
Dynamic Resource-Critical Workflow Scheduling
in Heterogeneous Environments

Yili Gong1?, Marlon E. Pierce2, and Geoffrey C. Fox3

1 Computer School, Wuhan University, Wuhan, HuBei, P.R.China 430079
yiligong@whu.edu.cn,

2 Community Grids Lab, Indiana University, Bloomington, IN 47404
mpierce@cs.indiana.edu

3 Community Grids Lab, Department of Computer Science, School of Informatics,
Indiana University, Bloomington, IN 47404

gcf@indiana.edu

Abstract. Effective workflow scheduling is a key but challenging issue
in heterogeneous environments due to the heterogeneity and dynamism.
Based on the observations that not all tasks can run on all resources and
acquired data transferring and queuing for a resource can be concurrent,
we propose a dynamic resource-critical workflow scheduling algorithm
which take into consideration the environmental heterogeneity and dy-
namism. We evaluate its performance by simulations and show that it
outperforms another selected widely used approach.

Key words: Dynamic Scheduling, Resource-Critical Scheduling, Work-
flow, Heterogeneous Environments.

1 Introduction

Heterogeneous distributed systems are widely deployed for executing compu-
tation and/or data intensive parallel applications, especially scientific work-
flows [1]. A workflow is a set of ordered tasks that are linked by logic or data
dependencies and a workflow management system is employed to define, manage
and execute these workflow applications [12]. The efficient execution of workflows
in this kind of environments requires an effective scheduling strategy which de-
cides when and which resources the tasks in a workflow should be submitted to
and run on.

The environment includes both heterogeneous resource and policy. The soft-
ware installation and configuration on resources are different as well as their
physical computing capabilities. On the other side, the administration policies,
such as access control policies, are autonomous and diverse. The dynamism
means that the resource status, e.g. load, waiting time in the queue, availability,
etc., changes over time are often uncontrollable. Thus the environment requires

? This work is supported by 973 Program (Grant No. 2005CB321807) and the National
Natural Science Foundation of China (Grants No. 60773058 and No. 60672051).

2 Yili Gong et al.

that the workflow scheduling take into consideration both heterogeneity and
dynamism, which make the problem very unique and challenging.

Concerning heterogeneity, we find that in practice due to access control pol-
icy, software version incompatibility or special hardware requirement, it is com-
mon that some tasks can not run on certain resources. With this observation, the
tasks which can run on every resource are more flexible for scheduling than the
resource-critical ones which can only run on just a few resources. For a resource-
critical task, considering the more resource-flexible tasks before and after it as a
group when scheduling should be better than scheduling them individually. This
is the key idea of our resource-critical algorithms.

In terms of the timing of scheduling, there are two categories of workflow
scheduling approaches: static scheduling and dynamic scheduling. A static schedul-
ing system makes a schedule before the workflow starts to run based on available
resource and environment information; while a dynamic scheduling approach
schedule a workflow realtime. The static approach is comparatively simpler and
easier to implement. However, its performance heavily relies on the accuracy
of the resource and environment information. Unfortunately it is difficult to
precisely predict this information due to resource autonomy and free will user
behavior. To make full advantage of the known and predicted information as
well as to adapt to dynamics of environment, dynamic scheduling is introduced.
After initially scheduling, the schedule can be re-assigned according to the hith-
erto workflow execution progress and resource status at runtime. Thus we use the
resource-critical mapping algorithm as a base, but when resource status changes,
we using the base algorithm to reschedule the unfinished part of a workflow.

With respect to the architecture of a scheduling system, it could be either
centralized or distributed. In a centralized workflow scheduling system, all the
scheduling is fulfilled by a central scheduler. While in a decentralized scheduling
system, there are many distributed brokers. The cooperation among the brokers
is a tough problem and makes the system complicated. Since generally speaking,
the calculation overhead of a dynamic scheduling algorithm is far less than the
execution cost of a workflow, we still prefer a centralized approach.

Analyzing the makespan of a workflow, it can be seen that it is composed
of tasks’ execution time, data transferring time and waiting time in resource
queues. To reduce any of these three items is beyond the reach of a workflow
management system, but it is possible that the data transferring time and the
waiting time can be concurrent, i.e. a task can be inserted into a resource waiting
queue though its required data are not transferred to the resource yet. As long
as the data are available when the task can actually get to use the resource, it
works. This is also a principal distinction between our work and other existing
work.

In this paper, our main contributions include that we propose a dynamic
resource-critical workflow scheduling approach and prove that it outperforms
the other selected widely used approach by simulations.

The rest of the paper is organized as follows. The related work is discussed
in Section II. In Section III, the proposed dynamic resource-critical workflow

DRCS 3

scheduling algorithm is described. We elaborate the design of experiments and
evaluate the performance of our algorithm in Section IV. The conclusion is
shown in Section V.

2 Related Work

Extensive work has been done in the field of workflow scheduling in distributed
environments. The key differentiators of our work in this paper from the related
work lies in that (1) we do not assume that a task can run on all resources,
which greatly extends the meaning of heterogeneity; (2) we assume that the
data transferring and the waiting time for resources can be concurrent.

HEFT(Heterogeneous Earlier Finish Time) [10] is one of the most popular
static heuristic and proven to be superior to other alternatives. Thus we select
it as a base algorithm for comparison. In [4], Yu et al. proposes a HEFT-based
adaptive rescheduling algorithm, AHEFT. It assumes the accuracy of estimation,
i.e. communication and computation cost is estimated accurate and task starts
and finishes punctually as predicted. In contrast, our proposed algorithm, DRCS,
does not assume this. On the other side, in the AHEFT algorithm, a task can
not start without all required inputs available on the resource on which the
task is to execute; while we take advantage of the fact that data transferring
and waiting in a queue for a resource can be concurrent. In AHEFT, if a task
has not finished by clock, it will be rescheduled; while in DRCS, the unfinished
tasks will be rescheduled when the resource’s waiting time changes. [9] is a
HEFT-based algorithm for dynamically created DAG scheduling.

The authors of [7] present a decentralized workflow scheduling algorithm
which utilizes a P2P coordination space to coordinate the scheduling among the
workflow brokers. It is a static scheduling approach and focuses on the scheduling
coordination.

In [6] a distributed dynamic scheduling is proposed and it needs to collect
resource information from local resource monitor services. Since the calculation
overhead of a scheduling algorithm is far less than the execution duration of a
workflow and resource information is available from existed third party sercies,
we still adopt a centralized approach to avoid additional resource information
propagation and synchronization.

Besides using makespan as the single criteria, there are some work on multi-
criteria workflow scheduling. [8] proposes a bi-criteria scheduling heuristic based
on dynamic programming. [5] presents a bi-criteria approach to minimize the
latency given a fixed number of failures or the other way round.

3 Dynamic Resource-Critical Workflow Scheduling
Algorithm

In this section, we give the details of our dynamic resource-critical workflow
scheduling algorithm.

4 Yili Gong et al.

3.1 Task Status

During the execution of a workflow, a task is in one of the five possible statuses:
unmapped, mapped, submit, running and finished, shown in Figure 1.

Fig. 1. A task’s possible statuses and their transitions.

– Unmapped: The task has not been mapped yet.
– Mapped: The task is assigned with a resource but has not been submitted.
– Submitted: The task has been submitted to the resource and is in the waiting

queue.
– Running: The task is running.
– Finished: The task has finished and the result is ready for use or transfer.

If it is unmapped, mapped or submitted, a task is called in unfixed status
or unfixed for short, and we consider it could be rescheduled; if it has started
running or is finished, it should not.

3.2 Revised Resource-Critical Mapping

In [2], we proposed a Static Resource-Critical workflow Mapping heuristic, re-
ferred as SRCM here. Its key idea is that it is better to map neighboring resource-
critical tasks as a group than to map them individually. In this paper, we adapt
the static approach to dynamic scheduling.

Given a DAG (Directed Acyclic Graph) of a workflow application, G =
(V,E), V = {v1, . . . , vN} is the set of nodes in the DAG, i.e. tasks in the work-
flow, N is the total number of nodes. Hereafter, we use the two terms – node
and task interchangeably. volij denotes the volume of data generated by node i
and required by node j, i, j ∈ V and ij ∈ E.

Let the set of resources be R = {r1, . . . , rM} and M be the number of
resources. cij is the computation cost of task i on resource j. If task i can
not run on resource j, cij is infinity.

DRCS 5

In a batch system, after submitted, a task typically has to wait for some
time in a queue before actually get started. Due to the load on the resource, the
waiting time varies with time. wij(t) is the waiting time for task i on resource
j at time t. Since in most heterogeneous environments, resources are shared
among a lot of autonomous users, it’s impossible to know the exact waiting time
in future. So far we use QBETS [3] to predict the waiting times, represented as
w′

ij(t), which might be different from the actual waiting time of a task.
trkl is the transfer rate from resource k to l, k, l ∈ R. tkl

ij is the communication
cost between task i and j when i is executed on resource k and j on l, and
tkl
ij = volij

trkl
, i, j ∈ V , k, l ∈ R. When task i and j are executed on the same

resource k, the communication cost is zero, i.e. tkk
ij = 0.

Let parent(v) be the parent(s) of task v and child(v) be the child(ren) of
task v, v ∈ V . These functions can be inferred from the DAG. We assume that
the DAG has a single start node v0 which has no parent, i.e. parent(v0) = φ
and a single end node vN−1 which has no child, i.e. child(vN−1) = φ; any of the
other nodes has at least one parent and one child.

The main difference of the dynamic scheduling from the original static map-
ping is that the assignment of a task to a resource might be changed during
the workflow execution, thus a variable, time t, is introduced. The function
map(v, t) : V → R is the resource mapping of the task v at time t. When
scheduling, the new mapping is only related to the last time scheduling result.
t represents the current time and t′ is the last scheduling time, correspondingly
map(v, t) is the current mapping and map(v, t′) is the last time mapping.

Let EST (v, r, t) and EFT (v, r, t) be the earliest start time and the earliest
finish time of task v on resource r at time t respectively by estimation. AST (v)
is the actual start time and AFT (v) is the actual finish time of task v.

To calculate the makespan of a workflow, we set EST (v0, r, 0) = 0, r ∈ R,
which means that the entry task v0 can run on any satisfactory resource at time
0. For a task v, EST (v, r, t) means calculated at time t, the earliest time at
which all data that v requires have been transferred to resource r and v gets the
right to run on r. Here, we make an important assumption that the waiting for
the data and the resource be concurrent. Thus EST (v, r, t) is defined as

EST (v, r, t) =

{
max (drt(v, r, t), rat(v, r, t)), v is unfixed,

AST (v), otherwise.

Wherein drt(v, r, t) is task v’s data ready time and rat(v, r, t) is its resource
available time, which are described in detail later.

EFT (v, r, t) is the earliest finish time of task v on resource r and

EFT (v, r, t) =


EST (v, r, t) + cvr, case 1,

AST (v) + cvr, case 2,

AFT (v), case 3,

Infinity, otherwise,

6 Yili Gong et al.

Wherein,
case 1: task v is unfixed;
case 2: task v is running and map(v, t) = r;
case 3: task v is finished and map(v, t) = r.

When a task finishes, its output will be transferred to its child(ren)’s assigned
resource(s) immediately. Thus when calculating the data ready time for a parent-
child pair, if the previously arranged data transfer is no longer valid (either or
both of the mappings for the parent and the child change, we need arrange a
new transfer. The earliest data ready time for data from parent u to child v on
resource r at time t, edrt(u, v, r, t), is as follows:

edrt(u, v, r, t) =

{
t + t

map(u,t),r
uv , case 1,

EFT (u) + t
map(u,t),r
uv , otherwise,

Wherein,
case 1: task u is finished and either map(u, t′) 6= map(u, t) or map(v, t′) 6= r or
both.

The data ready time for all data that task v requires, drt(v, r, t), is the maxi-
mum of the data ready times for all parents, i.e. drt(v, r, t) = max∀u∈parent(v) edrt(u, v, r, t).

The resource available time for task v on resource r at time t is the earliest
time that v can get r and start to run. If a task has been submitted to its
resource’s waiting queue, as long as its data can arrive before it finishes waiting
and gets the resource, the submission is valid. Otherwise, we need to resubmit
the task at time t. Here, we assume that resources are FIFO batch systems and
jobs submitted earlier should get resources no later than those submitted later.

rat(v, r, t) =

{
rat(v, r, t′), case 1,

t + w′
vr(t), otherwise,

Wherein,
case 1: v is submitted and map(v, t′) = r and rat(v, r, t′) > t and drt(v, r, t) <
rat(v, r, t′).

The makespan, the overall execution time of the workflow, is the actual finish
time of the end node, vN−1, i.e. AFT (vN−1).

In Algorithm 1, we show the revised resource-critical mapping (RRCM) al-
gorithm. The key idea is to consider resource-critical jobs with their resource-
flexible neighbors together as a group for mapping is better than mapping them
individually.

Since a job may not run on all resources, we define MR(v) as the match
ratio of the number of resources on which the job v can run and the number of
all resources, v ∈ V . By checking the computation cost array, it is easy to get
MR(v) by calculating the number of cvr which is not equal to infinity, r ∈ R.

The algorithm has three steps: ranking, grouping and group scheduling.
In the first step, each node and edge of the DAG is given the mean value of all

its non-infinite values. The weight of a node is the mean of its computation cost
on all matched resources. The weight of an edge is the mean of the maximum

DRCS 7

Algorithm 1 The revised resource-critical mapping (RRCM) algorithm.
1: // ranking
2: Set weights of nodes and edges with mean values.
3: Compute the rank of nodes by traversing the DAG upward, starting from the end

node.
4: Sort the nodes in a non-ascending order of the rank values.
5: // grouping
6: G0 ← φ; i← 0.
7: repeat
8: Get a node v in the order of nodes’ rank values.
9: if v’s mapping is unfixed and it is ungrouped then

10: Gi ← Gi + {v}.
11: for all u such that u is v’s descendants do
12: if all ancestors of u have been grouped, all nodes on the path from v to u

is in Gi and MR(u) ≤ α then
13: Gi ← Gi + {u}.
14: end if
15: end for
16: i← i + 1; Gi ← φ.
17: end if
18: until there are no more nodes.
19: // mapping
20: for all group Gi, in ascending order of i. do
21: Schedule the jobs in Gi.
22: Choose the schedule with the smallest finish time.
23: end for

of the communication cost and the waiting time of all possible combinations of
resources.

With the weights, upward ranking is computed and a rank value is given to
each node. The rank value, ranki, of a node i is recursively defined as follows:
ranki = nwi + max∀j∈children(i) (ewij + rankj), where nwi is the weight of node
i, and ewij is the weight of the edge connecting node i and j.

In the second step, nodes are grouped. First of all, nodes are sorted in the
non-ascending order of their rank values. Tie-breaking is done randomly. Mark
all fixed nodes as grouped. The first ungrouped node with the highest rank
value is added to a group numbered 0. Check each of the node’s children if its
ancestors are grouped and its match ratio is below a certain valve α. If so, add
the child node into the group, mark it as grouped and check its children further
on. If no additional such node is found, make the next ungrouped node with the
highest rank value as the first node of a new group, and so on. The outcome of
this process is a set of ordered group, each of which consists of a node and its
descendants on the path to which the match ratios of the nodes are all lower
than the valve α.

In the third step, the node groups are mapped, where any algorithm for
scheduling a DAG could be used. Since when scheduling a group, the mapping

8 Yili Gong et al.

is probably incomplete, the makespan of the whole workflow is not a proper
metric to value different assignments. Given a mapping, an end node is defined
as a node which either has no children or whose children have not all yet been
mapped. The finish time of a schedule is defined as the largest EFT of all end
nodes in the group. Comparing two mappings, the one with the smaller finish
time is preferred; if they have the same finish time, i.e. the same largest EFT,
the one with the smaller second largest EFT is better; and so on. If all EFTs
of the end nodes are the same, choose one of them randomly. So far, we adopt
an enumerative algorithm to try all combinations of resources for a group and
choose the one with the best EFTs of all end nodes.

The main difference between RRCM and SRCM lies in:

– Grouping nodes: on line 9, RRCM requires that if a node is fixed, it will not
be grouped.

– EFT calculation: on line 21 and 22, RRCM’s method to calculate EFT is
different as described above.

3.3 Dynamic Resource-Critical Scheduling

In this section, we will introduce the dynamic resource-critical scheduling al-
gorithm, which is based on RRCM. Specifically we use RRCM to schedule the
unfinished workflow tasks, shown in Algorithm 2.

When a workflow is first submitted for execution, an initial resource schedule
is generated. When some triggering events happen, such as the resource waiting
time changing, the tasks would be rescheduled.

Algorithm 2 The dynamic resource-critical scheduling (DRCS) algorithm.
1: S ← φ
2: while (((S == φ) OR (triggering event happens)) AND (vN−1 is not finished))

do
3: update the resource statuses
4: update the task statuses
5: call the revised resource-critical mapping (RRCM) algorithm
6: update mapping() and schedule submit and/or data transfer events
7: end while

4 Experiments

In this section, we evaluate the performance of our dynamic resource-critical
workflow scheduling algorithm. First, we introduce the experimental environ-
ment, followed by the metrics that we select. Then, we compare our DRCS with
three other algorithms: AHEFT [4], HEFT [10] and SRCM [2].

DRCS 9

4.1 Simulation Setup

1. DAG Generator
We generate parameter sweep DAGs, whose structure is shown in [2]. Every
DAG has one start node and one end node. Tasks on the same level in
different branches have same resource requirements and similar execution
time. We vary the branch number and the depth respectively from 4 to 12
and from 8 to 24, correspondingly the number of nodes varies from 34 to
290.

2. Heterogeneity Model
The heterogeneity model we adopt is based on the loosely consistent hetero-
geneity model, also called the proportional computation cost model in [11].
Instead of generating the resource computing power randomly, we use the
practical numbers from TeraGrid.
The baseline execution time of a task is chosen by using a random uniform
distribution over the interval [10, 100]. The computing cost of a task on a
resource is a random between 95% and 105% of the quotient of its baseline
time divided by the resource’s computing power number.

3. Match Ratio
This is a factor used in SRCM and DRCS introduced by the factor that
some tasks can never run on certain kinds of resources. The match ratio for
a task is the ratio of the matching and total resource numbers. The ratios
are generated randomly among (0, 1] and a task can run on at least one
resource.

4. Communication Bandwidth
The communication bandwidth between any two resources is a random num-
ber between 5M/s and 300M/s, which are the bandwidth range we measured
on TeraGrid.

5. Communication-to-Computation-Ratio (CCR)
CCR of a workflow is defined as its average communication cost divided by
its average computation cost for all resources. If a workflow’s CCR is low,
it would be considered as a computation intensive application; while if the
CCR is high, it is data intensive.

6. Waiting-to-Computation Ratio (WCR)
WCR is the ratio of the average resource waiting time to the workflow com-
putation time.

7. Match Ratio Threshold (MRT)
This value is used by SRCM and DRCS to decide what kind of nodes should
be grouped together for mapping. If MRT is so small that no node’s match
ratio below it and every node is an individual group, the SRCM and DRCS
will degenerate to HEFT and AHEFT respectively. If MRT is large, the
group size grows, it is time-consuming to find the best solution for a big
group. In our experiments, we set MRT between 0.1 to 0.5.

8. Parameters for Dynamic Changing of Resources
We use two parameters to represent the changing of resources:
– Resource Change Period (RCP) – the interval of the resource waiting

time change;

10 Yili Gong et al.

– Resource Fluctuation Indicator (RFI) – the waiting time fluctuation per-
centage from the initial value.

4.2 Metrics

To compare the performance of the four algorithms, the main metric we use is
average makespan difference ratio, which is based on two metrics: makespan and
average makespan difference ratio.

1. Makespan
Makespan is the complete time needed to finish a workflow under a certain
workflow scheduling algorithm.

2. Makespan Difference Ratio
We use the makespan of HEFT algorithm as a base, and the performance
of other algorithms is compared with HEFT’s. Thus the average makespan
difference ratio of HEFT is always 0.

3. Average Makespan Difference Ratio
For any given branch number and depth, we generate 200 DAGs with their
own task computation costs, communication cost, resource matchings and
resource bandwidths, each of which is called a case. With each combination
of the branch number, depth, CCR and MRT, these four algorithms will run
on the 200 cases.
The average makespan difference ratio is the average of the makespan dif-
ference ratios for the 200 cases under the same environmental setting.

4.3 Results

In our simulation, we vary the factors introduced above to evaluate their influ-
ence on the four workflow scheduling approaches.

Except in the experiment 3, which deals with how the DAG shape of the
parameter sweep applications affects the scheduling, the DAG branch number
and depth are fixed at 8 and 16 respectively.

1. Communication-Computation-Ratio (CCR)
To analyze the influence of CCR on the scheduling performance, we set
WCR = 1.0, RCP = 5000, RFI = 0.2, and MRT = 0.3 for the two
resource-critical algorithms. The makespans and the average makespan dif-
ference ratios under various CCR values are shown in Figure 2 and Figure 3
respectively. Since we set computation cost fixed, bigger CCR means bigger
communication cost, thus for all the algorithms, the overall makespan gets
longer.
When CCR is small, the two static approaches, HEFT and SRCM, and the
two dynamic approaches, AHEFT and DRCS, perform almost the same.
As CCR grows, the performance of SRCM and DRCS get better and when
CCR is over 3, the static approach SRCM even outperforms the dynamic
approach AHEFT. This surpassing depends on the fact that most benefit of

DRCS 11

the resource-critical algorithms comes from the communication time saving.
As the weight of the communication time in the makespan gets higher, the
benefit gets bigger. Therefore, SRCM and DRCS are more suitable for the
data intensive applications.
Figure 3 presents the improvement of AHEFT, SRCM and DRCS over
HEFT, from which we can notice more clearly the tendency that AHEFT
approaches HEFT and SRCM approaches DRCS. In further on simulation,
when CCR = 100, the difference between HEFT and AHEFT is about 0.69%
and the difference between SRCM and DRCS is about 1.19%. This is because
as CCR increases, the dynamic scheduling algorithms have less opportunity
to re-assign the tasks, since the cost of moving data gets bigger.

2. Waiting-Computation-Ratio (WCR)
Here CCR = 1.0, RCP = 5000, RFI = 0.2, and MRT = 0.3. Figure 4 and
Figure 5 present the results. For all four algorithms, the WCR increasing
causes the increasing of the waiting time cost, correspondingly the increasing
of the makespan.
When WCR is small (= 0.1), the two resource-critical algorithms performs
almost the same and better than HEFT and AHEFT. While as WCR grows,
the two dynamic algorithms are much less affected than the static ones.
It shows that dynamic scheduling can adjust the schedule when the waiting
time changes to shorten the overall execution time and the longer the waiting
time, the more obvious the advantage. It can be seen that DRCS is always
performs better than the other three, including AHEFT.
From Figure 5, it can been seen that the performance of HEFT and AHEFT
tends to close to that of SRCM and DRCS respectively. When WCR = 10,
the average makespan difference ratio of SRCM over HEFT is only 0.65%,
and the difference between AHEFT and DRCS is 0.92%. This shows again
that the benefit of SRCM and DRCS are from the communication cost re-
duction, once the waiting time gets longer, the weight of the communication
cost decreases, thus the performance improvement decreases.

3. DAG branch number and depth
In this set of experiments, CCR = 1.0, WCR = 1.0, RCP = 5000, RFI =
0.2, MRT = 0.3. When the branch number varies, the depth is fixed at 16;
while when the depth varies, the branch number is 8.
As the branch number varies from 4 to 12, the makespan of four algorithms
increases (refer to Figure 6). This happens due to the reason that the branch
number growth causes more tasks are ready to run at approximately the same
time, since the capacity of resources is limited, some of the tasks have to wait
longer to actually acquire the resources.
Figure 7 presents the performance improvement of the two dynamic algo-
rithms decreases with the branch number. For instance, when the branch
number is 4, the makespan difference ratios of AHEFT and DRCS are 22.69%
and 30.96 respectively; while when the branch number is 12, the ratios are
18.96% and 23.59%.It shows that when the resource competition is fierce,
there is little room for the dynamic approaches to reschedule the tasks to get

12 Yili Gong et al.

better waiting time. In contrast, the difference ratio of SRCM over HEFT
does not change much with the different branch numbers.
It is evident that the makespan increases approximately linearly as the depth
varies from 8 to 24 (see Figure 8 and Figure 9), since more tasks should
be executed sequentially. The deeper the depth, the bigger the improvement
ratio of the two resource-critical algorithms than the corresponding HEFT or
AHEFT algorithms. The improvement ratio of SRCM over HEFT increases
from 4.00% to 8.69% and that of DRCS over AHEFT increases from 5.26% to
10.82%. This shows that deeper depth allows the resource-critical algorithms
group more nodes together to achieve better schedule.

4. Resource Change Period (RCP) and Resource Fluctuation Indicator (RFI)
To measure how the resource changing affect the algorithms, we introduce
two factors: Resource Change Period and Resource Fluctuation Indicator,
which depict when and by what degree resources change.
In Figure 10, the setting is CCR = 1.0, WCR = 1.0, RFI = 0.2, and
MRT = 0.3. We can see that the resource change period has no influence
on the performance of the dynamic approaches. In contrast, as the period
grows, the makespan of the static ones decreases. The static approaches
decide the schedule of the workflow before it starts, and will not change
during the its execution duration. Thus when the resources change, i.e. the
waiting times change, the initial schedule will become unsuitable and the
performance suffers. If the resource change period is long, it would change
less times during the workflow execution and the suffering would be less,
correspondingly the makespan improves. As a result, the dynamic scheduling
methods are adapted to the dynamic resource environment. In Figure 11,
CCR = 1.0, WCR = 1.0, RCP = 5000, and MRT = 0.3. It shows that the
resource fluctuation percentage does not affect the performance of workflow
scheduling much. This is because the resource status fluctuation makes some
jobs finish earlier than predicted and some later, and the influence is balanced
out.

5. Match Ratio Threshold (MRT)
Match ratio threshold is only used in the resource-critical algorithms. Here,
we set CCR = 1.0, WCR = 1.0, RCP = 5000, and RFI = 0.2.
In Figure 12, as the MRT increases from 0.1 to 0.5, the makespan of SRCM
and DRCS decreases from 56404.30s to 55122.44s and from 44122.46s to
42841.48s respectively. This is because with a bigger MRT, the algorithms
could group more nodes together and try all the combinations to select the
best out them.

5 Conclusion

In this paper we have presented DRCS, an efficient workflow scheduling ap-
proach for heterogeneous and dynamic systems based on the resource-critical
algorithm. Aiming at heterogeneity, the algorithm combines the resource-critical

DRCS 13

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0.1 1 2 3 4 5 6 7 8 9 10

M
a

k
e

s
p

a
n

 (
s
)

Communication-Computation-Ratio (CCR)

HEFT
AHEFT
SRCM
DRCS

Fig. 2. Makespans under various
CCRs.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.1 1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 M

a
k
e

s
p

a
n

 D
if
fe

re
n

c
e

 R
a

ti
o

 (
%

)

Communication-Computation-Ratio (CCR)

HEFT
AHEFT
SRCM
DRCS

Fig. 3. Average makespan difference
ratios under various CCRs.

 40000

 45000

 50000

 55000

 60000

 65000

 70000

 75000

 80000

 85000

 0.1 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

M
a

k
e

s
p

a
n

 (
s
)

Waiting-Compuation-Ratio (WCR)

HEFT
AHEFT
SRCM
DRCS

Fig. 4. Makespan under various
WCRs.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.1 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

A
v
e

ra
g

e
 M

a
k
e

s
p

a
n

 D
if
fe

re
n

c
e

 R
a

ti
o

 (
%

)

Waiting-Compuation-Ratio (WCR)

HEFT
AHEFT
SRCM
DRCS

Fig. 5. Average makespan difference
ratios under various WCRs.

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 4 6 8 10 12

M
a

k
e

s
p

a
n

 (
s
)

Branch

HEFT
AHEFT
SRCM
DRCS

Fig. 6. Makespan under various branch
numbers.

 0

 5

 10

 15

 20

 25

 30

 35

 4 8 12

A
v
e

ra
g

e
 M

a
k
e

s
p

a
n

 D
if
fe

re
n

c
e

 R
a

ti
o

 (
%

)

Branch Number

HEFT
AHEFT
SRCM
DRCS

Fig. 7. Average makespan difference
ratios under various branch numbers.

14 Yili Gong et al.

 25000

 35000

 45000

 55000

 65000

 75000

 85000

 8 12 16 20 24

M
a

k
e

s
p

a
n

 (
s
)

Depth

HEFT
AHEFT
SRCM
DRCS

Fig. 8. Makespan under various
depths.

 0

 5

 10

 15

 20

 25

 30

 35

 8 12 16 20 24

A
v
e

ra
g

e
 M

a
k
e

s
p

a
n

 D
if
fe

re
n

c
e

 R
a

ti
o

 (
%

)

Depth

HEFT
AHEFT
SRCM
DRCS

Fig. 9. Average makespan difference
ratios under various depths.

 40000

 45000

 50000

 55000

 60000

 65000

 3000 4000 5000 6000 7000 8000

M
a

k
e

s
p

a
n

 (
s
)

Resource Change Period (s)

HEFT
AHEFT
SRCM
DRCS

Fig. 10. Makespan under various re-
source change periods.

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 70000

 10 15 20 25 30

M
a

k
e

s
p

a
n

 (
s
)

Resource Fluctuation Indicator (%)

HEFT
AHEFT
SRCM
DRCS

Fig. 11. Makespan under various re-
source fluctuation percentages.

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 0.1 0.2 0.3 0.4 0.5

M
a

k
e

s
p

a
n

 (
s
)

Match Ratio Threshold (MRT)

HEFT
AHEFT
SRCM
DRCS

Fig. 12. Makespan under various
match ratio thresholds.

DRCS 15

tasks with their ancestors and/or descendants together and finds the best sched-
ule for them as a group. For dynamism, it reschedules the unfinished tasks ac-
cording to the current resource status. To evaluate the performance of DRCS,
simulation studies were conducted to compare it with other competitors in the
literature, HEFT, AHEFT and SRCM. It is shown that DRCS outperforms
HEFT, AHEFT and SRCM in almost all environments in terms of makespan.
Especially, the two resource-critical idea based algorithms, DRCS and SRCM are
suited for data-intensive applications. The two dynamic scheduling algorithm,
DRCS and AHEFT are superior in the long waiting time systems.

To further on adapt to the unreliable, dynamic and heterogeneous environ-
ment, we plan to investigate the effect of resource liability and task failure on
the scheduling performance.

References

1. The QuakeSim Project Website, http://quakesim.jpl.nasa.gov/
2. Gong, Y., Pierce, M.E., Fox, G.C.: Matchmaking Scientific Workflows in Grid En-

vironments. In: 20th IASTED International Conference on Parallel and Distributed
Computing and Systems (PDCS’07), Cambridge, MA, Nov. 2007

3. Nurmi, D., Brevik, J., Wolski, R.: QBETS: Queue Bounds Estimation from Time
Series. In: 13th Workshop on Job Scheduling Strategies for Parallel Processing
(JSSPP’07), Seattle, WA, June 2007

4. Yu, Z., Shi, W.: An Adaptive Rescheduling Strategy for Grid Workflow Applica-
tions. In: 21st IEEE International Parallel & Distributed Processing Symposium
(IPDPS’07), Long Beach, CA, March 2007

5. Benoit, A., Hakem, M., Robert, Y.: ault Tolerant Scheduling of Precedence Task
Graphs on Heterogeneous Platforms. In: 22nd IEEE International Parallel & Dis-
tributed Processing Symposium (IPDPS’08), Miami, FL, April 2008.

6. Dong, F., Akl, S.G.: Mobile Agent Based Workflow Rescheduling Approach for
Grids. In: 20th IASTED International Conference on Parallel and Distributed Com-
puting and Systems (PDCS’07), Cambridge, MA, Nov. 2007

7. Ranjan, R., Rahman, M., Buyya, R.: A Decentralized and Cooperative Workflow
Scheduling Algorithm. In: 8th IEEE International Symposium on Cluster Comput-
ing and the Grid (CCGrid’08), Lyon, France, May 2008

8. Wieczorek, M., Podlipnig, S., Prodan, R., Fahringer, T.: Bi-criteria Scheduling of
Scientigc Workflows for the Grid. In: 8th IEEE International Symposium on Cluster
Computing and the Grid (CCGrid’08), Lyon, France, May 2008

9. Hunold, S., Rauber, T., Suter, F.: Scheduling Dynamic Workflows onto Clusters
of Clusters Using Postponing. In: 8th IEEE International Symposium on Cluster
Computing and the Grid (CCGrid’08), Lyon, France, May 2008

10. Topcuouglu, H., Hariri, S., Wu, M.Y.: Performance-effective and Low-complexity
Task Scheduling for Heterogeneous Computing. IEEE Transactions on Parallel and
Distributed Systems. Vol. 13, No. 3, pp. 260-274, March, 2002

11. Kwok, Y., Ahmad, I.: Dynamic Critical Path Scheduling: An Effective Technique
for Allocating Task Graphs to Multiprocessors. IEEE Transactions on Parallel and
Distributed Systems. Vol. 7, No. 5, pp. 506-521, May, 1996

12. Yu, J., Buyya, R.: Taxonomy of Workflow Management Systems for Grid Com-
puting. Journal of Grid Computing. Vol. 3, No. 3-4, pp. 171-200, Sept. 2005

