharing may perform better [15]. We
also found that pairing communication-bound applications may yield acceptable
slowdown [15][20]. While our work focused on computation and communication
performance, the study in [18] focused on memory and I/O, confirming the
benefits from coscheduling. However, there are also cases where an application
can exploit the performance potential of all cores per node well and space sharing
may perform better.

To use the cores per node most effectively, more general schedulers are needed
that can allocate the cores intelligently for high resource utilization. Similar
to adaptive approaches which reduce job sizes under high load [13], we can
expect that higher resource utilization decreases average response times in spite
of increasing individual runtimes, because load and subsequently average wait
times are significantly decreased.

The LOMARC scheduler [16] applied lookahead matchmaking among waiting
and running jobs to find jobs with complementary usage of multiple resources,
using simple heuristics to select the best combination. However, no fairness con-
siderations were applied in regards to the impacts of the partial reordering of
the waiting queue.

Our main goals for the work presented in this paper are to

– Provide a more flexible approach for nodes with multiple cores and for ap-
plications which may either exploit multiple cores per node exclusively or
share them with another application. We can consider this approach as semi
adaptive by assuming a fixed number of processes that can be allocated
differently to nodes and cores.

– Provide a framework which, in spite of partial reordering of the waiting queue
that is necessary to find suitable matches, is fair to individual jobs and does
not impose overly high delays on individual jobs.

– Match groups of jobs since jobs typically have very different job sizes and
only matching two jobs may therefore not provide sufficient potential for
utilization gain.

The main contributions of this paper and our new G-LOMARC-TS scheduler
are:

– Matching groups of jobs among waiting and/or running jobs.
– Applying several heuristics that are likely to extract the most promising

groups since finding the optimum group among the many possibilities is an
NP-complete problem.

– Including important special cases like bursts of serial jobs.
– Using a metric for selection of the best group which considers the absolute

gain in utilization (nodes saved over a certain time interval) and subsequently
the global interest of all jobs.



– Supporting both space and time sharing and choosing between them accord-
ing to the utilization gain and current machine load.

– Providing fairness to individual jobs by using a maximum slack factor vs.
the originally estimated response time as a constraint for the reordering.

– Providing more chances to fit a job into the machine by including the options
of 1) matching it with running jobs and 2) reducing its node requirement
via space sharing.

G-LOMARC-TS is implemented as an extension of the coarse-grain preemp-
tion scheduler Scojo-PECT [5]. We demonstrate via simulation with synthetic
workloads that G-LOMARC-TS performs significantly better than pure space
sharing and that group matching contributes significantly to the improvements
and is therefore essential.

The paper discusses related work in Section 2. Section 3 defines the machine
and application model. Our G-LOMARC-TS algorithm is described in Section 4,
including utilization-gain and slowdown metrics. Experimental results are shown
in Section 5, and Section 6 gives a summary and conclusion.

2 Related Work

Existing approaches to time sharing for parallel jobs are gang scheduling [5] and
loosely coordinated coscheduling [13]. Gang scheduling allocates globally syn-
chronized time slices, while keeping all jobs in memory to make slice switches
fast. Loosely coordinated coscheduling uses distributed algorithms to approxi-
mate coordinated execution which is necessary to avoid idling in communication.
Though gang scheduling may better pack jobs into the machine, it does not im-
prove utilization of the individual resources such as network or disk. Loosely
coordinated coscheduling has the potential of improving utilization by switch-
ing between jobs to hide resource-access latencies. However, jobs need to be
fairly synchronous or very coarse-grain to make coordinated execution possi-
ble or unimportant, respectively. Proposals were made to relax gang scheduling
and merge time slices with computation-bound and I/O-bound jobs [19] or to
switch from gang scheduling to loosely coordinated coscheduling for coarse-grain
or I/O-bound jobs [1]. Both approaches depend on the dynamic availability of
suitable job combinations but can adapt to different phases in the program ex-
ecution. However, the probability of finding suitable dynamic job combinations
decreases if groups of jobs need to be formed.

In regards to semi time sharing, studies found complementary characteristics
of the coscheduled jobs to perform better due to balancing the usage of system
resources [16][18]. Spreading out jobs to different nodes and semi time sharing
the resources per node among multiple jobs may perform better than dedicated
allocation of all node resources to one job [14][15][18]. The experiments in [18]
were carried out with only 4 nodes and therefore limited communication but the
experiments in [14][15] on up to 64 nodes show that the benefits of semi time
sharing vs. dedicated allocation scale to larger number of nodes. Characteristics



which were found important for job combinations are whether the job is CPU-
bound, cache-bound, memory-bound, network-bound, or disk-bound [16][18] but
also which access patterns are applied [10][20]. For example, CPU-bound jobs
were shown to match well with network-bound or memory-bound jobs. Several
studies on hyperthreaded and multi-core CPUs showed that scheduling multiple
processes of the same job per node provides limited benefits or does not work
well in certain cases. Thus, in [2], jobs became only between 1.2 and 1.5 times
faster by running another process on a second AMD-Opteron core. Potentially
high resource contention on hyperthreaded CPUs from processes of the same ap-
plication with same resource requirement (such as the cache) were shown before
in [7][8]. In other cases, resource sharing per node can provide a benefit rather
than performance degradation: intra-node communication through shared mem-
ory and cache may be faster than inter-node communication which is a benefit
if a large percentage of messages are transferred via intra-node communication
[4] (50% of the messages were found to be intra-node).

Thus, the LOMARC scheduler [16] matches jobs with complementary char-
acteristics at job start times, while partially reordering the waiting queue to find
suitable matches. The work in [18] proposes a scheduler which space-partitions
each node into one half for memory-bound and one half for the other jobs.

Fairness is discussed in several papers. The work in [11] measures overall
fairness (in retro) of a job scheduler by considering the actual start time of a
job vs. its virtual start time without effects from later arriving jobs. The slack
approach in [17] tries to maintain relative fairness among jobs by dynamically
calculating possible delays in the presence of different job priorities.

3 Machine and Application Model

We assume that the target machine is a cluster with multiple multi-core CPUs
per node. Though multiple CPUs and multiple cores per node can significantly
increase performance, they do not simply multiply the performance by the num-
ber of CPUs/cores due to the contention effects on shared resources, but rather
typically provide less performance gain than additional nodes. Processes running
on the same node share the network, disk, and the memory. Processes running
on the same CPU additionally share the memory access paths and potentially
the cache. In regards to the cache, some multi-core CPUs share the L2 cache
(such as the Intel Core Duo, IBM POWER5, and Ultra SPARC T1/T2), whereas
other multi-core CPUs have private L2 caches per core (AMD Opteron, Intel Ita-
nium, IBM POWER6, and Ultra SPARC IV). We model the contention effects
as application slowdown (Section 4.9), and differentiate between CPU and core
slowdowns, with CPU slowdowns typically being lower. This also implies that
the allocation to CPUs and cores matters if fewer processes run per node than
there are CPUs/cores available. In the few cases where resource sharing among
processes of the same application provides a benefit, the slowdown would turn
into a speedup.

We assume that jobs and workload have the following characteristics:



– Jobs consist exclusively of processes (no threads) which is still the dominant
approach applied by users [2].

– Upon job submission, the number of processes (the job size) is specified but
the allocation to nodes, CPUs, and cores is left to the scheduler. The number
of processes is therefore fixed (no molding in the sense of changing the job
size).

– Runtime estimation and sufficient characteristics information to calculate
slowdowns are available, provided by users, historical databases, or com-
pilers. General research progress made by compilers, application profilers,
and by prediction from historical information suggests that roughly correct
runtime estimation by the system is becoming realistic for future schedulers
(see e.g. [3]). More optimistic is the assumption about slowdown estimations
being available which is farer in the future. This assumption helps to explore
possible benefits obtainable from such information and its exploitation in
advanced space/time-sharing job schedulers.

– The workload includes a large percentage of serial jobs and of parallel jobs
with power-of-two sizes, as observed in the analysis of job traces [9]. Also
bursts of submissions (submission of jobs with potentially similar character-
istics in close time proximity) are possible.

Table 1. Terms used throughout formulas in paper.

Term Meaning

Si Size (all processes) of Job i
Ti Runtime of Job i if scheduled individually with 1 process per node
PPNi Number of processes of Job i per node
Tmakespan Total runtime of workload
M Machine size in number of nodes
Ncore Number of cores per node
Ucore Core utilization
Unode Node utlization
Ugain Utilization gain for comparison of node usage
Rest,i Estimated response time of Job i in FCFS order at submission time
Ri Response time of Job i
Fslack Slack factor used for fairness check

4 G-LOMARC-TS Scheduling Algorithm

4.1 Scheduling Objectives

Terms used in the following discussion of formulas are listed and explained in
Table 1.



The objective of the scheduler is to obtain best possible utilization in phases
of high load, while keeping fairness acceptable. Higher utilization in high-load
phases likely leads to better average response times [12]. Note, that utilization
remains equal to the submitted load, independent of the scheduling policy, as
long as the scheduler is not saturated (i.e. can handle the offered load and jobs
do not queue up). Schedulers with little utilization support would delay jobs
until phases with lower load, whereas the machine may be idle or very lowly
loaded in such phases for schedulers with high utilization support.

Thus, we use utilization improvement in phases of high load as the primary
objective and fairness as a constraint. This requires to formally define high-load
phases, core and node utilization, utilization gain, fairness, and the scheduler
impact on fairness–which we do in the following.

To formalize utilization, we assume that Nwait is the number of jobs in the
waiting queue, NH is a threshold for rating as high load, tpi is a time period
between load changes (due to job termination, job start, and slice switches), and
tl, tj , and tk are certain time points of load changes, uni and uci are the number
of used nodes and used cores, respectively, during the time period tpi. High-load
phases PhaseH are defined as:

PhaseH,l = [tl with Nwait ≥ NH && Nwait < NH for tl−1, tj with Nwait < NH

&& any tkbetween l andj has Nwait ≥ NH ] (1)

Node utilization Unode, is the percentage of used-nodes time over the makespan.

Unode =
∑

i in timeperiods
(tpi ∗ uni)/(Tmakespan ∗M) (2)

Core utilization Ucore, is the percentage of used-cores time over the makespan.

Ucore =
∑

i in time periods
(tpi ∗ uci)/(Tmakespan ∗M ∗Ncore) (3)

Similarly, Unode during a high-load phase is the percentage of used-nodes time
over this phase and Ucore is the percentage of used-cores time over this phase.

Utilization gain Ugain (for details, see Section 4.6) is measured in saved usage
of nodes and used as the metric per individual scheduling decision. Nodes are
saved via increased core utilization–which, as mentioned above–is only a mean-
ingful overall metric if confined to phases of high load but always makes sense
per individual scheduling decision.

In regards to fairness, there exist different definitions of fairness in the lit-
erature. We consider any delay versus the response time without reordering
and coscheduling as a negative impact on fairness. Since our scheduling is basi-
cally FCFS with conservative backfilling, estimation of response times via sim-
ulation at submission time is possible, and we record the estimated response
times (Rest,i). Fairness is then provided by limiting the response-time changes



to Rmax,i (response time can increase due to the matchmaking reordering), cal-
culated via slack factor (Fslack):

Rmax,i = Fslack ∗Rest,i (4)

Finally, we define our objective as maximizing core utilization Ucore during
high-load phases PhaseH , while maintaining Ri ≤ Rmax,i. The optimization
is approximated by heuristics, making per-job-group decisions, and calculating
utilization gain per decision.

Figure 1 shows how high core utilization leads to saved nodes usage if 6 jobs
are scheduled by our G-LOMARC-TS compared to space sharing (note that for
Job 6, number of processes per job per node (PPN) is 2 with G-LOMARC-TS
and 4 with space sharing; i.e, the node requirements are different under the two
scheduling schemes).
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Fig. 1. Utilization gain with G-LOMARC-TS from increased core utilization for Job 1
to Job 6 (left) compared to space sharing (right).

4.2 General G-LOMARC-TS Scheduling Idea

Our G-LOMARC-TS supports both space sharing and semi time sharing which
we define more precisely as follows:

– Space sharing: Resources are allocated in a dedicated manner, but the ma-
chine (its ”space”) is shared, i.e., different parallel jobs may potentially run



at the same time if resource requirements permit them to be allocated to
different subsets of compute nodes.

– Semi time sharing: The CPUs/cores per SMP node of a cluster are allocated
to different jobs as illustrated in Figure 2. Semi time sharing does not share
and switch the core as done under standard time sharing. However, other
resources like memory, network, disk and potentially caches (Section 3) are
simultaneously shared. Since all cores remain responsive to communication,
no coordination of parallel processes is required as necessary under standard
time sharing.

 

Node X  Node Y 

An idle core 

A core running a process from Job 1 

A core running a process from Job 2 

A multi-core CPU 

Fig. 2. Coscheduling processes of different parallel jobs per node.

Processes of the same job have similar characteristics, contention on certain
resources is very likely for these processes if they share resources on the same
node. However, different jobs may have different characteristics and comple-
mentary resource usage, leading to less contention. Thus, our G-LOMARC-TS
scheduler supports the option of coscheduling, i.e. scheduling processes from dif-
ferent applications on the same nodes, see Figure 2. To make such coscheduling
effective, job combinations with high complementary resource usage should be
created. This does typically not apply if only pairing the first 2 jobs in the wait-
ing queue. Rather the scheduler needs to search among waiting and running
jobs for suitable matches. This means lookahead in the waiting queue vs. FCFS
order. If jobs move ahead by being coscheduled with the first job in the waiting
queue, typically the runtimes increase (due to contention). This delays the first
and other jobs originally in front of the coscheduled ones in the queue. Run-
times also increase for running jobs if waiting jobs are coscheduled with them.
Thus, the matchmaking leads to partial reordering of the waiting queue and
potential delays for running and waiting jobs. This is the reason why we need to
include the fairness criterion as described in Section 4.1 to avoid severe delays
or push-backs for individual jobs.

However, in some cases the processes of the same job may run well together
and may even benefit from intra-node communication (Section 3). In such cases,
space sharing is the better option. Thus, our scheduler supports both coschedul-
ing and individual scheduling.



In regards to coscheduling, the simplest approach is pairing two jobs as ap-
plied in the original LOMARC scheduler. However, sizes of jobs can be very dif-
ferent. Therefore grouping multiple jobs for coscheduling can increase the chance
for utilization gain. We have the following cases of forming groups: 1) matching
a waiting job with several other waiting jobs, 2) matching a waiting job with
several running jobs, and 3) matching a running job with several waiting jobs.

4.3 Time vs. Space Scheduling

In the following, we explain the space sharing and semi time sharing options
of G-LOMARC-TS in more detail. Space and semi time sharing can involve
different numbers of processes of the same job per node if we have more than 2
cores per node. For example, with 4 cores per node, we can have 1 or 2 processes
per job per node with semi time sharing, and we can have 1, 2, or 4 processes per
node per job with space sharing. Which number is chosen depends on the self
slowdown caused by resource contention of processes of the same job (details are
discussed in Section 4.9). If the self slowdown is severe, fewer processes per node
per job are meaningful. If the self slowdown is low or if there is even speedup,
more processes per node per job are better. For space sharing, the number of
processes per node is always chosen to utilize the space well, balancing runtime
with used cores by employing a threshold on acceptable self slowdown.

In our scheduler, short jobs are only scheduled via space sharing because
short jobs are not considered worth the effort of matchmaking. Otherwise, deci-
sions between space and semi time sharing are made adaptively when trying to
schedule the first job in the waiting queue. If the workload is low in the sense
that all jobs fit into the machine with one process per node, space sharing is
more beneficial because obtaining the best runtimes per job. A special case is
that there may not be enough space to schedule a job under space sharing but it
may be possible to start the job by coscheduling it with running jobs. Otherwise,
whether space or semi time sharing is applied depends on which option provides
better utilization gain for the current scheduling decision.

If a job’s self slowdown is low, it may benefit more with space sharing where
only self slowdown involves. However, if a job can find matched jobs with com-
plementary resource requirements and consequently with low coscheduling slow-
down caused by processes of different jobs (described in Section 4.9), it may gain
more with semi time sharing.

4.4 Scheduling Algorithm

The main part of the G-LOMARC-TS scheduling algorithm is shown in Figure
3. The algorithm description is generalized to work with any number of cores per
node (though our evaluation uses 4 cores per node). The scheduler tries different
scheduling possibilities: space sharing and semi time sharing matching the first
waiting job with other waiting jobs or running jobs. Space sharing is used if the
load is low. Serial jobs are treated specially as described in Section 4.5, before
attempting other forms of coscheduling. Then, the 3 forms of semi time sharing
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Fig. 3. Flow chart for main part of scheduling algorithm.



(Case 1 to Case 3) and space sharing with full usage of all cores per node (Case
5) are compared. The option with the highest utilization gain is selected. If all
of the latter options fail, space sharing with partial usage of the cores per node
(Case 4) is applied.

For coscheduling, groups are formed. A group is composed of a primary job
and one or multiple matched jobs. The primary job can be the first waiting job
or a running job. (Details about forming groups are described in 4.5.)

Then, the first waiting job can be scheduled/coscheduled in the following
ways:

– Case 1 (semi time sharing): coscheduled in a group with the first waiting
job as the primary job and several other waiting jobs as matched jobs (one
waiting : multiple waiting).

– Case 2 (semi time sharing): coscheduled in a group with the first waiting job
as the primary job and several running jobs as matched jobs (one waiting :
multiple running).

– Case 3 (semi time sharing): coscheduled in a group with a running job as
the primary job and several waiting jobs including the first one as matched
jobs (one running : multiple waiting).

– Case 4 (space sharing): scheduled individually with PPN = 1 or 2 or 4 ...
or M − 2

– Case 5 (space sharing): scheduled individually with PPN = M .

A similar algorithm is applied when attempting to backfill jobs. However,
only Case 1, Case 4, and Case 5 are applied.

Note that groups of jobs are scheduled as a whole and adding individual jobs
later is not considered. Nevertheless, a job may be matched more than once over
its runtime since the group may be disbanded and the job become an individual
job again. Disbandment of a group happens under the following conditions:

– The primary job terminates, while at least one matched job is still running.
– All matched jobs terminate, while the primary job is still running.

This also means that the scheduler makes no attempt to add jobs to a running
group if some of the matched jobs terminate.

4.5 Group Formation

Forming groups is an NP-complete problem due to the many possibilities to
combine jobs with different runtimes and sizes and due to slowdowns depending
on the job combination. To make the problem tractable, we apply intelligent
heuristics to form groups.

As mentioned above, a group is composed of a primary job and one or mul-
tiple matched jobs which may be waiting or running jobs. Per node, only two
jobs are coscheduled (one is the primary job, the other one is one of the matched
jobs). If the primary job is a running job, we choose of the least delayed jobs
(since coscheduling implies slowdown).



After the primary job has been decided, the matched jobs are selected with
the following steps (if the primary is the first waiting job, the matched jobs are
running or other waiting jobs; if the primary is a running job, the matched jobs
are waiting jobs):

1. Pre-selection: If a job and the primary job do not slow down each other
severely (less than a threshold), the job is selected as a candidate for matched
jobs.

2. Sorting: Candidate jobs are sorted in increasing order of delay if they are
running jobs; if they are waiting jobs, their original FCFS order is kept. Then
the sorted candidate jobs are divided into blocks, and the jobs per block are
sorted in decreasing order of their remaining runtime.1

3. First block: A ”window” with the same node requirements as the primary
job ”slides” over the first block (see Figure 4). Each time, the set of jobs
within the window’s range is selected as matched jobs (though we permit the
aggregated node requirements of the matched jobs to be slightly larger than
the window). The set with the highest utilization gain achieved is selected
as the best group. Likely, most of the matched jobs in the best group are
from the first block if including the fairness constraint.

4. Other blocks: If the primary job is not coscheduled over all its nodes (there
is still space left) in the best group, jobs from the remaining blocks may be
added if this leads to an increase in utilization gain. Each new group which
increases the utilization gain is stored.

5. Purify: Matched jobs which slow down the primary job most but do not
contribute to the utilization gain are removed from the group.

6. Fairness check: A group which causes any other job to be delayed severely
(more than Rmax) is discarded. Groups kept in Step 4 are tested for fairness
in decreasing order of utilization gain until a group passes the check.

 

Fig. 4. ”Window” with shape of primary job sliding over first block to search for a set
of matched jobs.

1 The order could also be chosen as least delayed vs. their estimated response time
but experimental results show virtually no difference.



4.6 Utilization-Gain Calculation

If the cores per node are better utilized (more processes running per node, fewer
idle cores), fewer nodes will be used to run a specific number of jobs. Thus, as
discussed in Section 4.1, this means that high core utilization leads to saved node
usage. Utilization gain is calculated as the ratio of saved nodes to used nodes
which we first explain on the basis of the example shown in Figure 5. Figure 5
(left) shows the resource requirements of Job 1, 2 and 3 when no coscheduling
scheme is applied, i.e. the runtime does not have any slowdown. Figure 5 (right)
shows a group formed by these three jobs with Job 3 as the primary job and Job
1 and 2 as matched jobs. In this group, each job has two processes per node, i.e.,
the node requirement is half of its process number and the runtime is extended
by the slowdown. After Tg time, Job 3 in the group finishes running and the
group is consequently disbanded. All the work of Job 2 and 3 is done during the
group execution and part of the work of Job 1 is done. Let us assume that, in
order to do the same amount of work, Job 1 has to spend T1 time without any
coscheduling scheme, Job 2 spends T2, and Job 3 spends T3. We compare the
node usage of the group to the sum of the node usages of the three jobs without
coscheduling and calculate the utilization gain Ugain of the group as

Ugain = (T1 ∗ S1 ∗Ncores + T2 ∗ S2 ∗Ncores + T3 ∗ S3 ∗Ncores −
Tg ∗ S3 ∗Ncores/2) / (Tg ∗ S3 ∗Ncores/2)

= (T1 ∗ S1 + T2 ∗ S2 + T3 ∗ S3 − Tg ∗ S3/2)/(Tg ∗ S3/2) (5)
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Fig. 5. Node usage of Job 1 to Job 3 with space sharing (left) and semi time sharing,
i.e. coscheduled (right).

To generalize the calculation for all groups, we assume that a primary Job A
coschedules with N matched jobs (Job 1, 2, 3, ... Job n). Suppose that SLA,i is
the slowdown of Job A when A coschedules with Job i; SLi,A is the slowdown
of Job i when it coschedules with A. There are Q time periods tq (1 ≤ q ≤ Q)
during the coscheduling of the jobs between changes in the coscheduling status



(jobs terminating). Q ≤ N because the group is disbanded if all matched jobs or
the primary job have terminated. To make the formula easier to understand, and
without loss any generalization, we assume that the sum of the node requirements
of all matched jobs is less than or equal to that of the primary job (the real
algorithm permits that the node requirement of the matched jobs is slightly
greater than the primary job).

In each time period q, there are Fq matched jobs running and the indexes
of the matched jobs are x1, x2, x3, ..., xFq

. SLq (1 ≤ q ≤ Q) is the maximum
slowdown of Job A when A coschedules with the matched Fq jobs running in
time period q. Then, SLq = max{SLA,x1 , SLA,x2 , . . . , SLA,xFq

} and the sum of
all time periods ttotal is ttotal =

∑
1≤q≤Q tq.

Then, the general formula for calculating the utilization gain is:

Ugain = (
∑

1≤q≤Q

(
∑

i in[x1,x2,...,xFq ]

(tq ∗ Si/SLi,A) + tq ∗ SA/SLq)−

ttotal ∗ SA/PPNA) / (ttotal ∗ SA/PPNA) (6)

Note that utilization gain is defined as a relative gain. This means that
matching shorter jobs is given preference if other parameters are the same. Ex-
perimental results show that this gives a minor benefit vs. using absolute gain
though it does not make any substantial difference.

4.7 Incorporation into Scojo-PECT

Scojo-PECT [5] employs preemption to support scheduling of shorter jobs even
in the presence of long-running. Scojo-PECT preempts jobs to swap space which
is easy to support in the machine environment and avoids the memory pressure
which gang scheduling imposes. Scojo-PECT does not require hard-to-support
checkpointing but subsequently imposes the constraint that preempted jobs are
later restarted on the same resources as migration is not possible without check-
pointing [13]. To make preemption to disk affordable and avoid that jobs are
delayed because of problems to get access to their resources again, Scojo-PECT
employs coarse-grain time slices and preempts all jobs. Jobs are sorted according
to job type based on their runtime (we currently support short, medium, and
long jobs), and scheduled in different virtual machines with a time slice per job
type / virtual machine. The slice time for each job type is determined on the
basis of typical job-type mixes and the administrator’s policies and can be recal-
culated in regular time intervals. One slice for each type is scheduled per time
interval (since short jobs backfill into other slices in most cases, their slice is only
scheduled if short jobs are waiting), and the slice times can be decided at the
beginning of each interval. This permits controlling the resource allocation via
different policies at different times of the day or via adaptive allocation which
considers the current load of the machine [12]. In the context of this paper, the
relative slice times are kept static.

Jobs per job type are scheduled in FCFS. Additionally, the typical backfilling
is applied. Backfilling means that jobs can move ahead in the queue if they do not



delay other jobs as specified by the backfilling approach. Scojo-PECT can either
use EASY or conservative backfilling. In the presented work, we use conservative
backfilling which requires that none of the jobs in the queue are delayed.

Since the separation of jobs into different types is likely to increase the frag-
mentation because job sizes and job runtimes tend to be correlated, Scojo-PECT
employs additionally safe non-type slice backfilling. This means that preempted
or waiting jobs of a different type may be backfilled into a slice-with this back-
filling only being valid until the end of the slice-if they do not delay any job of
the slice type or of their own type according to the backfilling approach applied.

If setting time slices (resource shares) for equal service, Scojo-PECT provides
similar service to medium and long jobs as standard space sharing with priorities
but improves overall response times by about 50% by serving short jobs better
[5].

The basic framework remains to be Scojo-PECT, and G-LOMARC-TS is
applied per virtual machine. Only jobs of the same type are matched, though
non-type slice backfilling is still applied. Thus, G-LOMARC-TS schedules jobs
per virtual machine and does not even need to know about the existence of time
slices. Groups are preempted and resumed as well as non-type slice backfilled
like individual jobs. By representing this at job level, groups remain transpar-
ent to Scojo-PECT. FCFS is kept as basic scheduling order per virtual machine
with constrained reordering as discussed above. The FCFS scheduling order and
the compressed (keeping backfilled jobs in their backfill position even if jobs
terminate earlier than estimated) conservative backfilling permit estimation of
response times via simulation. As explained in Section 4.1, the estimated re-
sponse times and the slack factor define the constraints.

4.8 Basic Job Creation

For the evaluation of our scheduler, we use the Lublin-Feitelson statistical work-
load model [8] which is the best available synthetic workload model (it includes
power-of-two sizes, sequential jobs, correlations between runtimes and sizes, and
varying inter-arrival times at different times of the day). Though the Lublin-
Feitelson workload model was derived from statistical evaluation of 3 real-life
workload traces, it generalizes the workload generation to the point that differ-
ent machine sizes can be chosen. However, the Lublin-Feitelson model assumes
that applications are run with 1 process per compute node though we need to
model a hierarchical structure with multiple cores and subsequently the possibil-
ity of multiple processes per node. Thus, using the number of nodes as machine
size would create a load which is too low. Multiplying the number of nodes by
the number of cores per node would create a machine load which is too high
because the additional cores add less performance gain than independent nodes
[2]. Our goal is to create a workload with a similar load (utilization) and simi-
lar job/size characteristics as the original workload to have a similarly realistic
model of the real world. In detail this means:

– Keep the runtimes of jobs the same, while letting jobs double or quadruple
the number of processes by exploiting several cores per node or leaving the



process number unchanged, depending on the modeled self slowdown (see
Section 4.9 for definitions of SLscr and SLsno). If the self slowdown of having
4 processes per node is less than a threshold MAX SL (Table 6), the job
size is quadrupled. If the self slowdown of having 2 processes per node is
less than a smaller threshold SELF SL 2 (Table 6), the job size is doubled.
Thus, we adjust to both multiple cores per node and subsequent resource
contention. Note that the modification of the workload corresponds to our
model of space sharing as defined in Section 4.3 and used for the evaluation.

– Keep the percentage of serial jobs the same.
– Keep the percentage of power-of-two size jobs the same.

Note that the proper modification of the workload can be verified (which we
did) by checking the average response times or average relative response times
which should remain similar to the combination of the original machine and
workload model if applying space sharing per virtual machine.

The rationale for our modification is that with more cores being available,
users would likely run applications with more processes and tackle larger problem
sizes. Moreover, since average runtimes were found to depend on the relative work
submitted to the machine and not on the shape of the jobs, this is one of the
feasible options of adjustment [12].

The detailed modification applied per job is described in the following formula
(nSize is the new size and oSize is the original size):

nSize =





oSize oSize = 1||(SLsno > SELF SL 2
&& SLscr ∗ SLsno > MAX SL)

oSize ∗ 2/SLsno oSize > 1&&SLsno ≤ SELF SL 2
&& SLscr ∗ SLsno > MAX SL

oSize ∗ 4/SLscr/SLsno oSize > 1&&SLscr ∗ SLsno ≤ MAX SL

(7)

4.9 Slowdown Modeling

As mentioned above, competition on shared resources like memory, network,
disk, caches (if cache shared among cores) causes slowdown. This not only applies
if different applications share resources (coscheduling slowdown SLcos) but also
if processes of the same application share resources per node. Slowdowns can
differ depending on whether the processes run on different CPUs (node self
slowdown SLsno) or different cores of the same CPU (core self slowdown SLscr).
For simplification, we include any relative runtime changes due to changing the
number of nodes used by exploiting different numbers of cores/CPUs per node
in the self slowdown. We also include any potential memory contention in the
slowdowns (analysis of workload traces from [6] suggests that typically 95% of
the jobs need ≤ 50% of the memory per node, i.e. that memory contention is
not a major issue if only 2 jobs are coscheduled). Slowdowns depend on the
applications’ characteristics in regards to the usage of resources and require
proper slowdown metrics. Since resource usage characteristics are not available
and would already require assumptions and since the slowdown metric goes



beyond the scope of this paper, we chose to directly model slowdowns statistically
based on available experimental data.

To derive the statistical distribution of slowdowns, we took data from dif-
ferent experimental sources. Thus, we used data from [2] which investigates the
performance gain from using dual-core vs. single-core AMD nodes in the Cray
Red Storm system at Sandia National Laboratories. If comparing the normal-
ized grind times of the PARTISN benchmark (the only benchmark with all data
needed) for the same number of processes on single-core CPUs (Tsingle) and
dual-core CPUs (Tdual), we obtain the slowdown as SLscr = 2 ∗ Tdual/Tsingle.
The calculated slowdowns are shown in Table 2 (showing only machine sizes
relevant to our simulation).

Table 2. SLscr calculated from data for the PARTISN benchmark in [2].

Benchmark and 32P/16N vs. 64P/32N vs. 128P/64N vs. 256P/128N vs.
configuration 32P/32N 64P/64N 128P/128N 256P/256N

Diffusion: 243 problems 1.31 1.46 1.30 1.42
Transport: 243 problems 1.05 1.19 1.00 1.16
Diffusion: 483 problems 1.61 1.51 1.48 1.57
Transport: 483 problems 1.29 1.15 1.09 1.21

Table 3. SLscr and SLsno for NAS benchmarks, as measured in [14]

.

Allocation of 16 processes to nodes IS EP FT CG LU BT* MG SP*

8N vs. 16N, multi-core per node 1.37 1.05 1.27 1.04 1.08 1.11 1.22 1.47
8N vs. 16N, multi-CPU per node 1.35 1.05 1.16 0.99 0.99 1.00 1.01 1.01

From [14], we also obtained data for SLscr by investigating several NAS
benchmarks. Though the experiments only involved 8 and 16 nodes, the data
range is similar. The same paper also measured SLsno shown in Table 3. Because
the data for SLscr is similar to Table 2, we consider SLsno from Table 3 to be
generally valid. Note that the data in Table 2 shows that slowdowns are not very
sensitive to job size but more dependent on problem size and the problem itself.
The latter two, however, are exactly what we capture with a statistical model.

For data in regards to SLcos, we refer to [20] which investigates the coschedul-
ing slowdown for combinations of NAS benchmarks and combinations of syn-
thetic benchmarks (with different communication patterns, different communi-
cation percentages and different message sizes), run on 8, 32, and 64 nodes.

Taking the data from Table 2, Table 3, and from [20] (for SLcos) as the typical
spread of possible slowdowns, we calculated the distribution of slowdowns and



classified them into different ranges as shown in Table 4.2 For example, in regards
to SLscr, 17% of the data above falls into the range [1.2, 1.3).

Table 4. Modeled distribution of slowdowns.

range SLscr SLsno SLcos

[0.9, 1.0) 0% 25% 0%
[1.0, 1.1) 25% 45% 68%
[1.1, 1.2) 17% 12% 17%
[1.2, 1.3) 17% 5% 7%
[1.3, 1.4) 13% 13% 3%
[1.4, 1.5) 17% 0% 2%
[1.5, 1.6) 8% 0% 1%
[1.6, 1.7) 3% 0% 1%
[1.7, 1.8) 0% 0% 1%

To simplify the modeling and the slowdown calculation, processes of the same
job are currently allocated to cores of different CPUs per node, while processes of
different jobs are allocated to the cores of the same CPU. This captures the most
frequent cases that processes of the same job run better on different CPUs rather
than on the cores of the same CPU (future extensions toward more differentiated
performance considerations are possible). If there are Ncore processes of the same
job, they occupy all cores in a node.

5 Experimental Results

5.1 Experimental Set-up

We perform the evaluation via discrete event simulation with the workload model
described in Section 4.8. Each test with the Lublin-Feitelson workload model is
run with 3 random workloads (each 10,000 jobs) and results are averaged. The
cluster used in the simulation has two dual-core CPUs (4 cores totally) per
node. Table 5 shows the characteristics of the workloads. Workload W1 is the
workload created with the original slightly adjusted Lublin parameters (since
our scheduler currently involves 5% overhead,3 we have reduced the workload in
our scheduler vs. the original workload by 5% via slightly increasing the inter-
arrival times). We also tested a busier Workload W2 which sets the α parameter
in the inter-arrival time distribution to a smaller value and subsequently creates
shorter inter-arrival times.

In regards to response-time estimation, we applied an adjustment by a factor
of 0.75 to reflect that the estimates do not consider the benefits from non-type
2 Minor adjustments of rounded values are done to obtain 100%.
3 If jobs continue to run in the next slice, they do not actually need to be preempted

but this reduction in overhead is currently not considered.



slice backfilling and coscheduling and jobs therefore run on average faster than
estimated.

The parameters of Scojo-PECT are set to 30% relative time share for medium
jobs and 70% relative time share for long jobs, 60 sec overhead per time slice
for preemption/resumption of the jobs, and 1h intervals for scheduling one short
(optional), one medium and one long time slice. Jobs are classified as short if
their runtime is ≤ 10 minutes, as medium if their runtime is ≤ 3 hours, and as
long otherwise.

Table 5. Workload characteristics.

Parameter Value

W1 (normal load) α = 10.33 → Load = 10.6
W2 (high load) α = 9.83 → Load= 13.0
Machine size M 128
Percentage of short jobs NS 64%
Percentage of medium jobs NM 19.5% (54% of medium and long)
Percentage of long jobs NL 16.5% (46% of medium and long)
Work of short jobs WS 0.5%
Work of medium jobs WM 26.0%
Work of long jobs WL 73.5%
Percentage of serial jobs 24%
Percentage of jobs with power-of-two sizes 75%

To evaluate the performance of our algorithm, we compare to following ap-
proaches:

– SSP : Standard space sharing (only one job per node with 1, 2 or 4 processes,
depending on the self slowdown as discussed in Section 4.3)

– GLTS: full group and time/space sharing G-LOMARC-TS

PPN =





1 jobsize = 1||(SLsno > SELF SL 2
&& SLscr ∗ SLsno > MAX SL)

2 jobsize > 1&&SLsno ≤ SELF SL 2
&& SLscr ∗ SLsno > MAX SL

4 jobsize > 1&&SLscr ∗ SLsno ≤ MAX SL

(8)

– CST : Only coscheduling and matchmaking two jobs, while taking the best
suitable match

– CSTWS: Only coscheduling and matchmaking two jobs, while taking the
first match

We also experiment with different variants of G-LOMARC-TS:

– FBO: Only matchmaking in the first block
– NS: No sorting per block



– NH: No sorting and no blocks, while selecting the first suitable group
All scheduling approaches use conservative backfilling to support prediction.
Table 6 shows all scheduler parameters used in our experiments.

Table 6. Scheduler parameters used in the experiments.

Parameter Value Explanation

MAX SL 1.25 Maximum slowdown that a job should experience
SELF SL 2 1.12 Maximum self slowdown with 2 processes of a job

per node
MIN UTILGAIN 0.45 Minimum utilization gain a group should achieve
BLOCK SIZE 16 Number of jobs per block
MATCHED LARGER 0.125 X − Y ≤ MATCHED EXCEED PRIM ∗ Y

if X is the sum of the node requirements of all
matched jobs and Y is the node requirement of
the primary job

RUNNING RPIM NUM 8 Number of running jobs which are considered
as primary jobs

MATCHED LONGER 3,000 Maximum time in seconds by which a matched
job can be longer than the the primary job in a
group

Fslack 1.5 Maximum slack factor for a job
NH 12 Threshold rating high-load phases

We used the following metrics for comparison:

– Average bounded relative response time4(RR): response time in relation to
pure runtime (without time slicing) while using cut-offs for very short jobs
(only relevant for all-job evaluation)

– Core utilization Ucore during high-load phases (see Section 4.6)

5.2 General Performance Results

The performance results (measured in RR) for G-LOMARC-TS compared to
space sharing (SSP ) and matchmaking for only two jobs (CST and CSTWS)
are shown in Figure 6. The results show that the full algorithm of G-LOMARC-
TS (GLTS) compared to SSP performs by 34.9% better for medium jobs, by
53.2% for long jobs, and 35.5% for all jobs. Note that this means that long jobs
benefit more. Compared to matching only two jobs with best match (CST ),
the improvement is 19.4% for medium jobs, 16.1% for long jobs, and 13.9%
for all jobs. Compared to matching only two jobs with the first suitable match

4 The bounded relative response time is often called bounded slowdown. We avoid this
term to avoid confusion with the slowdown due to resource contention.



(CSTWS), the improvement is 28.6% for medium jobs, 31.5% for long jobs, and
23.2% for all jobs. This demonstrates that G-LOMARC-TS significantly im-
proves average relative response times and that group matchmaking contributes
significantly to the improvements.

Looking into the details of group matchmaking, we found an average of 2.5
jobs per group and about 1,500 (slightly depending on the concrete workload)
groups being formed. Since the number of matched jobs is decided by the size of
the primary job, on average, a job cannot match with many other jobs, and there
are cases with only two jobs in a group as well as groups with more jobs. However,
as discussed, we still obtain a significant improvement from group matchmaking.
Since only medium and long jobs are coscheduled and they account for 36% of all
jobs, this means that 41.7% of the jobs that are eligible for coscheduling actually
run in a group.

Figure 7 shows core utilization for high-load phases. We see that GLTS
improves utilization by 26.8% vs. SSP and by 6.0% and 10.1% vs. CST and
CSTWS. This demonstrates that the source of the relative response time im-
provements is the increased core utilization in high-load phases and that the
increase vs. SSP is significant.

In regards to fairness, the distribution of delays shows that on average jobs
finish at their predicted response time. The 75% percentile is a delay factor of
1.3 for both M and L jobs and the 95% percentile is a factor of 1.4. Thus, the
scheduler meets its goal of supporting fairness well.

5.3 Impact of Different Heuristics and Machine Load

Figure 6 also includes results of several variants of G-LOMARC-TS. However,
we do not see much impact from using the full matchmaking algorithm (GLTS)
vs. simplifications which only match within the first block (FBO), do not sort
(NS), or only selecting the first suitable group (NH). The reason is that the
number of candidate jobs for matchmaking is less than 4 in 85% of the cases.

For Workload W2, the situation looks different. The results in Figure 8 show
that GLTS achieves the best results with optimum group size. NH does not
depend on block size and is better than GLTS with small and large block size
for medium jobs but becomes significantly worse than GLTS with optimum
block size. FBO is much worse than GLTS if the block size is small (because
fewer jobs are considered) and becomes similar to GLTS if block sizes are large
enough. NS is especially worse than GLTS for the optimum block size. Notable
is that the optimum block size is 12 for both medium and long jobs. If the block
size is too small, not enough matching candidates are available in the first block
and more jobs are selected from the other blocks. If the block size is too large,
jobs may be matched from the end of the first block. In both cases, jobs from
further down the queue may move ahead and delay the jobs further up in the
queue. Under Workload W2, the average group size is 2.6 (almost unchanged)
but about 2,000 groups are formed which is about 25% more than for the basic
workload. This is due to the fact that the waiting queues become longer and
more matching candidates are available.
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SPP cannot even handle Workload W2 and jobs queue-up as shown by an
increased makespan-which is not the case for G-LOMARC-TS. Correspondingly,
with SPP , the average relative response times become 17.5 (medium jobs), 36.74
(long jobs), and 10.65 (all jobs) which is much longer than G-LOMARC-TS.
This demonstrates that our scheduler not only runs significantly better if the
workload is normal (W1) but also can handle a much higher workload (W2)
since the increased utilization makes it possible to run more jobs over the same
time period.

Average Relative Response Time

2

3

4

5

6

7

8

9

Slack Factor

A
vg

. R
R



Avg. RR (All) 3.86 3.51 3.04 2.85 2.73 2.74 2.66 2.66 2.72 2.7 2.76 2.62

Avg. RR (Medium) 8.5 7.75 6.77 5.98 5.75 5.69 5.4 5.4 5.67 5.64 5.75 5.47

Avg. RR (Long) 7.49 6.4 4.63 4.35 4.01 4.15 4.04 4.04 4.04 3.93 4.31 3.8

1 1.2 1.4 1.5 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Fig. 9. Average relative response time for Workload W1 with different slack factors
Fslack.

5.4 Fairness vs. Utilization

Next we investigate the trade-off between optimization for highest utilization
gain and fairness by running the G-LOMARC-TS with different slack factors.
The results are shown in Figure 9. If the slack factor is low, more possible
groups are rejected which leads to higher average relative response times. With
increasing slack factor, more groups pass the fairness check and average relative
response times improve. This is true up to a certain slack factor from which on
the results become approximately equal. This can be explained by most suitable
groups pass the check if the slack factor reaches a certain value. As can be seen



from the figure, the threshold is Fslack = 1.5 (used in all experiments above).
Thus, larger slack factors than that certain value make no sense. Smaller slack
factors may be chosen if fairness is rated higher than relative response times.

6 Summary and Conclusion

We have presented the G-LOMARC-TS scheduler which incorporates both space
sharing and semi time sharing on clusters with multi-core nodes. G-LOMARC-
TS employs group matchmaking and constraints the matchmaking by fairness
to individual jobs. G-LOMARC-TS is integrated with the coarse-grain preemp-
tive Scojo-PECT scheduler by applying G-LOMARC-TS per virtual machine
managed in Scojo-PECT. Relative response times and core utilization are sig-
nificantly improved with G-LOMARC-TS, and the scheduler can handle heavier
workloads than space sharing per virtual machine, i.e. increases the saturation
point. The results also demonstrate that group matchmaking contributes signif-
icantly to the improvements.
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