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Abstract

Heterogeneous clusters and grid infrastructures are be-
coming increasingly popular. In these computing infras-
tructures, machines have different resources, including
memory sizes, disk space, and installed software pack-
ages. These differences give rise to a problem of over-
provisioning, that is, sub-optimal utilization of a cluster due
to users requesting resource capacities greater than what
their jobs actually need. Our analysis of a real workload
file (LANL CM5) revealed differences of up to two orders of
magnitude between requested memory capacity and actual
memory usage. This paper presents an algorithm to esti-
mate actual resource capacities used by batch jobs. Such
an algorithm reduces the need for users to correctly predict
the resources required by their jobs, while at the same time
managing the scheduling system to obtain superior utiliza-
tion of available hardware. The algorithm is based on the
Reinforcement Learning paradigm; it learns its estimation
policy on-line and dynamically modifies it according to the
overall cluster load. The paper includes simulation results
which indicate that our algorithm can yield an improvement
of over 30% in utilization (overall throughput) of heteroge-
neous clusters.

1. Introduction

1.1. Background

Heterogeneous clusters and grid infrastructures are be-
coming increasingly popular. In these computing infras-
tructures, the machines have different computing power and
resources (memory, networking, etc.). Additionally, ma-
chines can dynamically join and leave the systems at any
time. Job schedulers provide a means of sending jobs for
execution on these computing clusters. A job is defined as
a set of processes that run, in parallel, on a single computer
or on multiple computers. Dynamic approaches to resource
management play a significant role in the management and

utilization of these infrastructures. With these approaches,
the job is submitted together with a specification of the type
and capacity of resources required for successful execution
e.g., amount of memory and disk space, and prerequisite
software packages. When a job is scheduled, its job re-
quest is matched with the available resources. If all the re-
quired resources are found, they are allocated and the job is
launched for execution.

Dynamic resource matching between jobs and resources
has been extensively researched over the years, initially for
homogeneous clusters and more recently for heterogeneous
and grid computing environments [4]. However, one prob-
lem that has rarely been examined is over-provisioning.
That is, jobs are allocated more resources than what they
actually need due to users overestimating the job require-
ments. With over-provisioning, we specifically refer to
resources in a given computing machine that can affect
the completion of the job execution. That is, if the ca-
pacity of these resources falls below a certain level, the
job cannot complete successfully. Examples of such re-
sources are memory size, disk space, and even prerequi-
site software packages. This paper focuses on the over-
provisioning problem. We do not deal with the problem
of over-provisioning the number of machines requested for
parallel jobs. This is a complicated problem, which is
heavily dependent on the programming model used (i.e.,
whether the number of machines is hard-coded in the job
source program).

Over-provisioning affects machine utilization as best ex-
plained by the following scenario. Assume two machines,
M1 and M2, and two jobs, J1 and J2. Assume M1 has a
larger memory size than M2. Initially, J1 can run on either
M1 or M2. However, the resource allocation matches it with
machine M1 because the user requests a memory size larger
than that of M2, but possible for M1. Later, J2 arrives. Due
to its memory size request, the only machine it can use is
M1. Now J2 is blocked until J1 completes or a new node
with at least the same memory size as M1 is added to the
cluster.

The over-provisioning problem is demonstrated in Fig-



Figure 1. A histogram of the ratio between
requested memory size and actual memory
used, per job, in the LANL CM5 workload file.
The vertical axis is logarithmically scaled

ure 1. This figure shows a histogram of the ratio of re-
quested to used memory in the LANL CM5 log [19]. As
this figure demonstrates, less than70% of jobs correctly es-
timate their required memory. In over30% of jobs there is
a mismatch by a factor of two or more between requested
memory and used memory. The regression line in the figure
shows the fit of the over-provisioning ratio to the percentage
of jobs. TheR2 coefficient1 for this regression line is 0.69.
This fitting shows that it is possible to estimate, with high
accuracy, the fraction of jobs with a given over-provisioning
ratio in future log files from similar systems. This is an im-
portant design consideration in some learning algorithms.

Unfortunately, it is frequently difficult for most users to
correctly specify the needs of their jobs. Therefore, this is
a persistent problem which causes waste of computing re-
sources. Ideally, the scheduler in a parallel system should
independently overcome this problem by estimating actual
user needs. This article attempts to show how such an auto-
nomic scheduler could be used.

Research of the over-provisioning problem is difficult, in
part because there are few workload files that contain infor-
mation on requested resources versus actual used resources
per job. One workload file we found useful is the LANL
CM5 [19] workload file. It contains a record of 122,055
jobs submitted to a Thinking Machines CM-5 cluster at the
Los Alamos National Lab (LANL) over approximately two
years. We used this workload file in our simulations for es-
timation of memory capacity per job (see Section 3).

1R2 is a measure of fitness between the points on the graph and the
regression line [17]. It represents the percentage of the data variance ex-
plained by the regression line. A highR2 (i.e., closer to 1) represents a
better fit.

1.2. Related Work

Resource management, including monitoring, matching,
and allocation, is a well documented area of research. Ba-
sic dynamic resource matching is already implemented by
all common scheduler systems (e.g., LoadLeveler [7], Con-
dor [9], PBS [5], and LSF [20]) for mostly homogeneous
clusters. Condor [1] suggests a declarative language (called
ClassAd) and system infrastructure to match job requests
for resources with resource owners. Jobs and resources de-
clare their capabilities, constraints, and preferences using
ClassAds. Each job is matched with a single machine to
run the job; that is, two ClassAds are matched against each
other. The basic match-making process deals only with a
single resource, hence, one-to-one matching. Also, success-
ful matching occurs when the available resource capacity is
equal to or greater than the job request [13].

Several works already extend and optimize dynamic re-
source allocation specifically for heterogeneous comput-
ing environments. An extension for optimal one-to-many
matching between a single job and multiple heterogeneous
resources is described in [10]. The optimal co-matching of
resources is based on application-specific global and aggre-
gation constraints (e.g., total memory size, running all ap-
plication tasks in the same grid domain). Still, in its essence,
it follows the basic matching where on every machine, the
amount of resources is equal to or greater than the job re-
quest. A similar problem is also solved by [14].

A linear programming approach for the resource-
matching problem in a grid is described in [12]. This ap-
proach deals with sharing (not necessarily dedicated) re-
sources and many-to-many matching between all jobs in the
queue and available resources. Using linear programming
instead of a user-specified mechanism as in [10], match-
ing is optimized for different global objectives such as load
balancing, throughput (matching as many jobs as possible),
and minimizing the number of grid resources used.

A fuzzy resource management framework is proposed
in [8]. In this framework, resource allocation is based on
a quantitative model as opposed to a binary model. Every
resource (e.g., machine) is given a fuzzy value between 0
and 1, which indicates its capabilities (e.g., high/low mem-
ory, high/low MFLOPS). Every job is also assigned a fuzzy
value, which indicates its nature (e.g., IO intensive, CPU-
bound). The matching process tries to maximize the match-
ing of different resource capabilities with the job’s nature.
Depending on the categorization of job and resource capa-
bilities, this approach can solve the under-utilization sce-
nario, described in Section 1.1, using a completely different
approach from the one proposed in this paper.

Another approach from a different perspective replaces
the user’s runtime estimate with automatic learning of the
job runtimes needed to optimize the backfilling scheduling



algorithms [16]. While this is not a resource-matching prob-
lem per se, it is an example of using a learning method to
optimize over-estimation of the user’s input in scheduling
systems, which is very similar in spirit to the approach sug-
gested in this paper.

Previously, we addressed the problem of resource esti-
mation in cases where similar jobs can be identified [21].
If there exists a metric which identifies two jobs that use
similar resource capacities based on the job parameters, a
simple learning algorithm can be used to estimate required
resources. This is explained briefly below.

2. Learning to Estimate Job Requirements

2.1. The General Approach

All known approaches for dynamic matching between
jobs and resources select resources whose available capac-
ity is greater than or equal to the users’ specifications. We
propose an approach that can select resources whose capac-
ity might also be lower than the job request.

Our approach is based on using automatic learning tech-
niques to estimate the actual job requirements. These re-
quirements assist the job scheduler in matching the jobs to
computers with lower resource capacity than that specified
by the job requests. These jobs have a high probability of
successful termination even though they are assigned fewer
resources (e.g., memory capacity) or even no resources at
all (e.g., ignore some software packages that are defined
as prerequisites), based on experience learned from earlier
submitted jobs (e.g., how many actual resources they used).
As such, our approach deals efficiently with the basic sce-
nario described in Section 1.1.

In principle, we envision a resource estimation phase
prior to resource allocation (see Figure 2). When a job is
submitted to the scheduler, its actual job requirements are
estimated, based on past experience with previously sub-
mitted jobs. Then, the resource allocator matches these es-
timated job requirements with available resources instead
of matching them based on the original job requirements.
Once a job completes (either successfully or unsuccess-
fully), the estimator gathers feedback information to im-
prove its resource approximation for future job submissions
(e.g., actual resources used). If jobs terminate unsuccess-
fully due to insufficient resource capacities they will be re-
submitted for execution either by the users or automatically
by the scheduling system (see below).

In this work we assume that job requirements are always
equal to or greater than the actual used resources. We do
not attempt to approximate actual job requirements in cases
where the original job resources requested are insufficient
for successful execution of the job. Also, the proposed es-
timator is independent and can be integrated with different
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Figure 2. Schematic diagram of the schedul-
ing process with estimation of job require-
ments

scheduling policies (e.g., FCFS, shortest-first-job), backfill-
ing and different resource allocation schemes. Finally, the
primary goal of the estimator is to free unused resources,
which otherwise would have been allocated to jobs. As
such, it is oriented towards heterogeneous cluster environ-
ments in which high throughput (and derived measurements
such as slowdown) are the primary goals.

2.2. Usability Issues

Our approach for automatic resource estimation in job
schedulers has several implicit assumptions regarding jobs
and user experience:

1. Potential side-effects of job failures due to insufficient
resources, for example, temporary opened files and al-
located storage, are no different than side-effects due
to other type of failures, e.g., user aborts or segmenta-
tion violation. Moreover, they are handled by similar
methods and techniques such as postmortem reset and
cleanup processes.

2. Users will be made aware of automatic resource allo-
cation and the possibility of job failures due to insuffi-
cient resources. They can disable or enable automatic
resource estimation for various reasons, on a per job
basis, for example by adding a corresponding Boolean
flag in the job request files.

3. Users have means (e.g., error logs and traces) to iden-
tify job failures due to insufficient resources. Other-
wise, they may decide to disable automatic resource
allocation for specific jobs. Also, if the system needs
to identify these failures and resubmit jobs in an auto-
matic fashion, some policies need to be identified. For
example, many jobs allocate their memory at the ini-
tialization phase. Thus, if job execution lasts for more
than one minute, it indicates that the job will not fail
due to low memory resources [11].

4. Jobs with insufficient resources will eventually fail.
For example, jobs which may have different behavior
because of insufficient memory, i.e., intensive swap-
ping operations, are outside the scope of our paper.



Feedback type
Implicit Explicit

Identification Yes Successive Last instance
of similar approximation identification
jobs No RL with RL with

classification regression

Table 1. Algorithms for resource estimation

2.3. Methods for Estimation of Job Re-
quirements

Estimating job requirements depends on two main fac-
tors: the ability to infer similarity of jobs and the type of
feedback offered by the scheduling system. Table 1 sug-
gests four possible algorithms for estimating resource ca-
pacity, based on these two factors.

Similar jobs are defined as jobs that require similar
amounts of resource capacity, where similar refers to ca-
pacity values that are all within a specific range (hence sim-
ilarity range), for example, 10%. This range value is a qual-
itative measurement for the similarity of jobs within a group
(i.e., there isn’t a criterion for non-similar jobs). The lower
the value, the more similar the jobs. It is beneficial to iden-
tify similarity groups with very low ranges. This improves
the effectiveness of the resource estimator.

In this context, the resources are all system resources
handled by the estimator and available for running jobs. If
a job does not use a specific resource, we consider it to con-
sume zero capacity of this resource. The similar jobs are
disjoint groups of job submissions that use similar amounts
of resource capacities.

The most simple case of similar jobs is repeated job sub-
missions. Assume every job is assigned a unique identifier
(ID), which can be used to recognize repeated submissions
of the exact same job (i.e., same program, input data, and
input parameters). In this case, a similarity group would
include all the repeated submissions of a specific job and
the resource estimator would use the experience gathered
from previous submissions of that job to estimate the actual
job requirements. Unfortunately, in many cases, such job
IDs are not available. For example, most of the workload
files in [19] do not include job IDs. Also, job IDs (assigned
by users) may be a restrictive approach, narrowing the job
space in which similar jobs are detected.

A more general method is to determine a set of job
request parameters that can be used to identify similarity
groups. This can be done by observation, where we find
parameters that indicate jobs using similar resources. Alter-
natively, one can partition a set of jobs into groups that use
similar resources and train a classifier to classify new jobs
into their similarity group. By default, this process will be

done offline (i.e., not as part of the resource matching pro-
cess itself), using traces of feedback from previous job sub-
missions, as part of the training (customization) phase of
the estimator.

As noted above the second factor which affects estima-
tion of job requirements is the type of feedback gathered af-
ter each job is executed. Feedback can range from implicit
to explicit. Implicit feedback refers to a Boolean value
indicating whether the job completed successfully or not.
This is a basic indication supported by every cluster and
scheduling system.Explicit feedback also includes the ac-
tual amount of resources used by a job upon its termination.
Explicit feedback depends on the availability of a cluster in-
frastructure to gather and report this information. The feed-
back information is used to refine the approximation and get
closer to the actual job requirements.

In practice, some balance between explicit and implicit
feedback can probably be expected. That is, explicit feed-
back will be available for some resources, but not all of
them. Explicit feedback is more informative and it is there-
fore expected that resource estimation will achieve better
performance compared to cases where only implicit feed-
back is given. An additional drawback of resource estima-
tion using implicit feedback is that it is more prone to false
positive cases. These cases are, for example, job failures
due to faulty programming (e.g., a job generating an excep-
tion) or faulty machines. These failures might mislead the
estimator into assuming that the job failed due to insuffi-
cient estimated resources. In the case of explicit feedback,
however, such confusion can be avoided by comparing the
resource capacities allocated to the job and the actual re-
source capacities used.

The following paragraphs provide a description of meth-
ods for resource estimation that do not assume similar jobs
can be identified. Methods that require the detection of sim-
ilar jobs were described in detail in [21] and are not further
elaborated on for lack of space. In this paper we focus here
on the practical on-line algorithms (that do not require an
off-line training phase for their operation).

The estimation of actual job requirements without job
similarity is best approached using Reinforcement Learning
(RL) [6]. RL is a class of learning algorithms where an
agent learns a behavior policy by exploring a state-space.
The agent can take actions, where it receives rewards for
good actions or penalties for poor actions. The goal of the
agent is to maximize its cumulative reward by modifying
its behavior policy. RL has been applied to autonomous
systems before, for example for improving load balancing
by applications in server farms [15].

In the context of resource estimation, at each step the RL
agent (the resource estimator) attempts to determine a pol-
icy of whether a job can be submitted for execution. The
policy is learned on-line, based on the system state, (i.e.,



the status of each node whether idle or busy, and if busy,
for how long), the resources of each machine, and the re-
quested resource capacities of the jobs in the queue. A re-
ward would be an improvement in utilization or slowdown,
whereas a penalty would be a decrease in these parameters.
The RL policy is initially random, but converges to a sta-
ble policy over time, via a process of trial and error. RL
algorithms can also adjust the policy over time if system
behavior changes. The main differences with methods that
use similarity groups is that in RL, the policy is global and
applied to all jobs, and that learning is performed on-line
(i.e., with no training phase).

RL is general enough to be applied with either explicit or
implicit feedback. Explicit feedback will help reach a more
fine-grained policy, with a better estimation of the average
actual resource capacities through learning of a regression
model. This is done by estimating the actual resource re-
quirements. If implicit feedback is available, a classification
model will be employed which, at each time step, would de-
cide whether or not the job can be submitted using currently
available resources.

In this work, we unified the two methods (classifica-
tion and regression) by using a non-linear Perceptron for
estimating the job requirements. In the case of explicit
feedback, the Perceptron attempts to estimate the actual re-
sources required, after which it can be decided whether the
job can be submitted using currently available resources. If
only implicit feedback is available, the Perceptron only de-
cides whether or not the job can be submitted for execution.

Pseudo-code of the reinforcement learning algorithm is
shown in Algorithm 1. This algorithm is based on the Soft-
Max strategy [18]. The algorithm is initiated (line 1) with a
separate weight vectorw for each resource capacity. For
simplicity, in the following we assume only a single re-
source capacity should be estimated. In our simulations
we attempted to estimate the required memory capacity for
each job.

When a job is submitted, its required resources are es-
timated by the Perceptron (line 3). The Perceptron uses as
input a feature vector derived from parameters of the job
request file (for example, the requested resource capacities)
and from system measurements such as the number of free
nodes, the load on the input queue, etc.

If the estimated resources can be satisfied using currently
available resources, the job is executed. However, even if
current resource capacities cannot satisfy the estimated re-
sources, the job might still executed. A random number
is generated (line 7) and if it is larger than a threshold, the
job will be sent for execution with zero estimated resources.
The threshold is the probability determined by a Gibbs dis-
tribution of the parameterp, which is the fraction of suc-
cessful executions so far. This is the exploration stage of
the RL paradigm.

If explicit feedback is available (lines 12-13) a success-
fully executed job (i.e., one that was allocated sufficient re-
source capacities) reports the utilized capacity. If it failed,
it reports the maximal allocated capacity. This means that
learning in the case of failure is hindered by the fact that the
estimator only knows that the allocated resource capacity
was insufficient, but not what the job would have required
for a successful execution. If implicit feedback is available
(lines 15-16), only a Boolean indicator of success or failure
is given.

Finally, the Perceptron weights and the exploration
thresholdp are updated according to the execution results
(lines 18-21). The Perceptron is updated with the object of
minimizing the error between the estimator and the actual
results, where both estimation and actual results are depen-
dent on feedback type, as defined in lines 12-16.

3. Simulations

3.1. Metrics for Evaluation

The rate at which jobs are submitted for execution on a
computing cluster is measured by theoffered load. The
higher the rate, the higher the offered load. Given a set of
jobs arriving at timeai, each requiringMi nodes for a run-
time of Ti seconds (i = 1, 2, . . . , N ), the offered load is
computed as:

Offered Load =
N∑

i=1

Mi · Ti/ (MT · (aN + TN )) (1)

whereMT is the total number of nodes in the cluster.
We used two main metrics,slowdown andutilization ,

to evaluate the proposed algorithm. Slowdown [3] is a mea-
sure of the time users’ jobs wait for execution, calculated
using the following formula:

Slowdown =
1
N

N∑
i=1

(Wi + Mi) /Mi (2)

whereWi is the time that thei-th job waited in the input
queue. One possible analogy of slowdown is latency in a
network.

Utilization [3] is a measure of the clusters’ activity. It is
computed as:

Utilization =
N∑

i=1

Mi · Ti/ (MT · TT )) (3)

whereTT the total simulation time.
In our experiments we changed the rate of job submis-

sions within the workload files and measured the slowdown
and utilization as a function of the offer load. Utilization



Algorithm 1 Reinforcement learning algorithm for estimat-
ing job requirements.J denotes a job,E′ denotes the esti-
mated resource capacity,E the available resource capacity,
andU the used resource capacity.w is the weight vector of
the Perceptron operating on a job feature vectorx, f (·) the
activation function of the Perceptron andf ′ (·) the deriva-
tive of this function with respect tow. p is the fraction of
successful executions so far.rand denotes a random num-
ber chosen uniformly from[0, 1]. η is a learning constant
andτ the decay constant for the RL algorithm.

1: Initialize w = 0, p = 0.5
2: for each submitted jobJ do
3: The estimated resource capacityE′ = f

(
w · xT

)
.

4: if E′ ≤ E then
5: Submit job to scheduler usingE′ as required re-

source capacity
6: else
7: if rand > ep/τ/

(
ep/τ + e(1−p)/τ

)
then

8: Submit job to scheduler using zero as the re-
quired resource capacity

9: end if
10: end if
11: if explicit feedbackis availablethen

12: t =
{

U if J terminated successfully
E if J terminated unsuccessfully

13: z = E′

14: else

15: t =
{

+1 if J terminated successfully
−1 if J terminated unsuccessfully

16: z =
{

+1 if E′ ≤ E
−1 if E′ > E

17: end if
18: dE = f ′

(
w · xT

)
19: dw = η · (t− z) · dE · xT

20: w = w + dw
21: Updatep such thatp is the fraction of successful job

executions.
22: end for

always grows linearly as the offered load increases until the
scheduling system becomes saturated. This is when, for the
first time, jobs are queued in the input queue of the sched-
uler awaiting available resources. The higher the offered
load at the saturation point, the better the computing cluster
is utilized [3].

Utilization is usually computed under the assumption
that all jobs performed a useful function. However, in the
current setup, some jobs will ultimately fail because insuf-
ficient resource capacities are allocated to them, without
performing a useful function. We therefore reporteffective
utilization , which is the utilization of successfully executed
jobs andtotal utilization , which is the utilization associated
with both successful and unsuccessful jobs.

3.2. Simulation Setup

We used the LANL CM5 [19] as a real workload file to
simulate a scheduling process where we estimated the mem-
ory capacity per job. The reason for using this workload
file was because to our knowledge it is the only publicly-
available workload file which reports both requested and
used memory capacities. Figure 3 shows histograms of the
distribution of run-time, requested and used memory, and
requested processors in the CM5 workload.

In our simulations we dealt with two possibilities: Ex-
plicit feedback where if a job successfully completed it re-
ported actual memory usage (if it did not, only allocated
memory capacity is known), and implicit feedback where
the only feedback was whether a job completed success-
fully (because it had ample resource capacity) or not.

The CM-5 cluster had 1024 nodes, each with 32 MB
physical memory. For our experiments, we needed to run
this workload file on a heterogeneous cluster. Thus, we had
to change the workload file. We found that the minimum
change would be to remove six entries for jobs that required
the full 1024 nodes of the original CM5 cluster. This re-
moval enabled us to rerun the workload file for a heteroge-
neous cluster with 512 original machines (32 MB memory)
and another 512 machines with lower memory sizes.

We also used the algorithm in Section 2.3 to estimate the
actual memory capacity for jobs. The learning constantη
was set to 0.1 and the decay constantτ to 10. We used a
hyperbolic tangent activation function for the Perceptron,
such thatf (x) = a ·M · tanh(b · x), wherea = 1.716 and
b = 2/3 (set according to the recommendations in [2], pg.
308) andM the largest memory size in the cluster (i.e., 32
MB).

In the simulation we used a scheduling policy of first-
come-first-served (FCFS). We expect that the results of
cluster utilization with more aggressive scheduling policies
such as backfilling will be correlated with those for FCFS.
However, these experiments are left for future work. We as-



Figure 3. distribution of run-time, requested and used memory, and requested processors for the
CM5 workload

sumed no job pre-emption. Moreover, when a job is sched-
uled for execution, but not enough resources are allocated
for it, it fails after a random time, drawn uniformly between
zero and the execution run-time of that job. We assume that
jobs do not fail except for insufficient resources. Moreover,
once failed, a job is automatically resubmitted for execu-
tion.

The offered load (see Equation 1) in each run was mod-
ified by multiplying the submission time of all jobs by a
constant factor so as to achieve a required load.

In our simulations the estimator used as features the fol-
lowing measurements to estimate the required memory re-
sources:

1. The fraction of available processors in the cluster with
a given memory size

2. The fraction of available processors in the cluster re-
quired to complete the job

3. Logarithm of the requested memory capacity for the
current job

4. Logarithm of the number of jobs in the queue (i.e., the
queue length)

These features represent a heuristic of indicators that
could be useful and relatively easy to obtain. However, sys-
tem designers can choose to use other measurements for the
estimation process.

3.3. Results

In our first experiment, we measured the effect of re-
source estimation on effective utilization. We experimented
with a cluster of 512 machines, each with 32 MB memory,
and an additional 512 machines, each with 24 MB mem-
ory. Figures 4 and 5 show a comparison of the effective
utilization [3], with and without resource estimation, for
both the implicit and explicit feedback scenarios. The dif-
ference between utilization with implicit and explicit feed-
back is small (approximately 1%). This is surprising since

explicit feedback provides much additional information for
the learning algorithm. We hypothesize that this is related
to the naive learning method we used (Perceptron), which
failed to utilize the additional information, as well as the
fact that when a job fails the feedback only contains the (in-
sufficient) allocated capacity, not the required capacity. We
address these issues further in Section 4. Figures 4 and 5
further show that effective utilization with resource estima-
tion improved by approximately 33% for the case of im-
plicit feedback and 31% for the case of implicit feedback.

The reason for the improvement in utilization with re-
source estimation is as follows. At low effective loads, most
of the jobs are likely to have sufficient resources as defined
by the corresponding user requests. However, as the load
increases, fewer jobs are likely to have available resources
that match the job requests. Resource estimation increases
the number of these jobs; once scheduled, it enables them to
run on the cluster instead of waiting in the queue for more

Figure 4. Effective utilization with resource
estimation (dotted line) and without resource
estimation (solid line) with implicit feedback



Figure 5. Effective utilization with resource
estimation (dotted line) and without resource
estimation (solid line) with explicit feedback

resources that they don’t actually need.
Figure 6 compares the effective utilization to the total

utilization in the case of implicit feedback. The difference
between the effective utilization and the total utilization is
the utilization caused by jobs which terminated unsuccess-
fully due to insufficient resources. This difference repre-
sents the overhead (in terms of computing resources, elec-
tricity, etc.) which the system administrator has to pay for
the learning process to find a useful policy.

Figures 7 and 8 show the effect of resource estimation on
slowdown for both types of feedback. As shown, over most
of the range of offered load, resource estimation halves the
slowdown compared to the case where no resource estima-
tion is performed, and never causes slowdown to increase
beyond the case where no resource estimation is performed.
Moreover, slowdown decreases dramatically (by a factor of
approximately 10) around loads of 50%. The reason for
this peak in performance can be explained by the fact that
a FCFS scheduling policy is used. The higher the loads,
the longer the job queue, and the relative decrease in slow-
down is less prominent. The 50% load is a point at which
the job queue is still not extremely long and resource esti-
mation is already useful in reducing the wait-time of jobs in
the queue.

Reinforcement Learning finds a policy for submitting
jobs. In our case, the policy was indirect in that the RL al-
gorithm was required to estimate the memory requirements
rather than the actual scheduling policy. This was done to
make the proposed system independent of the scheduling
policy. Clearly, the policy should also affect the submission
policy. For example, if a good policy would be to try and
submit all the jobs regardless of their memory requirements
and the available processors, we would expect RL to esti-

Figure 6. Effective utilization (dotted line)
compared to the total utilization (line marked
by crosses) in the case of resource estima-
tion with implicit feedback

mate the required memory as lower than the minimal avail-
able memory so the jobs would be submitted with minimal
requested resources.

Figure 9 shows the feature weights versus load. Fea-
ture 1 is the fraction of available 32 MB nodes. Feature 2
is the fraction of available 24 MB nodes. Feature 3 is the
requested memory and Feature 4 the length of the queue.
The weights associated with the fraction of available pro-
cessors required to complete the job is not shown because
it is highly correlated with Features 3 and 4. As Figure
9 shows, all weights tend to lower values as the load in-
creases. This implies that as the load becomes higher, more
and more jobs will be estimated as requiring low memory,
and will thus be submitted whenever enough processors of
anycapacity are available. This is to be expected because at
high loads it makes sense to try and use whatever resources
are available.

This effect is visible in Figure 10, which shows the num-
ber of unsuccessful job submissions as a function of the
load2. Clearly, as the load increases, more jobs are submit-
ted with a low memory usage estimate and later fail. How-
ever, even at this high failure rate, effective utilization still
increases by 30%.

Another interesting trend can be seen in Figure 9. The
top row shows almost linear decline in the weights (R2 >
0.85), while the lower row shows a much less linear decline
(R2 = 0.85 for Feature 3 andR2 = 0.66 for Feature 4).
We interpret this behavior by noting that at low loads the
queue length is usually very short and computing resources

2We note that although the values on the vertical axis are large, one
should bear in mind that the total number of jobs in the workload file is
approximately 122,000 and that each job can fail multiple times.



Figure 7. Slowdown with resource estimation
(dotted line) and without resource estimation
(solid line) with implicit feedback

are usually available. Therefore, these weights have little
effect on the memory estimation. These weights only play
an important role when the load is high, as shown on the
graph.

All the above experiments were done with one particu-
lar heterogeneous cluster. In the following experiment, we
measured the cluster utilization with and without resource
estimation for different clusters. We used 512 machines
with 32 MB of memory and an additional 512 machines
with different memory sizes between 1 MB and 32 MB. All
other simulation parameters remained as in the previous ex-
periments.

Figure 11 shows the ratio of utilization when using mem-
ory estimation, compared to using user requirements, as a
function of the variable memory part of the cluster. The
greatest improvement in utilization was obtained for clus-
ters with the 512 machines whose memory size was mod-
ified to between 16 MB and 28 MB. The utilization at the
rightmost part of the graph, when all machines have 32 MB
of memory, is the same with and without learning because
at this point the cluster is homogeneous and any job can be
successfully executed on the available machines. There is a
slight decrease in utilization for clusters where the machine
had memory below 15 MB. For such configurations only a
small proportion of jobs could be run with lower memory.
Consequently, utilization decreases because of repeated at-
tempts to create a good estimator that is only applicable for
a few jobs.

4. Discussion

This paper presents an autonomic module for assess-
ing the actual resources required by jobs submitted to

Figure 8. Slowdown with resource estimation
(dotted line) and without resource estimation
(solid line) with explicit feedback

distributed computation systems. Its huge benefits were
demonstrated by extremely significant improvements in uti-
lization and slowdown. It is estimated that these improve-
ments would not be easy to achieve through modification of
user behavior.

The proposed system can utilize both implicit feedback,
which only informs the learning system whether the job
submission was successful, and explicit feedback, which
provides more information on resource usage. Interestingly,
our simulations show almost identical performance for the
two types of feedback. This is surprising because it is to
be expected that when additional information exists, bet-
ter performance will ensue. We hypothesize that the reason
for this behavior is due to the type of learning algorithm
we used. We expect that better algorithms, such as Support
Vector Machines (SVM) or neural networks, will show the
superiority of explicit feedback over implicit feedback.

Finally, we note that the problem we addressed in this pa-
per is prevalent in many other cases. These cases are char-
acterized by settings where users give (poor) estimates of
their needs or requirements, but where it is possible to auto-
matically improve these estimates by learning from larger
populations. One such example is setting parameters to
achieve given service level objectives (SLOs) in compli-
cated systems and creating policies for storage systems. We
are currently applying the algorithms described in this paper
to such problems.
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