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Abstract. It is important to identify scalability constraints in existing
job scheduling software as they are applied to next generation paral-
lel systems. In this paper, we analyze the scalability of job scheduling
and job dispatching functions in the IBM LoadLeveler job scheduler. To
enable this scalability study, we propose and implement a new virtualiza-
tion method to deploy different size LoadLeveler clusters with minimal
number of physical machines. Our scalability studies with the virtual-
ization show that the LoadLeveler resource manager can comfortably
handle over 12,000 compute nodes, the largest scale we have tested so
far. However, our study shows that the static resource matching in the
scheduling cycle and job object processing during the hierarchical job
launching are two impediments for the scalability of LoadLeveler.

1 Introduction

Job scheduling software is a key piece of system software to maximize the uti-
lization of parallel computing systems. As these systems increase in size with
one generation of systems having more processors and compute power than the
previous generation, the performance of job scheduling becomes crucial to opti-
mize the overall system utilization. To support the current and next generation
of massively parallel systems (MPP), the job scheduler must scale in several
dimensions. It must be able to handle large number of jobs, it must be able to
manage large number of resources, it should match a resource to a job quickly,
and it should be able to dispatch the job on to the resource in the fastest possible
time.

During the last year, we have been working on analyzing the scalability of
IBM Tivoli workload scheduler LoadLeveler in the context of the IBM DARPA
HPCS program [2]. Our paper is a documentation of our scalability study and
it presents some insights gained during this process. It is commonly known that
the essential requirement for scalability study is having access to a representative
large scale system. We indeed have access to fifty 8-processor pSeries machines



but our goal is to study the scalablity beyond a thousand nodes so the fifty nodes
are not sufficient for this study. To overcome the resource limitation, we develop
a new virtualization mechanism so that we can scalably emulate thousands of
LoadLeveler virtual nodes on few physical machines while representing a large
scale cluster. With this virtualization, we are able to build up to a 12,000 node
LoadLeveler cluster on the fifty physical nodes.

Using our virtualization system, we study the scalability of LoadLeveler in its
capability in resource monitoring, in identifying and scheduling jobs to resources,
and in dispatching jobs to the allocated resources. Our paper makes the following
contributions:

– Introduces lightweight virtualization into LoadLeveler that isolates and exe-
cutes multiple instances of LoadLeveler node daemons on a physical machine.
This allows creation of a large LoadLeveler cluster with minimal physical
machine and memory requirements (Section 3).

– Analyze the scalability of job scheduling algorithms in LoadLeveler for se-
quential and parallel jobs. The performance of different phases in the schedul-
ing algorithm is explored. Static resource matching is determined to be a
scalability problem. Approaches to address this problem are described (Sec-
tion 4.2).

– Investigate the scalability of hierarchical job launching in LoadLeveler and
identify potential scalability hotspots with processing job object at various
levels of the hierarchical tree (Section 2.2).

The paper starts with an overview of the LoadLeveler architecture in the
next section.

2 LoadLeveler Overview

LoadLeveler [3] is a distributed job scheduling product of IBM. It is developed
based on the licensed codes from the Condor system [13] in mid 1990. The archi-
tectural framework of LoadLeveler, as shown in Figure 1, still retains the core
structure of Condor. The Center Manager (CM) consists of two functional units:
the Collector and the Negotiator. The Collector receives the resource informa-
tion sent by a daemon called StartD running on the machine. 4 LoadLeveler
ensures there is only one StartD on each machine with sole responsibility for
reporting the machine state, resources and attributes, utilization, and managing
presence heartbeats. The Negotiator applies this resource information to allocate
machines matching the execution requirements of user jobs.

Jobs are submitted to LoadLeveler through the Scheduling daemon (SchedD).
SchedD is responsible for maintaining a local job queue and persisting job state,
as well as coordinating the activities of assigning execution nodes to the job,
and launching the job. Multiple SchedD machines can be defined for a cluster to
eliminate bottlenecks with large job submissions requirements. SchedD informs

4 The terms ”machine” and ”compute node” are used interchangeably.



the Negotiator about each job arrival and the Negotiator applies scheduling al-
gorithms to allocate computational and other resources to jobs. The resource
assignments are returned to the SchedD which forwards the job launch infor-
mation to the StartDs on the allocated executing machines. Execution at the
node is managed by the local StartD which forks a Starter process to initiate
and control the job. Time sharing of the node is enabled by forking multiple
Starters.

Central Manager Machine

Negotiator

Collector

SchedD

SchedD

SchedD
StartD

Starter

Scheduling machines Executing machines

Fig. 1. LoadLeveler Architecture

LoadLeveler continually evolves to support new hardware architectures, and
leverage novel software features. Examples include high bandwidth interconnec-
tion switches (e.g. SP2 switch [12], InfiniBand [10]) hardware multi-threading,
and Blue Gene [6, 5]. Supported software features include AIX’s WLM [1], and
various Linux distributions [4]. Recent development has emphasized support for
highly parallel applications running on large scaled clusters with high speed
interconnection instead of flocks of workstations [7].

The following sub-sections describe in more detail scheduling in Negotiator,
and hierarchical communication scheme for scalable job dispatching. This mate-
rial provides the necessary background for our scalability studies covered later
in this paper:

2.1 Scheduling in Negotiator

The Negotiator of CM processes incoming jobs in two sequential phases: schedul-
ing requested resources to jobs and coordinating with SchedD to dispatch jobs
to assigned machines for execution.
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Fig. 2. Hierarchical Communication Structure

During the scheduling phase, Negotiator logically performs the following
steps:

1. Select machines that have the capabilities to match the requirements of
the job; Exemplary capabilities include machine architecture type (x86,
POWER), job class definitions, and high-speed switch connectivity.

2. Select capable machines that have the dynamic capacities to assign to the
job; Exemplary capacities include unused job class, unfilled multiprogram-
ming level, and spare switch adapters.

3. Assign the machine(s) to the job based on specific scheduling algorithms
and administrative policies; for example, backfill [9] and fairshare are two of
scheduling algorithms in LoadLeveler.

At the end of scheduling phase, Negotiator sends successful machines-to-
job assignments to SchedD, which dispatches the job to all assigned machines
through the StartDs on the machines.

2.2 Hierarchical Scheme for Job Dispatching

In a very large cluster, information and command propagation from a single
machine to a large number of other machines can be parallelized (e.g. using
multi-threading) for faster communication. However, the number of open com-
munication connections on a single machine may still be a potential performance
issue resulting from overflow of communication buffers and OS data structures.
The hierarchical scheme provides the benefit of parallel communication opera-
tions by dividing the connections through spanning tree.



The generic hierarchical communication scheme implemented by LoadLeveler [8]
is shown in Figure 2 with an exemplary fan-out number of 3. When a job is
scheduled by the Negotiator a job object of assigned machines and job specific
information is sent to SchedD. Then, the SchedD selects a master StartD from
the machine list, constructs a hierarchical spanning tree of machines using the
configurable fan-out parameter, and sends the tree structure and job informa-
tion to the master StartD. The master StartD repackages the job object into new
objects customized for the subtree headed by each immediate child StartD and
forwards the information. Each child StartD repeats this process for its children
and continues the distribution to the leaf nodes of the tree. In this process, the
head StartD of any branch of the tree are only sent with the subpart of job
object consisting of a sublist of machines and job information. The propagation
of the tree is successful when the master StartD receives an acknowledgement
from all the leaves back through the associated head branches. When the tree is
constructed the master StartD uses it to send a command to all nodes to start
the job. Each StartD then launches a Starter process, which initiates the job
and locally manages its execution.

3 Virtual Node Method for Scalability Analysis

Analyzing the performance and scalability of LoadLeveler requires a cluster of
at least a few thousand compute nodes. Building and maintaining such a large
scale cluster for this analysis alone is not cost effective. From the perspective
of the CM the size of the cluster is the number of StartD processes reporting
to the CM. A StartD instance is the component in LoadLeveler that represents
a compute node. StartD reports node resources to the central manager (CM),
manages hierarchical communication, and initiates (through the Starter) the
launch of the job executable at the node. Thus, the key to creating a compute
cluster whose apparent size is greater than the number of physical machines is
to allow multiple StartD to execute independently and in mutual isolation on
each physical node. However, the design point of LoadLeveler is a single StartD
process for each physical machine node. Communication ports are the identical
for all StartD as specified in a central configuration file and can not be shared
among StartD instances on the same machine. Furthermore, each StartD must
appear to both the CM and other StartDs that it is located at a dedicated and
unique ip address. A secondary issue is that the configuration file read by each
StartD also contains information about spool and log file locations which cannot
be shared between StartD. So the challenge is to provide an environment to
StartD where it is essentially on a private network.

One potential approach is to virtualize the hardware at each physical com-
pute node so that multiple operating system images (OS) execute concurrently,
each running a single StartD. This provides the requisite isolation of network
bindings and configuration settings. The drawback is the memory, disk, and pro-
cessor overhead of using the OS as a isolation container. A StartD process re-
quires about 25MB of memory including the Starter process, so an OS container



is inefficient. A better approach is lightweight virtualization so that multiple
StartDs execute in isolation within a single OS image. It is reasonable to expect
that a lightweight solution on a physical machine with 4 GB of memory is ca-
pable of hosting approximately 160 ’virtual’ compute nodes, more when using
memory swap space on disk. A further practical challenge to lightweight virtual-
ization is that the initial implementation cannot involve modification of product
code. The product group is willing to make minor modifications to network in-
terface binding to simplify network isolation, but only if substantial benefit of
emulating large clusters is demonstrated.

The adopted methodology for lightweight virtualization of StartD nodes is
now described. The initial hurdle is to generate a unique configuration file for
each virtual StartD. When the StartD process is activated, it reads a configu-
ration file from a fixed location which defines daemon communication intervals,
locations for log files, spool directories, ports on which it listens for external
traffic. Then it spawns a thread that binds to its set of ports and puts itself in
a waiting loop for any external communication. As part of job launches, StartD
forks off new Starter processes which also read this configuration file. Thus, the
configuration file cannot be modified while the StartD process is active. Fortu-
nately, the LoadLeveler development team identified an an environment variable
LOADL CONFIG which when set is recognized by StartD as an override to the
global configuration file. The original intent of this variable is to manage jobs
in multi-cluster LoadLeveler environment [3]. Used here each StartD is provided
with a unique set configuration parameters by setting LOADL CONFIG to a corre-
sponding file prior to instantiating each StartD process. However, the StartDs
remain identified to the CM as a single compute node because they share a
common IP address and conflict over the binding to communications ports.

Tying the communication of each StartD to a different IP requires a flexi-
ble method to create multiple IP addresses and use them for CM, SchedD, and
StartD communications. Because code modification is not permitted in the proof
of concept phase, the approach taken to network isolation is based on iptables.
Iptables maps ports and addresses at the ip layer of the transport stack. For a
large scale system this requires complex setup and imposes significant perfor-
mance overhead. The iptables approach is interesting and a potential solution
to other lightweight virtualization problems [11]. But because it is not used as
an ongoing solution the discussion is presented in the appendix 6.

This adopted solution introduces a private network between the CM node,
SchedD node, and the compute nodes. Many network performance related stud-
ies use this method of creating a private network. The basic idea is to create IP
aliases to the network interfaces of the physical machines hosting CM, SchedD
and StartDs. The alias adapters appear in the output of the Linux command
/sbin/ifconfig. All aliases are created within the same subnet so that the ma-
chines can communicate without routing. A single alias of the network interface
is built for the CM and another for the SchedD node. On StartD nodes, an alias
of the network interface is created for each StartD that runs on the machine.
Since LoadLeveler uses hostnames to map to ip addresses, a unique hostname
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is assigned to every IP address. The alias hostname to ip mappings are placed
in the /etc/hosts file of every machine. For example, to emulate 500 StartDs
500 network adapter aliases with consecutive ip addresses are created An alias
for the CM and SchedD leads to a total of 502 entries in the /etc/hosts files
of the physical nodes. Having large /etc/hosts file has performance implications
discussed in the experimental section 4.

With the aliased network adapters in place, communications endpoints need
to be bound from every StartD to a corresponding aliased ip address. The original
code uses the global listening port specified in the config file and physical machine
ip address as an endpoint. The modified code issues a bind to the global listening
port and together with an ip address which is from a matched aliased network
adapter. The correct aliased adapter hostname is passed to StartD by reading a
new environment variable (LOADL HOSTNAME). Translation to an ip address occurs
through /etc/hosts. With this modification all StartD instances use common
and globally specified listening ports, but with a unique ip addresses. Figure 3
summarizes the communications setup. Less than 10 lines of code are needed
to support this expanded endpoint binding functionality. The procedure solves
both problems, isolating StartDs from each other while using common listening
ports, and makes them appear to the central manager as distinct machines.

This setup is used to exercise LoadLeveler on over 12000 resources.
Virtualized StartDs provide a lightweight test platform for scalability analysis

of job matching at the Central Manager, job dispatching at the SchedD, and
launching at the StartD’s, but also have limitations. Each StartD thinks and
reports that it has the entire resources of a node to the CM, so with multiple
StartDs on a node, the total amount of resource reported at the CM is as much



as the actual resource on the node multiplied by the total number of StartDs
on the node. Accordingly, the quantity of resource presented to the CM and the
actual resource available are different. As a result, the quantity reported at CM
may not be used to study the turn around time of real jobs that require some
amounts of static and dynamic resources on the nodes. This study is restricted
to the scalability of scheduling at the Central Manager and hierarchical job
launching.

4 Performance and Scalability Studies

The performance of LoadLeveler scheduling and job dispatching is evaluated
in two interesting bounding cases of scalability: 1) A parallel job requiring all
compute nodes in the system. 2) A number of single node jobs equal to the
number of compute nodes. These bounding cases are studied as a function of
cluster size using multiple StartD’s on each physical node. The study simulta-
neously explores the applicability of the multiple StartD per node approach and
more importantly identifies hotspots of the LoadLeveler implementation that
limit scalability. The study conveniently separates into two sections along the
lines of LoadLeveler functions. Job processing from submission to launch at the
compute nodes consists of the sequential and independent cycles of scheduling
and dispatching. According to LoadLeveler implementation (Section 2), the for-
mer occurs in the Negotiator which executes on the CM machine. The latter is
distributed involving the SchedD communicating to the StartD on each com-
pute node. Based on our analysis, possible solutions are suggested to mitigate
scalability problems and improve the performance issues.

4.1 Methodology

LoadLeveler is treated as a black box, log file messages are combined with prod-
uct documentation to obtain insight about LoadLeveler structures and functions.
Logged events have microsecond timing which is used to obtain performance in-
formation. One important caveat is that enabling some logging flags causes log
performance to overwhelm actual function even though messages are written
from an internal queue to disk on a background thread. The reason is that the
debugging granularity is coarse, setting a single flag such as D NEGOTIATE gen-
erates tens of thousands of messages for a single scheduling operation in a large
system with high job submission rate. Although each message delays an oper-
ation only a few microseconds to obtain a time-stamp, format the string, and
place on the queue, the aggregate effect is large. So it is important to enable
only the appropriate subset of log events needed for each study and verify from
the logs that the message generation time is insignificant compared to event
processing.

The job description used to drive the experiments is very basic. The explicit
matching constraints are the requested job class and the number of nodes, and
the executable is a shell script that invokes a 20 second sleep command.



Experiments are performed in two different cluster computing environments.
The primary cluster is a homogeneous collection of 50 IBM pSeries 575 machines
running IBM AIX version 6 and connected by a high speed SP switch. Each
machine has eight dual core IBM POWER5+ processors and 32GB of memory.
A secondary heterogeneous and much smaller cluster of machines is used for some
of the experiments. This cluster is limited to six compute nodes, two partitions
on an IBM pSeries 575 and four IBM POWER blade servers. The blades have
two dual core power 5 processors, 16GB memory, and run Red Hat Enterprise
Linux version 5. Each cluster has one machine dedicated for CM and another
dedicated for SchedD. The nodes are connected by a ten gigabit ethernet switch.
Each StartD is configured to have a single Starter so that only one job is allowed
per StartD.

4.2 Scheduling Analysis

The time to schedule a job on a cluster is expected to depend on the number of
compute nodes, the parallelism of the job, and the complexity of matching job
requirements to compute node resources. The study starts by quantifying the
dependence of single node job scheduling time on the number of compute nodes,
then moves to consider large parallel jobs. In both cases the compute nodes are
unoccupied and a single job is placed in the LoadLeveler queue. A timing event
is issued in the log file when the assignment of the job to a compute node is
complete and the job is dequeued from the submit queue.

Single node job scheduling analysis: The data are shown in Figure 4 for
the line labeled ’single node job’ and the independent variable is the number of
compute nodes. Because the nodes are initially unoccupied, the anticipated result
is that the optimal scheduling time is independent of the number of compute
nodes (N). Instead, the data show a linear dependence on N. This result is
understood in terms of the scheduling steps described in Section 2. The scheduler
first scans all machines to locate candidate nodes that have the capability to
execute the job. The capability scan is an O(N) operation that produces a bit
map of all machines. The bit map is applied in the subsequent machine matching
steps.

The second and third scheduling steps assign the job to the compute node
with the highest priority. In LoadLeveler, the priority of each compute node is
defined by the system administrator using a formula syntax. The default prior-
ity scheme, used here, decreases the priority of a node linearly with the short
term (five minute) average processor utilization of each machine. The scheduler
maintains a priority sorted list of all compute nodes. List order is updated when
jobs are scheduled or terminated as well as by periodic updates of node resource
consumption reported by StartDs. The list entry for each compute node is a
summary of the latest reported resource consumption information about the
nodes, e.g. utilization, memory, job class, network adapters, multi-programming
level. In the second step, scheduler takes the top priority node and checks the
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corresponding bit map entry from the first step. If true, the latest resource in-
formation is checked to see if the node has the current capacity to execute the
job. If not, the scan of the compute node list continues until a match is found.
A machine match results in a job assignment to that node. In this experiment,
the second step time is constant time because the cluster is not fully utilized,
the machine at the top of the priority list is always available.

Thus, the single node scheduling time is primarily sensitive to the O(N)
behavior of the first step of the scheduling process. The data in Figure 4 show the
scheduling time per node is about 250us for static resource matching component.
A similar observations is made when the cluster is augmented to 12,000 nodes.
The scheduling time at 12,000 nodes is consistent with the data as show in
Figure 4. Furthermore, the CM performed remarkably well as 12,000 nodes are
brought up, identifying all resources in less than two minutes.

For comparison, the performance of the secondary cluster is about an order of
magnitude faster as presented in Figure 5. Note that the single node scheduling
time is the right vertical axis of the figure. There is insufficient information in
the logs to explain the difference in timing between systems. One speculation is
that more machine attributes and resources (e.g. network adapters) are defined
for the primary cluster machines and consequently matching is more complex in
the primary. However, the main point is that linear scaling behavior is common
to both clusters.
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This highlights the importance of improving the performance of the capability
scan step of the scheduling cycle. However, it is useful to recognize that in
many scheduling conditions, generation of the bit map in the capability scan
is an optimization. The resource matching of the second step is more extensive
and costly than that of step one and should be avoided for nodes that cannot
potentially execute the job. There are two situations where the scan is very
useful. When compute resources are heterogeneous as in an ad hoc cluster of
workstations, the resulting bit map may be sparse. The bit map significantly
reduces the number of machines tested in the detailed matching of the second
step. Also, when a cluster is highly utilized there is a good chance that job
scheduling cycle fails and needs to be retried. The bit map is retained with the
job and does not need to be recreated in subsequent cycles.

This still leaves room for enhancements. One observation that the capability
scan step can be decoupled from the scheduling cycle. Results of the scan are
based on static information about the jobs and compute nodes. So it can be
performed when a job arrives at the CM prior to the scheduling cycle. Binding the
capability scan to the scheduling cycle makes sense when the scheduler supports
ad hoc clusters of workstations with intermittent availability or connectivity. A
decoupled bit map can become out of sync with the cluster state. But this is not
an issue for high performance compute clusters.



A further observation is that the clusters are frequently homogeneous. In
this case, every bit in the capability bit map has the same result for a given
job. Here, the scan result has no added benefit to the machine list matching
step. So the scheduling cycle can have distinct operational states depending on
the heterogeneity. Selection of the state is inferred dynamically based on cluster
workload. When recent job submissions generate a bit map that is largely ones,
the scheduler folds the capability scan logic of step in to the matching of step 2
which eliminates the need to scan the entire cluster. If the machine assignment
step fails frequently, the capability scan step is reinstituted as a distinct step to
regain the advantage of having a single scan for multiple scheduling cycles.

Parallel job scheduling analysis: The next study investigates the bounding
condition of a large parallel job requesting all N cluster nodes. This study targets
the second scheduling step because the capability scan is performed once while
machine matching and job assignment are exercised N times.

In this experiment, the system is initially unoccupied and a single job request-
ing all nodes is submitted. Figures 4 and 5 show results for the large primary
and secondary clusters respectively. The first observation is that the data for
the primary cluster appears to have a second order component that significantly
impacts performance above 1000 nodes. This behavior is unexpected as intuition
is that the scheduling steps are linear in the number of nodes. However, failure
to observe a quadratic term in the smaller cluster data set does not mean that it
is not real. Its absence is attributed to the fact that the system is less than half
the size of the 2304 node cluster. Restricting the data of Figure 4 to the regions
below 1000 nodes a non-zero quadratic term is not statistically significant. The
quadratic behavior is unexpected, the experiments are being repeated with a
larger cluster to validate the scaling.

4.3 Dispatching

As described in Section 2.2, SchedD starts the job dispatch process by construct-
ing a job object. All information necessary to execute the task on the assigned
compute nodes is contained in the job object. While many task details such as
the binary executable location are common to all nodes, node specific details
such as which network interface to use are also included. The job object also
contains the structure of the hierarchical communication tree used to distribute
and communicate job information and status between the compute nodes and
the SchedD. The job object is forwarded from SchedD to the master StartD
to initiate job dispatching. Subsequent responsibility for constructing the com-
munications tree and propagating job dispatching information from the master
StartD node to the compute nodes on the tree belongs to the StartDs at each
compute node. The StartD has no a priori information about the tree structure.
It decodes the job object passed to it and locates its children. Then, a new job
object is created for each child customized to contain only information required
for the child’s subtree. This process continues until the tree is fully constructed.



Dispatching performance is studied in a large scale environment created by
running multiple instances of StartDs on each compute node. The starting point
is to establish the equivalence of logical and physical StartDs within the con-
text of hierarchical communication. There is extensive communication between
StartD instances during the job dispatching cycle. The pattern and concurrency
of the communication processing is expected to change when multiple StartD ex-
ecute on a common physical platform. For example, the concurrency is limited
by the number of available free processing units. Validation starts by compar-
ing a fully parallel cluster with a single StartD on each of 48 nodes to a single
physical node with 48 instances of StartD.

The first experiment compares dispatch time as a function of the fan-out.
The measured dispatch time is the interval that starts when the master StartD
receives the job object and ends with an acknowledgement at the StartD from
all nodes on the tree. The results are presented in Figure 6. The lower solid
line corresponds to the fully parallel cluster of 48 machines and the ‘1200’ on
the label indicates the number of entries in the /etc/hosts file. The intermediate
dashed line is the same experiment as the lower line except that the /etc/hosts
file has 3600 lines. Data for the single machine, multiple StartD case is at the
top.
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of /etc/hosts file.



The qualitative behavior of dispatch time is expected based on the tree ar-
chitecture. The number of levels L in a tree of fan-out F with N nodes is

L =
⌈

log(1 + N(F − 1))
log(F )

⌉
.

Performance is poor for a fan-out of unity as this degenerate case serializes com-
munication over the 48 levels. A binary tree reduces the number of levels from 48
to 6 and the multiprocessor platform concurrently executes StartDs. Additional
benefit is expected as fan-out grows because of concurrency and logarithmic re-
duction in tree depth. The trend is expected to reverse when fan-out exceeds
machine concurrency and communication becomes serialized.

Figure 6 demonstrates that for up to 48 StartD the behavior of the two
configurations with fan-out is comparable. This is an important step in validat-
ing the virtual StartD methodology that allows many StartD on each physical
node. However, the expected gain from increasing fan-out beyond a binary tree
is absent. This suggest some operation is limiting performance and is largely
independent of the fan-out or depth of the communication tree. The log file is
investigated for more information, but the 48 node job does not provide a clue
to the cause.

In an effort to identify the origin of the problem, a parallel job requesting
1000 nodes is executed with fan-out of 2 in the environment of 2304 compute
nodes by running 48 StartD on each of the 48 physical nodes. The StartD log
file shows significant processing occurs at each StartD prior to forwarding the
modified job objects to the F children. In particular, the processing time is
proportional to the number of compute nodes remaining on this branch of the
tree. This decreases approximately as 1/F at each level down the tree (i.e. as N,
N/F, ..., N/FL, for the Lth level), as shown in Figure 7. It is apparent that the
time spent decoding and repackaging the job object for each child dominates the
potential performance gains expected from increased fan-out.

This discovery shows that attention is required in all aspects of the design
of a hierarchical communications scheme to fully achieve the anticipated gains.
The layout of the data structure used to transfer information in the tree needs
to be easy to parse and rebuild. This raises the question of whether a job object
format is possible so that decoding and repackaging occurs in F rather than N
operations. The cost of the initial construction remains proportional to N, but
is incurred once at the SchedD machine instead of on the compute nodes.

This example of performance problem detection and analysis highlights the
advantage of using lightweight virtualization to create a large scale system for
testing job scheduling and launching. It exposes design issues not apparent at
the physical cluster size available to developers. The 2304 node cluster is lever-
aged further by measuring the dispatch time for a 2304 node job with the tree
structures of fan-out 2 to 13 with levels of 12 and 4, respectively. The time is
about 100 seconds compared with 60 seconds obtained by linear extrapolation
from the 48 node system of Figure 6. This is not an unreasonable prediction
error for a factor of 48 scale up in a computer system.
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An additional performance consideration revealed in the experiments related
to Figure 6 is the effect the /etc/hosts file size. The IP alias for multiple StartDs
on a node require entries in the hosts file increasing the processing time of IP
lookup. Investigation using the secondary test cluster suggests that significant
time is spent searching the /etc/hosts file for IP resolution. The figure demon-
strates the 48 physical node data is significantly improved when /etc/hosts is
reduced to 1200 from 3600 lines. Unfortunately, for large systems the size of
/etc/hosts is considerable large. The speed of /etc/hosts lookups is also operat-
ing system dependent.

5 Concluding Remarks

A lightweight virtualization methodology is introduced to LoadLeveler and ap-
plied to study the scalability of job scheduling and dispatching in large scale
parallel systems using modest number of physical nodes. The study identifies
static resource matching in scheduling and job object processing in dispatching
as potential scalability bottlenecks. and proposed solutions to their performance.
Further research needs to be applied to investigate whether results observed here
continue to demonstrate the same functional scaling in larger systems.
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Appendix Iptables for StartD virtualization
Iptables is an approach to orchestrate the communication between the CM,

SchedD and StartDs without code modification. It is a generic network packet
manipulation technology that enables packet filtering, network address trans-
lation, and packet mangling. Iptables is used extensively in building Internet
firewalls, redirecting traffic between servers, sharing public IP addresses.
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Fig. 8. LoadLeveler with virtualized StartDs – Iptables

The difficulty with StartD is that its IP endpoint sockets are bound to the
listening port specified in the ’LoadL-config’ file and the ip associated with the
machine hostname in the network interface. Thus, while each StartD within a
physical machine is assigned a unique listening port by directing it to a unique
configuration file (e.g. ’LoadL-config.nnn’) the ip address of the endpoint lis-
ten socket binding is hard coded. This is fine as the StartD listeners within
each physical machine no longer conflict with each other. However, the CM and
SchedD assume all StartD in the cluster listen on the same port number at each
machine. What is required is a way for the multiple StartD on each physical
machine having unique ports but a shared ip to appear to the CM and SchedD
that they are at common port but unique ip addresses. In concept, the resolution
is to use iptables to:

– Map outgoing packets from the StartD endpoints (unique-port, common-ip)
to appear to originate at (common-port, unique-ip).



– Map outgoing packets from CM and SchedD sent to (common-port, unique-
ip) to be sent to (unique port, common-ip)

This is accomplished defining iptable rules that remap these endpoint bind-
ings transparent to the LoadLeveler code. In Figure 8(a), when CM needs to
communicate to a StartD i (1 ≤ i ≤ n), it sends the message to the respec-
tive destination IP address DIPi but to a fixed port number LPp. When this
communication arrives at the StartD node, the packet is trapped by this iptable
forwarding rule and forwards it to the appropriate port LPi based on DIPi.
A similar rule coordinates communication originating from the SchedD to the
StartDs.

StartDs are made to appear to the CM that they originate from unique IP
addresses using the following three steps:

– The configuration file of each StartD is setup so that it uses a private port
to communicate with the CM. Although CM is not actually listening on this
port, this change is needed to identify which packets belong to which StartD
at the iptables layer. When the StartD initiates a communication to the CM,
its packets have this private port as the destination port in their header.

– Create an iptable rule that captures all outgoing packets from any StartD
to the CM (DIPcm), and based on the CM destination port number (LPi)
on the packet header, assigns a corresponding StartD IP address as the
packet source IP address SIPi, as shown in Figure 8(b). With this method,
each outgoing packet to the CM is correctly labeled with the StartD that
generated the packet but its destination port is not the actual port where
CM is listening for StartD communications.

– Create an iptable rule on the CM node that redirects traffic destined to the
list of private ports (LP1, LP2, . . . , LPn) to the public port (LPp) on which
CM is listening.

The above methods create a large LoadLeveler cluster with minimal compute
and memory resources. The iptables setup is automated with a the help of a
few Perl and shell scripts. These scripts are parameterized so that the required
number of StartDs may be activated on different physical machines. This setup
is used to exercise the scheduling algorithms in the CM up to several thousand
computes nodes.

A major limitation of iptables is their performance. Anecdotal evidence sug-
gests that large numbers of iptables rules degrades the network performance
because these rules are processed sequentially for every packet. Since network
performance is a critical component of the hierarchical communication perfor-
mance of LoadLeveler, the iptables approach is less favored than source code
modifications described in the main text to orchestrate communications between
CM, SchedD and StartDs.


