Job Admission and Resource Allocation in
Distributed Streaming Systems

Joel Wolf, Nikhil Bansal, Kirsten Hildrum, Sujay Parekh, Deepak Rajan, Rohit
Wagle, and Kun-Lung Wu

IBM T.J. Watson Research Center, Hawthorne, NY 10532, USA

Abstract. This paper describes a new and novel scheme for job admis-
sion and resource allocation employed by the SODA scheduler in System
S. Capable of processing enormous quantities of streaming data, Sys-
tem S is a large-scale, distributed stream processing system designed to
handle complex applications. The problem of scheduling in distributed,
stream-based systems is quite unlike that in more traditional systems.
And the requirements for System S, in particular, are more stringent
than one might expect even in a “standard” stream-based design. For
example, in System S, the offered load is expected to vastly exceed sys-
tem capacity. So a careful job admission scheme is essential. The jobs in
System S are essentially directed graphs, with software “processing ele-
ments” (PEs) as vertices and data streams as edges connecting the PEs.
The jobs themselves are often heavily interconnected. Thus resource al-
location of individual PEs must be done carefully in order to balance
the flow. We describe the design of the SODA scheduler, with particular
emphasis on the component, known as macro@, which performs the job
admission and resource allocation tasks. We demonstrate by experiments
the natural trade-offs between job admission and resource allocation.

1 Introduction

We consider distributed computer systems designed to handle large-scale data
stream processing jobs. This area of research is relatively new. Early examples
include Borealis, TelegraphCQ, STREAM, StreamBase and Aurora [1,3,5,15,23].
These systems mostly take relational model as a basis. They process voluminous
quantities of incoming stream data, performing relational operations on them.
We have been involved in an ambitious project, started in 2003 at the IBM
T. J. Watson Research Center, known as System S [2,8,9,11,18,19]. System S
is a large-scale, distributed computer system designed to handle complex jobs
involving enormous quantities of streaming data. The paradigm is significantly
more general than a relational model-oriented streaming environment. A pro-
totype of this system has been built and continues to evolve. The scheduler
for System S is known as SODA.! In this paper, we will describe the SODA
scheduler, focusing particularly on one key mathematical component known as

1 SODA stands for Scheduling Optimizer for Distributed Applications.

macro@). Specifically, we will present the detailed mathematical formulation and
algorithm of macro@. This component deals with job admission and resource
allocation, among other things, and is perhaps the most novel of the four math-
ematical components in SODA in terms of both functionality and design. Note
that in a related but substantially different paper [18], we presented an overview
of all the SODA components without mathematical details, and showed several
SODA performance studies with System S applications.

The basic unit of computational work in System S is called a processing
element (PE). PEs can be arbitrary stream processing software. They are the
basic execution containers in System S. The PEs are connected via streams,
which flow from an output port of one PE to an input port of another. The PEs
and streams are grouped into jobs which represent the basic unit of admittable
work in the system. Hence a job is represented by a directed graph. In the current
System S implementation, each job consists of one or more alternative data flow
graphs called templates. These templates could be provided to SODA by the
application developers. Each template represents a different implementation of
the same job, perhaps to achieve a different level of solution quality. The logical
nodes in a given template correspond to PEs, and the directed arcs correspond
to streams. PEs thus both consume and produce streams.

The macro@ module of SODA in System S provides three critical functions,
namely job admission, template selection and resource allocation. We will define
a new notion, known as importance, which can be thought of intuitively as a
function which measures the “benefit” produced by a particular job template
when allocated a specific amount of processing resources. The macro@) module
will attempt to maximize the total importance across all the competing job tem-
plates by optimizing importance as a function of allocated resources. For those
jobs that get admitted it will choose a template alternative and an amount of
resources to be allocted to the PEs in that template. Even though job admission
and resource allocation in themselves are not new, they are significantly more
challenging in the context of a distributed streaming system. In particular, Sys-
tem S has even more stringent requirements than a standard streaming system,
and the offered load is expected to vastly exceed system capacity. Our main
contribution is a novel approach that combines these three critical decisions in
a unified framework. We elaborate on these issues in the next few paragraphs.

A key design assumption of Systems S is that there will be too much work.
Thus System S hardware must be made to run at nearly full capacity nearly
all of the time. This includes the processing nodes, which must be utilized as
completely as possible. Moreover, some work simply will not fit. It is the role of
the macro@) module to make intelligent decisions about job admission. To the
best of our knowledge, there are no other schedulers implemented in any stream
processing system that consider job admission. (In [20], the authors describe a
scheduler for a hypothetical system with a simplified model of stream process-
ing.) Some schedulers [13,16] perform load shedding to deal with dynamically
overloaded processing nodes, but this is an inherently different concept.

A second role of the System S scheduler is to choose one of the alternative
templates for each admitted job. Fig. 1(a) shows a job with three such templates.
All the nodes in these data flow graphs are PEs, as noted above, except for the
following left and right edge conventions: The left-hand node in each case is a
dummy node, which may be used to “connect” this job to another. The right-
hand node in each template represents disk storage, which can be regarded as
a second type of dummy connector node, for persisted data. Both the left- and
right-hand side streams are required by SODA to “match” in all templates, as
are the dummy nodes, so that the identical inter-job connections may take place
regardless of the template chosen.

i Available Resources

(a) Templates (b) Importance

0
Importance

Fig. 1. Template Alternatives

The example in Fig. 1(a) is one possible scenario which results in multiple
templates for a job. In this case, the first template would provide the basic job
functionality, consisting of 4 PEs. The second template adds a preprocessing PE
to achieve a higher quality of solution. The third further adds a post-processing
PE, to achieve an even higher quality of solution. But there is a correlation
between the benefit of doing a job and the total resources allocated to it. Each
alternative template will provide the greatest overall benefit within some range of
total resources allocated to the job. In SODA the notion of importance, defined
formally in the next section, is used to quantify benefit. Fig. 1(b) illustrates
importance as a function of allocated resources for the three job templates.
In this case, at high allocated resource levels the third template dominates.
(At this level, sufficient resources are available for both the preprocessing and
post-processing PEs.) At medium allocated resource levels the second template
dominates, and at low allocated resource levels the first template dominates.

A third function of the scheduler in System S is resource allocation of the PEs
in the various accepted jobs. It is the interconnected (producer/consumer) nature
of these PEs, potentially even across jobs, that makes this problem difficult: Flow
imbalances can lead on one hand to buffer overflows (and loss of data), and
on the other to under-utilization of processing nodes. The resources allocated
to a PE which produces a stream affect the resources required for the PE(s)
that consume that stream. The macro@ module optimizes and flow balances
the amount of processing resources allocated to each PE in the jobs that are
admitted.

It is the role of other SODA modules to take these processing goals and
fractionally assign each PE to one or more acceptable processing nodes [18].
Thus the problem of determining quantity of PE resource allocations is effectively
decoupled from the problem of determining where the PEs should be executed.
In assigning the PEs in the chosen templates of the accepted jobs to processing
nodes, there is a trade-off between the load on the processing nodes and stream
traffic on the network. Assigning two PEs connected by a stream to the same
processing node eliminates the contribution of that stream to network traffic, but
may contribute instead to overloading the processing node. So SODA attempts
to achieve a balanced placement that does not overload either network links
or node capacities. In fact, it attempts to minimize a weighted average of six
separate metrics associated with processing loads on the nodes and traffic on the
network links. The assignment problem is made more complex by the addition
of many special constraints imposed by System S. These include, among many
others, hardware constraints for certain PEs and nodes (resource matching),
security and license constraints, constraints that pairs of PEs be placed together
(colocation), or that pairs of PEs be placed on distinct nodes (ez-location). Of
course, many PEs may share a node. SODA attempts to provide each PE with
a fraction of the processing power of any node to which it assigned, matching as
closely as possible the overall PE flow balancing goals already computed.

Macro epoch

Think long
And hard

time

Micro epoch

—

time

Think fast

Fig. 2. Macro and micro epochs.

Finally, in order to react quickly in a highly dynamic environment, SODA
is an epoch-based scheduler. There are two kinds of epochs: macro epochs and
micro epochs. Each macro epoch contains several micro epochs. Fig. 2 shows the
temporal hierarchy between macro and micro epochs.? The macroQ component
operates at the macro epoch level, and hence we focus mainly on macro epochs
in this paper. At the beginning of each epoch, SODA obtains as input a snapshot
of the current system state, including the jobs running on the system and the
jobs waiting to be admitted. It then computes for most of an epoch, finally
outputting its scheduling decisions at the end of the epoch. That is, it produces
a list of accepted and rejected jobs. For the accepted jobs it produces a choice

2 For reasonably sized System S installations the macro and micro epochs can also be
solved sequentially.

of templates and a set of fractional allocations of the PEs to processing nodes.
Those decisions are enforced by System S during the following epoch, and the
entire process repeats indefinitely. Epoch lengths are a SODA settable parameter,
but macro epochs on the order of a minute are typical. This is a reasonable
compromise between the staleness of the input data and the time required for
the mathematical components of SODA to make high quality decisions. Each
macro epoch usually corresponds to five micro epochs, allowing SODA to respond
quickly to changes in system.
Our contributions can be summarized as follows:

1. We provide the first stream processing scheduler in a working system that
performs job admission. The choice to admit a job will depend on whether or
not the optimal total importance occurs when that job is allocated a positive
amount of resources, given certain natural constraints.

2. We provide a systematic way of optimally choosing one of several job tem-
plates for newly admitted jobs. The choice will depend on the relative im-
portance of work which can be produced by these templates as well as that
of the other potential work in the system.

3. We provide flow balanced resource allocations for each of the PEs in the cho-
sen templates of accepted jobs, while simultaneously optimizing the overall
allocation of resources in the system. In other words, each admitted job will
get an appropriate total amount of resources based on its contribution to
overall importance, and the PEs within that job will be allocated those re-
sources in a balanced manner. Given the highly interconnected nature of the
data flow graphs this is a difficult optimization problem.

4. We provide appropriate constructs to allow the scheduler to react quickly
and intelligently to dynamic changes in the system, including the arrival and
departure of jobs, nodes going up and down, and also changes in the relative
importance of the work in the system.

5. We have designed a real-time scheduler which makes complicated decisions
in each epoch, using algorithms that are deadline-aware.

The remainder of this paper is organized as follows. Section 2 contains pre-
liminaries, including a glossary of new terms used by SODA, and by macro@ in
particular. Section 3 contains an overview of the SODA scheduler itself, describ-
ing each of the four major mathematical components. In Section 4 we give the
description, formulation and the solution approach to macro@). (We are focusing
here on macro@ because of its novelty, but also because of space limitations:
A very complete description of all of the SODA components, associated infras-
tructure components and many other SODA capabilities is available [17].) Sec-
tion 5 describes experiments showing the natural trade-offs associated with job
admission and resource allocation. (We should point out that while alternative
template selection is a current macro(feature, the System S infrastructure does
not yet support multiple templates. So we do not provide experiments illustrat-
ing this feature in the current paper.) Section 6 describes related work. Finally,
Section 7 gives conclusions.

2 Preliminaries

In macro@, we use a number of terms that have very specific meanings to the
scheduler. We list these below, with explicit definitions. These concepts are crit-
ical to the discussions that follow. The first two items, the value function and
weight, are the key components of the third item, importance. Roughly speak-
ing, value functions measure benefit. Weights are used in their traditional sense
as multiplicative “knobs”, in this case accentuating or decentuating value. The
product of the two is importance. Importance, in turn, is the metric that macro@
tries to maximize. The fourth item, the resource function (RF), is essentially the
means by which we iteratively compute this notion of importance. Finally, rank,
the fifth item, is an orthogonal notion to importance. It is a priority metric as-
signed to each job. Jobs which produce little importance but have a better rank
may get admitted instead of jobs which have more importance but have a worse
rank. Some of these terms are not new in themselves, but the combination of
them is novel.

1. Value function: Each derived stream produced by a potential System S job
has a wvalue function associated with it. The domain of this function might
typically be the projected rate of the stream. Or it might instead be a stream
quality measure, such as projected goodput. In theory it could be a cross
product of a variety of quantity, quality and even other measures of benefit.
The definition is intentionally general, though early SODA instances have
employed simple rate-based value functions. Also note that value functions
which are 0 everywhere will typically predominate: Although the notion is
also intentionally general we expect to see non-trivial value functions mostly
on terminal streams of various jobs. These are, of course, the “end products”
of System S work, and one would thus naturally want to measure benefit
there.

2. Weight: Each derived stream produced by a potential System S job also has
a weight associated with it. Non-trivial weights will also typically be quite
sparse, since we will see that the weight may as well be 0 unless the stream
also has a non-zero value function.

3. Importance: Each derived stream produced by a potential System S job has
an importance which is the product of the weight and the value function.
Importance is therefore a function of the rate or quality of the stream, which
in turn depends on the resources allocated to all the upstream PEs — in other
words, those PEs which help to produce the stream. The summation of this
importance over all derived streams is the overall importance being produced
by System S, and this is what macro) attempts to maximize. (Again, a large
majority of streams will typically not contribute to this importance metric.)
Consider Fig. 3, representing the flow graph of the same job in scenarios in-
volving two different sets of weights. In Fig. 3(a), positive weights are at all
the terminal, “starred” streams. But in Fig. 3(b) the second weight has been
eliminated (changed to 0). It follows that the 2 PEs immediately upstream of
that weight cannot do work which contributes to overall importance. SODA

will therefore not allocate resources to them. (Other PEs, further upstream,
do useful work in support of streams with positive weights. They may get
fewer resources than they would in the upper half, of course.) Weights are
thus a multiplier knob to turn on and off portions of a job and, more gener-
ally, a simple way to adjust relative importance.

(a) All Weights (b) One Weight Removed

Fig. 3. Varying the Weights

4. Resource function:® If importance is the metric to be maximized, the natural
question is how to compute it. The first part of the answer is as follows:
Each derived stream s in System S (and by approximate terminology the
PE that produces that stream) has an RF associated with it. The RF is
multidimensional. If there are N input streams to the producer PE, then
the RF has N + 1 input parameters. There is one parameter for each of the
input streams, each with the same domain as the value function. The final
input dimension is the (computational) resources which may be allocated
to the PE, in millions of instructions per second (MIPS). The output of
this function for stream s is again in terms of the same domain. See, for
example, Fig. 4(a). Assuming the domain to be rate-based, the RF for stream
s4 takes 4 parameters as input. The first three are the rates of streams s
through ssz, and the fourth is the MIPS allocated to PE 4. The output is the
rate of stream s4. (Some details are hinted at in the figure. Output ports
filter the streams, and the output from PEs 1 and 2 are aggregated into
the first input port, effectively decreasing the dimensionality of this RF by
one.) The RF needs to be “learned” over time by a SODA infrastructure
component known as the Resource Function Learner (RFL). The second
part of computing importance involves iteratively traversing the data flow
graphs from “left” to “right”, ending in a final value function calculation.
Consider Fig. 4(b). By topologically sorting [7] a directed acyclic graph, we
can apply ready list scheduling [4,6] to compute the importance for stream
s5. In the figure three RF's are initially ready because they are fed by primal
(external) streams. So we obtain the rates at streams s; through ss. One
additional RF' becomes ready in each of the next two steps (because their
inputs have been computed), and we obtain the rates at streams s4 and ss

3 A paper about these RF5s is forthcoming.

in succession. Finally we apply the weighted value function at s5 to obtain
importance. (SODA can also handle data flow graphs with cycles, but we
omit details for that case.)

PE 1 3 [ouiou 31 34 S5

-0
Port T E sy () 0 0 —}
Sz
Output
PE2 gortu g 8}O S2
S3 [, -
Pe s (e I,
(a) Resource Function (b) Calculation of Importance

Fig. 4. Using Resource Functions to Calculate Importance

5. Rank: Each job in System S has a rank, a positive integer which is used to
determine whether the job should be run at all. A lower job rank is better
than a higher one. (There are two seemingly irreconcilable camps on the issue
of whether rank should improve with value or the reverse. Our motivation
in using the convention we chose is twofold: First, it is common to say that
something is “priority one”, meaning it is most important. Second, one is
inarguably the smallest positive integer, and thus we definitively will know
that a job with rank one is most essential. On the other hand, it is certainly
true that adopting this definition causes rank to be inversely related to the
assigned rank number.)

The rank of a job is set by a separate, independent component in System S
based on a set of criteria, beyond the scope of this paper. The importance,
on the other hand, determines the amount of resources to be allocated to
each job that will be run. A lower job rank is better than a higher one.
We will shortly provide a notion of rank-legality which will describe the
possible subsets of jobs that can be admitted into System S. There is a
specific job rank for which the following holds: All jobs with lower ranks are
admitted, and all jobs with higher ranks are not admitted. Jobs with that
rank may or may not be admitted, depending on the available resources and
the importance associated with the (streams of the) jobs themselves. We call
this property rank-legality. (This statement is a slight simplification, since
one needs to account for inter-job dependencies. We will describe this notion
of revised rank shortly.) Fig. 5 illustrates job admission based on revised
rank. The waterline (that is, the cardinality of the highest admitted job
rank) goes up in the case of lighter load conditions or with more processing
power in the system. It goes down in heavier load conditions or with less
processing power.

Light Load Heavy Load
A 6 A
REJECTED
5
v REJECTED
? \41
A
\3/
ADMITTED 75 v 2
(1Y IADMITTED
v

Fig. 5. Job Admission as a Function of Rank

3 Overview of SODA

In this section we describe the four major mathematical components of SODA.
We describe the solution approaches and motivate them from a practical stand-
point, emphasizing how the solutions are dictated and/or guided by the SODA
design philosophy.

To make the scheduling problem tractable, each SODA epoch is divided into
four mathematical phases. Each of the four phases corresponds to a mathematical
optimization module. The first two phases are known collectively as the macro
model, while the second two are known as the micro model. The two temporally
hierarchical levels and their goals are:

— The macro model, which chooses the jobs that will be admitted, the tem-
plates for those jobs, and the candidate nodes to which the PEs in those
jobs and templates can be assigned. The choices made in the macro model
are respected by the micro model during the micro epochs of the next macro
epoch, making the decisions of the micro model easier and more effective.

— The micro model, which chooses the fractional allocations of the PEs in the
jobs and templates that have been chosen by the macro model. Fractional
allocations of PEs are 0 for a particular node unless that node has been
chosen as a candidate node by the macro model. The micro model handles
dynamic variability in the relative importance of work (via revised weights),
and changes in the state of the system (via nodes and PEs that go up or
down), without having to consider the difficult constraints handled in the
macro model.

This decomposition is not perfect. Periodically there could be solutions from
the macro model which are inconsistent with the constraints of the micro model.
A “micro to macro” feedback loop would seem to be useful, but we have not
seen examples where it is needed in practice.

Now we describe the individual decoupled quantity and where components
for both the macro and micro models:

10

— macro@, the macro quantity model, maximizes projected importance by de-
ciding which jobs to admit, which templates to choose, and by comput-
ing flow balanced PE processing allocation goals (in MIPS), subject to job
rank-legality, required jobs, minimum and maximum MIPS constraints. We
describe macro() in the next section.

— macroW, the macro where model, minimizes projected network traffic and
load balances the nodes, allocating uniformly more candidate nodes than
PE goals dictate, subject to resource matching, specialized hardware, secu-
rity, licensing, memory, PE exclusivity, maximum PEs per node, maximum
degrees of parallelism for each PE, fixed PEs, mutual PE exclusion and colo-
cation, legal fractional allocations and various incremental movement limits.
It optimizes a weighted average of six separate metrics, three of which are
averages of the utilizations of the nodes, the traffic in the network, and the
bandwidth in and out of the nodes. The other three are maximum values on
these same components. The overallocation allows more flexibility in han-
dling micro epoch dynamics.

— micro@, the micro quantity model, maximizes projected importance, com-
puting more accurate MIPS allocation goals for the PEs than those of
macro() by taking the candidate nodes into account. (Recall that macroQ
does not know this information.) It also deals with revisions due to changes
in node states, PE states and the like.

— micro W, the micro where model, minimizes the differences between the goals
output by micro) and achieved fractional allocations subject to various
constraints on incremental movement and node changes, fixed PEs and so
on. The output is thus a set of fractional assignments of the PEs to the nodes
whose sum across all nodes is as close to the allocation goals as possible.

4 Macro@Q Algorithm

The macro quantity model, macro@, finds a set of jobs to admit during the
next macro epoch. For each job it chooses a template from among the options
given to it. Each template represents an alternative plan for performing the job.
The jobs have ranks, and the jobs that are chosen by macroQ) must respect
a rank-legality constraint. Required jobs must be admitted. (Without loss of
generality we can assume required jobs have rank 1.) Minimum and maximum
PE MIPS constraints must also be respected. The goal of the macro@ model is
to maximize the projected importance of the streams produced by the winning
jobs and templates. In the process of solving the problem macroQ computes
the optimal importance, the list of job and template choices, and finally the set
of processing power goals (measured in MIPS) for each of the PEs within the
chosen list. We formalize this below.

The problem formulation and the algorithm in macro@ are fairly elaborate.
For the reader’s convenience, Table 4 provides a summary of notation used, in
order of appearance. And Fig. 4 provides a summary of the macro@) pseudo-code.
Note that there are basically three nested loops.

11

— The outer loop, from line 3 to line 26, considers different levels of resolution

granularity for the resource allocation problems that will be solved. A coarse
level of granularity provides a quick solution, while a fine level provides an
accurate solution. Because SODA is a real-time scheduler, macro@ must have
a solution by the time the macro epoch completes. A quick, coarse solution
will serve this purpose.

The middle loop, from line 5 to line 24, decrements the possible revised rank
waterlines, considering less and less jobs as it goes.

The inner loop, from line 7 to line 23, is a divide and conquer approach based
on the number of so-called weak components of the relevant data flow graphs.
The overall resource allocation problem to be solved can be handled by
solving an elaborate problem on each weak component, and then combining
the solutions via a simpler problem across all components. We will describe
these in more detail later in this section. problems are solved as we go along.

Ultimately we output the best solution discovered, on line 27.

1: Set OPT = o0
2: Set OK = false
3: while OK=false do

4:
5:
6:
7
8:

9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

Pick resolution granularity G
for r =R to 1 by -1do
Create list (J,T)1,..., (J,T)r, of rank-legal job/templates with waterline r
for|=1tol =L, do
Compute C(7 1y weak components
forc=0toc=Ciy 1) —1do
NSDP scheme to solve component ¢ RAP with granularity G
end for
Compute number of components with concave importance functions
if all are concave then
Galil-Megiddo scheme to solve inter-component RAP with granularity G
else if none are concave then
DP scheme to solve inter-component RAP with granularity G
else
Fox/DP scheme to solve inter-component RAP with granularity G
end if
if Z > OPT then
OPT=T
end if
end for
end for
Evaluate OK

26: end while
27: Output OPT

Fig. 6. macro@ Pseudocode

12

Variable |Definition

J Number of jobs being considered
m(J) Original rank of job j

N; Number of templates for job j

J Job list

T Template list

Ty Set of all template lists for job list J
L Job/template list

Dy, |Directed acyclic graph associated with job/template pair (7, T)
Pr,ry |Nodes (PEs) in Dz 1)

di7.m) Asymmetric distance function

D(7,1)(p)|Set of PEs which depend on PE p

(7,1 (j) |Revised rank for job j

L Rank-legal job/template list

Vs Composite value function for stream s

Ws Weight for stream s

I Importance function for stream s

G Total MIPS in system

myp Minimum MIPS for PE p if admitted

M, Maximum MIPS for PE p if admitted

hatJ Jobs that must be admitted

G Number of resource units in discrete RAP

myp Minimum resource units for PE p if admitted

M, Maximum resource units for PE p if admitted

C(J,T) |Number of weak components for job/template list (7, T)
Zc Importance function for weak component ¢

Me Minimum resource units for weak component ¢

M. Maximum resource units for weak component ¢

L, Number of job/template alternatives examined of revised rank r

Table 1. Key macro@ Notation

4.1 Notation

Let J denote the number of jobs being considered, indexed by j. Each job j
has a rank 7(j) € IN. (Here, IN represents the natural numbers.) We adopt the
(slightly unnatural) convention that lower numbers indicate better ranks. Thus
the best possible rank is 1. Each job j comes with a small number of possible
job templates. This number may be 1. It will be 1 if the job has already been
instantiated, because we assume that the choice of a template is fixed throughout
the “lifetime” of a job. It is, however, the role of the macro@ model to make this
choice for jobs that are newly admitted. Let N, denote the number of templates
for job j, indexed by t.

Any subset J € 27 will be called a job list. For each job list J a function
T : J — IN satistying T'(j) < N; for all j will be called a template list. Denote
the set of all template lists for J by 7. Finally, define the job/template list to
be the set £ = {(J,T)|J € 27,7 € T7}. A major function of macroQ is to
make a “legal and optimal” choice of a job/template list.

13

We will make the assumption, for ease of exposition, that no cycles exist
in the directed flow graphs for a job and template choice. SODA can actually
handle intra- and inter-job cycles, but the details are somewhat complex.

Each job/template list (J,T) gives rise to a directed acyclic graph Dz 7
whose nodes P 7 r) are the PEs in the template and whose directed arcs are
the streams. (This digraph is “glued” together from the templates of the various
jobs in the list, and we omit the exact details. These PE nodes may come from
multiple jobs.) Assigning length one to each of the directed arcs, there is an ob-
vious notion of an asymmetric distance function d(7) between pairs of relevant
PEs. Note that d(7 1)(p,q) < 0o means that PE p precedes PE ¢, or, equiva-
lently, that ¢ depends on p. Let Dz 1)(p) denote the set of PEs ¢ € D7 r)
for which ¢ depends on p. This notion of dependence gives rise, in turn, to the
notion of dependence between the relevant jobs: Given jobs j, 7' € J, we will
say that 7/ depends on j provided there exist PEs ¢ and p, belonging to j' and
J, respectively, for which d(7 1)(p,q) < co. Let D(7 7)(j) denote the set of jobs
j' € J for which j’ depends on j.

We now define a revised job rank notion based on a particular job/template
list (J,T) by setting

L [mingeng o TG i €T
(7.1 () {w(j) otherwise.

This is well-defined. We can define the notion of a rank-legal job/template
list (J,T') as follows: We insist that j € J and j’ ¢ J implies that 7(7 1) (j) <
7(7,r)(j'). (This is equivalent to the statement that there is a value for which all
jobs with lower revised ranks will be admitted and all jobs with higher revised
ranks will not be admitted.) Let £ denote the set of rank-legal job/template
lists.

Define the decision variable g, to be the resource allocation, in MIPS, given
to PE p. As noted, any derived stream s associated with job/template list (J,T)
has a value function. The stream, in turn, is created by a unique PE p associ-
ated with (J,T). The PE p gives rise to a set {q1, ..., qx, } of k;, PEs ¢; for which
p € D(gy,1)(q;). This set includes p itself. We have also introduced the notions
of learned RF's which can be iteratively composed to create a function from the
processing power tuple (gq,, .-, qup) to the domain of the value function. And
so the composition of these recursively unfolded functions with the value func-
tion yields a mapping V; from the tuple (gq,, ..., gq,,) to the non-negative real
numbers for stream s. This function is called the composite value function for
s. Multiplied by a weight w, for stream s it becomes a stream importance func-
tion I, mapping (gq,, ...,qup) to the non-negative real numbers [0, 00). Finally,
aggregating all the stream importance functions together for all streams which
are created by a given PE p yields a PE importance function Zp,.

Let G denote the total amount of System S processing power, in MIPS. Let
m,, denote the minimum amount of processing power which can be given to PE
p if it is admitted, and M, denote the maximum amount of processing power

14

which can be given to PE p if it is admitted. Suppose that the set J represents
the jobs that must be admitted.

4.2 Mathematical Formulation

We seek to maximize the overall importance, which is the sum of the PE impor-
tance functions across all possible rank-legal job/template lists. The objective is
therefore to find

max Z Zp(9ars -+ Yar,,)
(J;T)Eﬁpepu‘m

subject to the following constraints:

Z gp < G, (1)

PEP(7,T)
myp < 9p < Mp Vp € P(j,T)v (2)

JcJ (3)

Constraint 1 is the resource allocation constraint. It ensures that all of the
resource is used if it is useful and possible to do so. Constraint 2 requires a PE
p to be within some minimum and maximum range if it is admitted. Constraint
3 insists that required jobs are admitted.

4.3 Solution Approach

We discretize the above continuous resource allocation problem by dividing the
total amount of resource G into G equal size atomic units of “resolution” G/G
MIPS each. Assume that this value G is given. For each PE p let m, = |m,G/G|
and M, = [M,G/G] represent the discrete analogues of the minimum and
maximum MIPS constraint terms. Also assume a fixed rank-legal job/template
list (7,T) € £ containing all the required jobs 7. Partition the PEs and streams
into C(J,T) weak components and fix one such component c.

We consider, using the natural change in notation, the corresponding discrete
resource allocation problem of maximizing 3 Z,(q,, -, Gqi,) Subject to the
constraints . g, < G and m,, < g, < M, for all p € c. This problem can be
solved by a scheme known as Non-Serial Dynamic Programming (NSDP) [10].
NSDP is a complex dynamic programming scheme designed specifically to handle
difficult (non-separable) resource allocation problems. (See line 10 of Fig. 4.) As
part of the solution methodology we obtain the optimal values Z.(g.) for every
ge between 1 and G, as well as the PE MIPS allocations that constitute this
optimal solution. We can thus regard 7. as a component importance function of
the resources g.. allotted to component c. Set m, = Zpec my and M, = Zp&c M.

Note that the objective function can be regarded as a “black box”, calculated
by iterative RF compositions followed by a weighted value function calculation.
To make this as efficient as possible the macro@ code has itself been carefully

15

optimized. Careful analyses are performed to determine which sub-graph cal-
culations are strictly necessary and which are redundant. A cache of previous
results is also employed. Also, macro) code is aware of time and is given a
deadline by SODA. So it occasionally takes “shortcuts”, using a partially greedy
scheme instead of a full NSDP algorithm. This fits the design philosophy: SODA
is a real-time scheduler.

Having performed this NSDP on each component we now consider the prob-
lem of optimizing over all components. The good news here is that the problem
is a separable resource allocation problem: We wish to maximize) Z.(g.) such
that >~ ge < G and m. < g. < M, for all c. Separability here means that each
summand is a function of a single decision variable, and such resource allocation
problems are inherently easier to solve.

In fact, if the component importance functions happen to be concave the
problem can be solved by one of three algorithms: These are the schemes by
Fox, Galil and Megiddo, and Frederickson and Johnson, which can be regarded as
fast, faster and (theoretically) fastest, respectively. If the component importance
functions, on the other hand, are not concave, the problem may still be solved
by dynamic programming. See [10] for details on all of these algorithms. Also
see lines 14, 16 and 18 of Fig. 4.

It turns out that concavity is not an uncommon condition for our component
importance functions. So we test each component for concavity and adopt one
of three approaches, depending on the results.

— If all component importance functions are concave we solve the resource
allocation problem by the Galil and Megiddo algorithm. This algorithm is
quite fast and easier to code than the Fredrickson and Johnson scheme.

— If all the component importance functions are not concave we solve the
resource allocation problem by dynamic programming.

— In other cases we solve the concave portion of the problem by the Fox algo-
rithm (because it provides the needed intermediate values) and then solve
the remainder of the problem by dynamic programming.

At the end of this step we have computed the optimal MIPS allocations for
each PE. But this can be regarded as just the inner loop of a three step nested
process. In the central loop we evaluate all rank-legal templates. In the outer
loop we evaluate successively finer resolution granularities. Again, see Fig. 4.

The evaluation of all rank-legal templates is obviously exponential [7] in na-
ture, though the problem is generally not large: SODA only evaluates alternative
for new jobs. Once a template decision has been reached it lasts for the remain-
ing epochs of the job. And most jobs, in fact, only have a single template. The
rank-legality constraints adds another exponential term, but this process can
also be streamlined if time is an issue. The code loops through each rank value,
working from the highest rank (R) to lowest rank (1): For any given rank value
it assumes all higher revised rank jobs will not be admitted, all lower revised
rank jobs will be admitted, and has to decide which jobs of that revised rank
will be admitted. For all but the highest revised rank these jobs were admit-
ted in the previous calculation. The code computes their importance divided by

A B C D B F G| H 1 J K L M| N O P Q R S

100 | 786 882 462 540 558 318 336|786 870 462 702 264 366|786 870 516 558 294 336
95| 780 840 462 540 558 318 336|780 780 462 696 264 366|780 780 516 558 294 336
90 | 786 792 462 540 558 318 336|780 780 462 612 264 366|696 780 516 558 294
85(696 792 372 540 468 318 318|696 780 372 612 264 366|696 780 516 468 294

80690 786 366 534 462 312 312|690 780 366 606 258 366|696 774 510 288
75|684 780 366 534 354 270 312|626 768 366 606 258 360|684 774 510

70690 786 366 534 444 312 312|690 774 366 606 258 360|690 510

651|696 792 372 540 468 318 336|696 780 390 612 264 366 516

60| 696 792 372 540 468 318 324|696 780 372 612 264 366

55(696 792 462 540 552 318 336|696 780 612 264

50 | 690 786 366 534 426 312 312|692 774 606

30510 558 344 426 354 272 292|544

Table 2. MIPS x 100

their resource allocations and orders the jobs accordingly. If a full exponential
evaluation will not complete in time the code admits jobs of that revised rank
based on this ordering. The case where there are a large number of jobs of the
highest revised rank is obviously less satisfactory. And this case includes the case
where all jobs have the same revised rank. The code performs a greedy scheme
if pressed for time, but the results may be less than optimal. The philosophy
is that an imperfect macro(@ solution is better than no solution at all. In the
pseudo-code we let L, the be the number of job/template alternatives examined
of revised rank r, whether linear or exponential.

The resolution granularity loop is simple in nature: macro@ starts with a
coarse resolution to obtain a quick solution. Then it uses the time already spent
to estimate the finest resolution it believes it can safely solve in the remaining
time, subject to a reasonable minimum MIPS value. It reports the best impor-
tance found, and this is typically based on the finer resolution.

5 Experiments

In this section we experimentally evaluate SODA performance, focusing on the
functions of job admission and resource allocation. Note that the trade-offs be-
tween the two can be quite subtle. In order to better reveal these subtle trade-offs,
a carefully chosen set of well-controlled experiments were conducted. In these
experiments, a variety of job submission scenarios were simulated. For the com-
plete SODA performance with real applications running on System S, we refer
readers to [17,18].

Now we will describe the experimental setup. The largest system installation
we consider has 100 processing nodes with a rating of 11,000 MIPS each. In the
experiments we examine the effect of removing 5 processing nodes (and thus
5% of the processing power) from the system at a time. The jobs presented
to macro@ always remain the same: There are 19 jobs (labeled A through S),
consisting of 7 required jobs of rank 1, 6 optional jobs of rank 2, and 6 optional

17

% Rank 1 Rank 2 Rank 3
A B C D E F G| H I J K L M N O P Q R S

100 | 402 389 136 262 222 279 13]402 389 136 261 250 291|402 390 304 222 279 13
95402 388 136 262 222 279 13|402 388 136 261 250 291|402 388 304 222 279 13
90 | 402 388 136 262 222 279 13|402 388 136 259 250 291|400 388 304 222 279
851|400 388 129 262 216 279 10|400 388 129 259 250 291|400 388 304 216 279

80 (395 383 126 260 212 275 9(395 388 126 257 245 291|400 383 301 275
75|389 377 126 260 215 274 9389 377 126 257 245 286|389 383 301

70395 383 126 260 205 275 9395 383 126 257 245 286|395 301

65|400 388 129 262 216 279 13|400 388 129 259 250 291 304

60 | 400 388 129 262 216 279 11|400 388 129 259 250 291

55 (400 388 136 262 221 279 13|400 388 259 250

50 | 395 383 126 260 178 275 9395 383 257

30 (301 333 116 253 170 262 6380

Table 3. Importance

jobs of rank 3. The jobs are not interconnected, so rank and revised rank are
identical for each job. The experiments are designed so that at 100 processing
nodes the jobs will nearly (but not quite) use all the resources in the system
when each is allocated their maximum useful resources. This occurs, as per the
previous section, when each of the component importance functions becomes
flat as a function of allocated resources. In fact, when macro@ is run on the full
100 processing nodes all 19 jobs are admitted and the average utilization of the
processors is 97%.

Fig. 7(a) shows the number of jobs admitted by rank as the number of pro-
cessing nodes decreases in 5% increments from 100 nodes to 25 nodes. At 95%
all jobs are still admitted, though the processor utilization now is 100%. From
there on the utilization remains at 100%, as one would expect based on macroQ’s
design: The system is overloaded. At 90% 1 job of rank 3 is rejected, and all of
the rank 3 jobs are gone by the 60 processing node level. But rank 1 and 2 jobs
remain during the 65% to 100% range. Thus the rank waterline is 3. In the 30%
to 60% range the rank waterline is 2. All rank 1 jobs are admitted, but more and
more rank 2 jobs are rejected as the processing power decreases. At 25 processing
nodes only the required rank 1 jobs are admitted. The system is fully stressed
at this point, and a macro@ run at 20% of the processing nodes would not find
a feasible solution: There would not be sufficient processing power to admit all
of the required jobs even at their minimum acceptable resource allocations.

Fig. 7(b) shows the contribution to overall importance by rank as the number
of processing nodes decreases from 100 to 25. Importance is a decreasing function
of system resources, as should be the case. But between 100 and 85 nodes the
importance curve is actually quite flat: The component importance curves turn
out to be concave or close to concave, and there are sufficient resources available
so that the solution lies near the flat part of each curve. Job S is rejected at 85%
and 90%. But its importance is low and its resource requirements is high. One
can see this in Tables 2 and 3. The first table shows the allocated resources
(in hundreds of MIPS) by individual jobs as the number of processing nodes

18

% Rank 1 MRank 2 # Rank 3 7 Rank 1 MRank 2 #¥'Rank 3

T

of Admitted Jobs

RN —
NN —
Im
-
o
o
o
75% ANNN—eeie

100% |
75%
50% |
25% |
50%
25%4

Percent of System Resources

(a) Admitted Jobs by Rank (

ercent of System Resources

T 100% |

Importance by Rank

Fig. 7. Effect of Rank on Admission

decreases. The second table shows the corresponding importance values. Job
S contributes an importance of only 13 at 33600 MIPS, so it is clearly highly
expendable, and being of rank 3 it is jettisoned as soon as the offered load exceeds
available resources. The effect on overall importance is minimal. The only other
job with a poor ratio of importance to resources is job G. Job G is a twin of
Job S, but it is required and macro@ cannot reject it. Observe in Fig. 7(b) that
importance does start to decrease linearly from 80 down through 25 processing
nodes. The available MIPS dictate that the solution to the component resource
allocation problems occur on the steeper portion of each importance curve.

Examine Table 2 in the 3 ranges of resource allocations for which the admitted
jobs remains identical. (The 100% and 95% rows have this property. So do the
90% and 85% rows. And finally, so do the 40%, 35% and 30% rows.) If the
component importance curves are concave for each admitted job in these ranges,
the separable resource allocation problems in macro(@) would solve where the first
differences (effectively the derivatives) at each job would be as close to equal as
possible. And that would, in turn, imply that the resource allocations for each
job would be monotone non-increasing as the number of processors decrease. In
fact, this is the case in each of the three ranges, as an examination of the relevant
columns shows.

Overall, however, the allocated resources for each job will not be monotone as
the number of processors decrease. Consider, for example, the column for Job C
in Table 2. The MIPS allocated are high in the 85% to 100% range, because the
system is not heavily overloaded. As the number of processors decrease the MIPS
allocated to Job C exhibits somewhat oscillatory behavior, decreasing through
70%, then increasing back to its maximum useful allocation at 55%, and so on.
This behavior is primarily due to the changes in admission of the other jobs.
As jobs get rejected the allocations they would have received become available,
and macro@ will distribute these to the jobs that remain. (A secondary reason
for the lack of monotonicity is the slight deviations from concavity.) At the 25
and 30 processor levels the system is truly stressed and there the job is given
minimum acceptable MIPS allocations.

19

We have focused on the macro@ problems of job admission and resource
allocation in these experiments. Extensive experimental analyses of the overall
performance of SODA can be found in [17,18].

6 Related work

Stream processing systems have been an active area of research in recent years.
Example systems include Borealis [1], TelegraphCQ [5], STREAM [3], Aurora,
StreamBase [15] and Medusa [23] and so on. These systems are mostly based
on relational model and process voluminous quantities of incoming stream data.
In contrast, System S is much more general in terms of programming model. It
does not assume a relational model and it allows arbitrarily complex operators.

Most of these stream processing systems are designed to be run on more than
one node, and thus there has also been work on scheduling and load-balancing the
stream operations. While these scheduling approaches have some of the flavor of
the work we have presented here, none targets our problem exactly. We describe
some of these related scheduling approaches here.

The FIT algorithm [16] is a load-shedding algorithm which intelligently drops
load. Determining where best to drop load can be quite a complex problem, since
dropping at a particular operator has an effect on the downstream operators,
sometimes an unintended one. In some cases, shedding load on a particular
operator increases the resources for other operators on that node, and so could
increase load at nodes downstream. FIT cleverly addresses this problem in a
distributed way, but without a global notion of importance. The SODA scheduler
provides this same functionality as part of its resource allocation and scheduling,
and does so in a way that takes into account the processing graph for a job and
the total system objectives.

In [21,22], the authors address the problem of variance in stream rates.
Both papers describe a way to distribute the load so that changes in input
rate have a smaller chance of overloading the system. However, they do not
address the case when the system is overloaded, and make no decisions about
job admission. In [14], the authors provide a scheduling algorithm for a wide-
area network that places operators so as to minimize network latency. In the
local area network that we address, bandwidth, not network latency, is the main
concern. In addition, their work does not address the problem of job admission.
Others [12] also address scheduling to minimize latency.

The STREAM project [13] has goals somewhat similar to those presented
in this paper. Their system handles queries in an SQL-like language. When re-
sources are tight, they revise queries by dropping packets and/or changing inter-
nal parameters. Finally, in [20], the authors address admission control problem
in a hypothetical stream processing systems. Their model assumes a linear pro-
cessing graph. In other words, input stream is processed, successively, by a series
of operators. Thus, no operator takes input from more than one source stream.

20

7

Conclusions

In this paper we have described the SODA scheduler for large-scale distributed
stream processing applications. We have focused on one component, macro@,
in particular. This component is responsible for the two key functions of job
admission and resource allocation. We have provided an introduction to System
S, an introduction to the scheduler in general, and to the macro@ component of
SODA in particular. We have evaluated the subtle trade-offs between job admis-
sion and resource allocation via simulation experiments, showing the capabilities
of the scheduler.

References

10.
11.

12.

13.

. Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch

Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag S. Maskey, Alexander
Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stan Zdonik. The design
of the Borealis stream processing engine. In CIDR, 2005.

. Lisa Amini, Henrique Andrade, Ranjita Bhagwan, Frank Eskesen, Richard King,

Philippe Selo, Yoonho Park, and Chitra Venkatramani. SPC: A distributed, scal-
able platform for data mining. In DMSSP, 2006.

. A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani, I. Nishizawa,

U. Srivastava, D. Thomas, R. Varma, and J. Widom. STREAM: The Stanford
stream data manager. IEEE Data Engineering Bulletin, 26, 2003.

. J. Blazewicz, K. Ecker, G. Schmidt, and J. Weglarz. Scheduling in Computer and

Manufacturing Systems. Springer-Verlag, 1993.

. Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,

Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel R. Madden, Vi-
jayshankar Raman, Fred Reiss, and Mehul A. Shah. TelegraphCQ: Continuous
dataflow processing for an uncertain world. In CIDR, 2003.

. E. Coffman. Computer and Job-Shop Scheduling Theory. John Wiley and Sons,

1976.

. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. McGraw Hill,

1985.

. B. Gedik, H. Andrade, K.-L.. Wu, P. S. Yu, and M. Doo. SPADE: The System S

declarative stream processing engine. In ACM SIGMOD, 2008.

. K. Hildrum, F. Douglis, J. Wolf, P. S. Yu, L. Fleischer, and A. Katta. Storage

optimization for large-scale stream processing systems. ACM Transactions on
Storage, 3(4), 2008.

T. Ibaraki and N. Katoh. Resource Allocation Problems. MIT Press, 1988.

N. Jain, L. Amini, H. Andrade, R. King, Y. Park, P. Selo, and C. Venkatramani.
Design, implementation and evaluation of the linear road benchmark on the stream
processing core. In ACM SIGMOD, 2006.

Geetika Lakshmanan and Robert Strom. Biologically-inspired distributed middle-
ware management for stream processing systems. In Middleware, 2008.

Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcoke, Shivnath Babu,
Mayur Datar, Gurmeet Manku, Chris Olston, Justin Rosenstein, and Rohit Varma.
Query processing, approximation, and resource management in a data stream man-
agement system. In CIDR, 2003.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

21

Peter Pietzuch, Jonathan Ledlie, Jeffrey Shneidman, Mema Roussopoulos, Matt
Welsh, and Margo Seltzer. Network-aware operator placement for stream-
processing systems. In IEEE ICDE, Washington, DC, USA, 2006. IEEE Computer
Society.

StreamBase Systems. http://www.streambase.com.

Nesime Tatbul, Ugur Cetintemel, and Stan Zdonik. Staying fit: Efficient load
shedding techniques for distributed stream processing. In VLDB, pages 159-170,
2007.

J. Wolf, N. Bansal, K. Hildrum, S. Parekh, D. Rajan, R. Wagle, K-L. Wu, and
L. Fleischer. A scheduling optimizer for distributed applications: A reference paper.
Technical Report 24453, IBM Research Report, 2007.

J. Wolf, N. Bansal, K. Hildrum, S. Parekh, D. Rajan, R. Wagle, K.-L. Wu, and
L. Fleischer. SODA: An optimizing scheduler for large-scale stream-based dis-
tributed computer systems. In Middleware, 2008.

K.-L. Wu, P. S. Yu, B. Gedik, K. W. Hildrum, C. C. Aggarwal, E. Bouillet, W. Fan,
D. A. George, X. Gu, G. Luo, and H. Wang. Challenges and experience in proto-
typing a multi-modal stream analytic and monitoring application on System S. In
VLDB, 2007.

Cathy H. Xia, Don Towsley, and Chun Zhang. Distributed resource management
and admission control of stream processing systems with max utility. In ICDCS,
2007.

Ying Xing, Jeong-Hyon Hwang, Ugur Cetintemel, and Stan Zdonik. Providing
resiliency to load variations in distributed stream processing. In VLDB, pages
775-786. VLDB Endowment, 2006.

Ying Xing, Stan Zdonik, and Jeong-Hyon Hwang. Dynamic load distribution in
the Borealis stream processor. In IEEE ICDE, pages 791-802, Washington, DC,
USA, 2005. IEEE Computer Society.

S. Zdonik, M. Stonebraker, M. Cherniack, U. Cetintemel, M. Balazinska, and
H. Balakrishnan. The Aurora and Medusa projects. IEEE Data Engineering Bul-
letin, 26(1), 2003.

