GridARS: An Advance Reservation-based
Grid Co-allocation Framework for
Distributed Computing and Network Resources

Atsuko Takefusa Hidemoto Nakada

Tomohiro Kudoh Yoshio Tanaka

Satoshi Sekiguchi
National Institute of Advanced Industrial Science and Technology (AIST)

{atsuko.takefusa,hide-nakada,t.kudoh,yoshio.tanaka,s.sekiguchi}@aist.go.jp

Abstract

For high performance parallel computing on actual
Grids, one of the important issues is to co-allocate the
distributed resources that are managed by various local
schedulers with advance reservation. To address the is-
sue, we proposed and developed the GridARS resource
co-allocation framework, and a general advance reser-
vation protocol that uses WSRF/GSI and a two-phased
commit (2PC) protocol to enable a generic and secure
advance reservation process based on distributed trans-
actions, and provides the interface module for various
ezisting resource schedulers. To confirm the effective-
ness of GridARS, we describe the performance of a
simultaneous reservation process and a case study of
GridARS grid co-allocation over transpacific comput-
ing and network resources. Our experiments showed
that: 1) the GridARS simultaneous 2PC reservation
process is scalable and practical and 2) GridARS can
co-allocate distributed resources managed by various lo-
cal schedulers stably.

1 Introduction

Grid technologies allow large-scale parallel comput-
ing, namely metacomputing, over distributed comput-
ing resources managed by different organizations. A
crucial issue for achieving high effective performance of
fine-grain message passing applications over Grid envi-
ronments is Grid co-allocation of various distributed
resources.

At this point, we perform Grid co-allocation as fol-
lows:

(1) Manual reservation and job execution by
SSH

The user reserves distributed resources by human

negotiations such as e-mail and phone for each re-
source manager and performs metacomputing over the
reserved resources at the reserved time. Some academic
Grid test beds apply this strategy, but the problems
are: it is difficult to use resources effectively, someone
might use the reserved resources, and it is unrealistic
to expect to have a local account on all of the available
resources in large-scale Grid environments.

(2) Manual reservation of resources managed
by resource schedulers

The user reserves resources manually as in (1), and
administrators of the corresponding cluster managed
by a batch queuing system configure a reservation
queue according to the requirements. Then, the user
submits jobs to the queues and performs metacomput-
ing. The Tera Grid project in the US[1] adopts this
strategy, which allows management of resources based
on each organization’s policy. On the other hand, many
manual configuration errors have been reported.

(3) Automatic reservation of resources man-
aged by resource schedulers

Resources are managed by a local batch queuing
system with an advance reservation capability and a
global scheduler co-allocates distributed resources for
user requirements. Then the user submits jobs to the
reserved queue. This strategy allows resource manage-
ment based on each organization’s own policy, as well
as (2) avoiding human configuration errors. However,
there have been several technical issues standing in the
way of automatic reservation by global schedulers, as
described in Section 2

We propose GridARS (Grid Advance Reservation-
based System framework), a Grid co-allocation frame-
work for distributed resources, such as computers and
network, and we developed a general advance reser-
vation protocol over WSRF (Web Services Resource
Framework)|[2].

GridARS co-allocation architecture consists of a
Global Resource Scheduler (GRS) and Resource Man-
agers (RM, local schedulers), and automatically co-
allocates required resources via WSRF. It enables a
simultaneous reservation process for multiple resources
by using a hierarchical two-phase commit (2PC) pro-
tocol between the User-GRS and GRS-RMs.

The main components of GridARS are the
GridARS-Coscheduler and GridARS-WSRF. The
GridARS-Coscheduler finds suitable resources for each
user and co-allocates the resources by distributed
transactions. GridARS-WSRF is an interface mod-
ule for the proposed 2PC advance reservation proto-
col over WSRF. Our GridARS-WSRF implementation,
called GridARS-WSRF/GT4, has been developed us-
ing Globus Toolkit 4 (GT4)[3].

To confirm the effectiveness of GridARS, we present
the basic performance of our 2PC reservation process
between GRS and 8 RMs over WSRF/GSI using Gri-
dARS, and describe a case study of GridARS Grid co-
allocation of transpacific computing and network re-
sources. Our experiments showed that: 1) the Gri-
dARS simultaneous 2PC reservation process is scal-
able and practical and 2) GridARS can co-allocate dis-
tributed resources managed by various local schedulers
stably.

2 Issues for Grid Co-allocation

Various resources, such as computers, network, and
storage, on Grids are generally used by local domain
users. In Grid co-allocation, resource schedulers have
to provide their resources for both local users and
global users, and thus must aim for co-allocation over
Grids, efficiently. To resolve this situation, there are
the following issues:

Co-allocation of various resources Existing Grid
global scheduling system, such as Moab[4] and
CSF[5] actually address only computing re-
sources. However, high performance paral-
lel computing over distributed environments re-
quires not only computing resources, but also
network resources, such as bandwidth. A global
scheduling system co-allocates various resources
with assured performance.

Coordination with existing resource schedulers
In order to use resources efficiently under differ-
ing domain policies, most Grid resources have
been managed by resource schedulers such as
GridEngine[6], TORQUE[7] or other commercial
batch queuing systems. Global schedulers have

to provide resources for global users in coordina-
tion with existing resource schedulers.

Advance reservation Local resource schedulers ba-
sically allocate each user job based on strategies
such as FCFS. In this situation, it is difficult
to estimate when a user job will start. To co-
allocate resources without losing each local re-
source, an advance reservation capability is re-
quired for local and global schedulers.

WSRF/GSI WSRF is a standard interface for state-
less services. Most resource schedulers provide
a command line interface or a graphical inter-
face. To provide resources for various global
users, who usually do not access resource sched-
uler hosts by SSH or other schemes, resource
schedulers and global schedulers should provide
a standard WSRF interface with secure commu-
nication, such as GSI (Grid Security Infrastruc-
ture).

Two-phase commit Resource schedulers should sup-
port a two-phase commit (2PC) reservation in-
terface so that global schedulers can allocate dis-
tributed resources simultaneously based on dis-
tributed transactions. As shown in Fig. 1, we
assume modification of reservation time on re-
served resources managed by distributed resource
schedulers using a one-phase commit (1PC) pro-
tocol, which most resource schedulers support.
(1) After User sends a modification request to
the global scheduler, called Co-allocator, Co-
allocator sends the request to related resource
managers. (2) In this case, RM2 has failed to
modify the reservation time but the other RMs
have succeeded. Then, (3) User and Co-allocator
send a rollback request of the reservation time
to RMO, RM1, and RM3. But at (4), the roll-
back has failed fatally because the rollback on
RM1 has failed due to another reservation being
inserted in advance.

3 GridARS Grid Co-allocation Frame-
work

In order to resolve the above issues, we pro-
pose, and have developed, a GridARS (Grid Advance
Reservation-based System framework) co-allocation
framework, which allows co-allocation of widely-
distributed resources managed by various organizations
and resource schedulers.

An overview of the GridARS co-allocation frame-
work is shown in Fig. 2. GridARS consists of a

(1) modify (3) rollback
reservation
time

Co-allocator Co-allocator

time RMO_ RM1 RM2 RM3 time _RMO RM1 RM2 RM3
I ;l g i I é‘uﬁ%
(2) modify (4) rollback
failed at RM2 failed at RM1

Figure 1. An example of rollback failure by
one-phase commit.

Requirement Result
Grid Application
| Grid Portal 0
T
1
1
1
duration 5 min - L
deadiine o Grid Resource Scheduler (GRS) J
&

- ——) ’ : -~

<« = =» 2 phased commit R AR TN

-—— PRI T -~

ST NN S~.l
s 1 S ~~
- rd \ \
- ’ 1
IR I Network Resource
R CRM ! Manager (NRM)
1 5

Compute Resource
Manager (CRM)

>
SiteA - GiteC

Figure 2. Overview of the GridARS co-
allocation framework.

Global Resource Scheduler (GRS) and Resource Man-
agers (RM) for computers (CRM), network (NRM),
and other resources. In each RM, existing resource
schedulers manage a reservation table of their resources
for advance reservation. A User sends requirements on
resources and reservation time to GRS, and then GRS
co-allocates suitable resources in coordination with re-
lated RMs.

The dotted lines between User-GRS and CRS-RMs
in Fig. 2 indicate a two-phase commit (2PC) advance
reservation process so that GRS can book distributed
resources simultaneously based on distributed transac-
tions. As shown in Fig. 2, GridARS provides a hierar-
chical 2PC process so that GRS can be one of the re-
source managers, because it is easy to coordinate with
other global schedulers.

Reservation
request

GridARS-WSRF

Abstract
requirements
—

A 4

Co-allocator Planner

I

r Concrete
requirements

Transaction Query about

request for available
reservation y resources
[Resource Managers]

Figure 3. GridARS-Coscheduler System Ar-
chitecture.

GRS consists of GridARS-Coscheduler
and GridARS-WSRF. Grid-Coscheduler selects suit-
able resources for user requirements for resources and
co-allocates the resources based on distributed transac-
tions. GridARS-WSRF is an interface module of this
2PC WSRF reservation process. Each RM consists of
GridARS-WSRF and an existing local resource sched-
uler.

3.1 GridARS-Coscheduler

GridARS-Coscheduler consists of a Co-allocator and
a Planner, as shown in Fig. 3. Co-allocator receives
user resource requirements via GridARS-WSRF and
sends the requirement to Planner. From the user re-
quest and current resource status, Planner determines
candidates from among concrete resources and then re-
turns the planning results to Co-allocator. One solu-
tion to get distributed resource information is a central-
ized global information service to collect and provide
local resource information. However, a commercial re-
source manager cannot expose resource information,
and the amount of reservation timetable information is
larger than current resource information as managed
by current information services, such as Ganglia[8].
Therefore, GridARS GRS requests resource informa-
tion from each RM directly. Planner is replaceable for

NRM I/F
GRS I/F CRM I/F (GNS-WSI)
'ﬁ:'- WSDL Wrapper:
n
=
n Main Module
o
<
S
(3 Resource Manager Wtapper
GridARS- Queuing Network
Coscheduler Scheduler Scheduler

Figure 4. GridARS-WSRF System Architec-
ture.

each manager strategy or user requirement.

Then, Co-allocator negotiates with the related RMs
and books the resources selected by Planner simulta-
neously based on distributed transactions. Details of
the reservation process will be described in Section 4.
After the reservation process has finished, Co-allocator
monitors the status of the reserved resources periodi-
cally.

3.2 GridARS-WSRF

GridARS-WSRF is a polling-based 2PC interface
module for advance reservation. In a polling-based sit-
uation, the number of communications between client
and server will increase, and the client detects a change
of resource status behind the actual change. On the
other hand, this enables asymmetric communication,
e.g., a client does not have global address or fire-
wall problems. WS-Notification[9] has been proposed
for notification over web services and it also requires
polling from the client side in order to detect network or
server failures. Therefore, GridARS is based on polling
and applies WS-Notification, optionally.

GridARS-WSRF consists of a WSDL Wrapper, a
Main Module, and a Resource Manager Wrapper. Fig.
4 is an example of GRS, with CRM for the computing
resource, and NRM for the network resource. WSDL
Wrapper is in between the various resource interfaces
and the Main Module. GridARS applies a common
advance reservation protocol for reservation, modifica-
tion, and release, and different resource parameter rep-
resentations for each resource, because some resource
representations such as JSDL[10] have already been
standardized.

Main Module enables a polling-based 2PC reser-
vation process for reservation, modification, and re-
lease. When a client invokes the reserve operation,
Main Module returns a response to the client in a non-
blocking manner, and sends the reserve request to re-
source schedulers or to the Grid ARS-Coscheduler. Af-
ter pre-reservation has finished, it completes the reser-
vation using the client commit request. A non-blocking
manner is important for distributed systems. It avoids
hang ups because of server or client side troubles, and
enables recovery of each process from the failure, eas-
ily. Main Module also checks the status of reserved
resources managed by the resource scheduler periodi-
cally in a polling-based manner, so that the client can
get the status via the WSRF interface.

Resource Manager Wrapper provides an API for the
GridARS-Coscheduler or resource schedulers. Imple-
menting this API, existing schedulers can provide a
GridARS WSRF interface without complicated WSRF
coding.

4 Design and Implementation of

GridARS-WSRF

The advance reservation protocol of GridARS-
WSRF is based on GNS-WSI (Grid Network Ser-
vice - Web Services Interface)[11] version 2 (GNS-
WSI2)[12]. GNS-WSI has been defined by the G-
lambda project[13], which is a collaboration of AIST,
KDDI R&D Laboratories, NTT, and NICT. It is a web
services-based interface for network resources for Grid
middleware and applications. While the version 1 is
based on pure web services, GNS-WSI2 is based on
WSRF.

GridARS-WSRF provides the following services:

ReservationFactoryService Receives registration re-
quests to book Grid resources. It also returns
information on resources available on the Grid.

ReservationService Receives reservation, modifica-
tion, and release requests. It also manages cur-
rent status of reserved resources.

ReservationCommandService Supports 2PC. It man-
ages the status of pre-reserve, -modify, and -
release processes, and abort or commit for each
process by order of users.

ReservationResource and Reservation-
CommandResource are service instances for Reserva-
tionService and ReservationCommandService for each
user request, respectively.

Table 1. Service operations related to reservation, modification, and release.

Operation name

Action |

Input / Output

ReservationFactoryService

create Creates ReservationResource - / rsuEPR
getAvailableResources Provides available resource conditions /
information available resource information
ReservationService (Accessed using rsuEPR)
reserve Makes resource reservation Requirements on resources
and reservation time / cmdEPR
modify Modifies reserved resources Requirements on resources
and reservation time / emdEPR
release Releases reserved resources -/ emdEPR
getReservationStatus | Returns reserved resource status - / reserved resource status
getResourceProperty Returns reservation result Resource property name /
(GridResources) Reserved resource information
ReservationCommandService (Accessed using cmdEPR)
commit Completes reserve/modify/ -/-
release process
abort Destroys reserve/modify/ -/-
release process
getReservation- Returns current status of - / status of the pre-process
CommandStatus (pre-)reserve/modify /release

4.1 Service Operations

Table 1 shows service operations related to reser-
vation, modification, and release for each GridARS-
WSRF service. ReservationFactoryService creates
ReservationResource which manages each set of reser-
vation information and provides a query operation
which provides information on available resources. The
create operation returns EPR(End Point Reference) to
the created ReservationResource . We call this EPR
rsvEPR.

ReservationService provides operations for resource
reservation / modification / release and acquisition of
reserved resource status and reserved resource infor-
mation. For reserve and modify, ReservationService
receives requirements on resources, such as the num-
ber of clusters and CPUs, and bandwidth and reserva-
tion times, such as duration, deadline, or exact start
and end time. At this point, ReservationService just
returns an EPR called emdEPR for ReservationCom-
mandResource which manages the reserve / modify /
release process. reserve, modify, and release are triggers
of each command, and the actual process is managed
by ReservationCommandResource.

ReservationCommandService provides notification
of each command status and completes or destroys the

command by order of the user. ReservationCommand-
Service enables the 2PC WSRF reservation process.

4.2 Resource status transition and advance reser-
vation protocol

ReservationStatus is a property of ReservationRe-
source and represents the current reservation status for
each reservation request. The ReservationStatus tran-
sition process is shown in Fig. 5. The ReservationSta-
tus transition process consists of the following:

Created ReservationResource is created.
Reserved Requested resources are booked.
Activated The resources are activated.
Released The resources are released.
Error Errors have occurred.

create, reserve, modify, and release in Fig. 5 indicate
operations of Table 1 invoked by a client. S and F rep-
resent success and failure or destruction by the client
of each command. The gray squares represent status
changes at the server side.

create l

Created
reserve S v reserve F
Reserved
- modify S,F
release S activalely release F
Activated) L
D) modify S,F ..
release release F
\ 4
» Released Error

Figure 5. The ReservationStatus transition
process.

ReservationCommandStatus is a property of Reser-
vationCommandResource and represents the cur-
rent command status of each ReservationComman-
dResource created by a reservation-related operation
such as reserve, modify, or release. The Reservation-
CommandStatus transition process is shown in Fig.
6. The ReservationCommandStatus transition process
consists of the following:

Initial reserve/modify/release command has been sent
to an actual resource manager, but the request
has not been completed yet.

Prepared The requested command has been prepared.
Committed The command has been completed.

Aborted The requested resources are not available or
the pre-command has expired.

commit and abort in Fig. 6 are invoked by the client,
and the gray squares also represent status changes at
the server side. After ReservationCommandStatus has
changed to Prepared, the client invokes commit and
abort.

We use a modified two-phase commit protocol. Fun-
damentally, a two-phase commit is a blocking protocol.
If a coordinator fails after a reserve request, Reserva-
tionCommandStatus may be left in the Prepared state
until the coordinator is repaired and the requested re-
sources are blocked for that duration. Moreover, a co-
ordinator and its cohorts are loosely coupled on the
Grid, and the coordinator may not issue a commit or
abort request.

Initial
pre-command pre-command
succeeded failed
abort
Prepared - > Aborted
timeout
commit
Y
Committed

Figure 6. The ReservationCommandStatus
transition process.

We applied an automatic “time out” to the tran-
sit from Prepared to Aborted. In our system, Prepared
waiting for a commit or abort request times out at
Tiimeout @s follows:

Ttimeout = Ttransit +€ (]‘)

Tiransit indicates the state transit time from Initial to
Prepared.

4.3 Protocol Sequence of the Advance Reserva-
tion Process

We describe the protocol sequence of our advance
resource reservation process in Fig. 7. As described in
Section 3.2, each operation is non-blocking and based
on a polling method.

User calls the create operation provided by GRS
ReservationFactoryService, ReservationResource is cre-
ated and the EPR (rsvEPR) is returned to User. Af-
ter User calls reserve using rsuEPR, GRS starts to co-
allocate the requested resources.

GRS collects available resource information, such
as CPUs and bandwidth, by the getAvailableResources
operation provided by RMs. Using the information ob-
tained, GRS selects suitable resources and co-allocates
the resource in coordination with related RMs based on
distributed transactions. The bold lines in Fig. 7 rep-
resent a simultaneous process by transactions between
GRS and RMs.

The reservation process between GRS and each RM
is performed in the same manner between User and
GRS.

After all of related RMs’ ReservationCommandSta-
tus have been changed to Prepared, GRS’s Reservation-
CommandStatus is changed to Prepared and GRS waits

User GRS

RMs

I create ———»i
l«— rsvEPR _—
! |
: reserve w/rsvEPR — !

j¢«——— cmdEPR — |
1

create >

]
! |
- getStatus w/cmdEPR —
jg——— "Initial"

polling

|
|
|
I
I
|
|
|
|
|
|
! ' h
—— getStatus w/cmdEPR —»!

l«—— "Prepared" _
1

commit w/cmdEPR —p

getStatus w/rsvEPR — !

<«+—— "Reserved" _—
.

4——— rsvEPR

4—— cmdEPR

<

—

reserve W/rsvEPR ———p»

"Initial" |

|
I
I
E
l—— getStatus w/cmdEPR _>i
1
|
|
I
I
I

¢——— "Reserved"

— getStatus w/cmdEPR ——pp-!
@——— "Prepared”’ — |

commit w/cmdEPR ———p»

getStatus w/rsvEPR ——pp-!

Figure 7. Protocol sequence of advance reservation process.

for a user commit or abort request. If User detects a
Prepared status, User sends GRS the commit request
and then GRS sends commit to the related RMs.

After the reservation process has completed at the
related RMs, ReservationStatus of GRS and the appro-
priate RMs is changed to Reserved. User can search
for success for the resource reservation to check the
ReservationStatus via the getReservationStatus opera-
tion. Then, User acquires the reserved resource infor-
mation.

4.4 Reference Implementation of GridARS-
WSRF

We have developed a reference implementation of
GridARS-WSRF named GridARS-WSRF/GT4 using
Globus Toolkit4 (GT4). GridARS-WSRF/GT4 allows
user authentication and authorization by GSI (Grid
Security Infrastructure) as provided by GT4. GSI
supports capabilities of authentication by certificates
based on PKI (Public Key Infrastructure) and autho-
rization by the grid-mapfile which maps global user
name in the certificate on local user name. GRS also
adopts a GSI delegation capability and books resources

by each user authority.

We apply JSDL for computing resources and GNS-
WSI2 for network resources, and extend them to rep-
resent advance reservation requirements.

5 Performance Measurement

The elapsed time of simultaneous resource reserva-
tion processes based on distributed transactions, com-
pared to the number of RMs is shown in Fig. 8, Fig.
9, and Fig. 10. In these experiments, we emulate an
actual Grid environment in our cluster, where all the
hosts of GRS and eight RMs are deployed. User is lo-
cated on the GRS host. Latencies between the hosts of
GRS and RMs are 200 [us] in this cluster. In the exper-
iments in Fig. 9 and Fig. 10, we configured additional
186 [ms] latencies on the paths to one RM or all RMs.
186 [ms] equals the latency between Tokyo and North
Carolina, where the GRS and one of the RMs in US
were located in the experiment described in Section 6.
It takes 2 [sec] for each pre-reservation and 1 [sec] for
completion of each requested reservation at each RM.

For all graphs, the horizontal axis indicates the num-
ber of RMs invoked simultaneously in a reservation re-

7000

6000 polling

5000 commit
4000

3000)
polling

Elapsed time [ms]

2000

1000

reserve
create

1 2 3 4 5 6 7 8

#of RMs

Figure 8. Elapsed time of simultaneous re-
source reservation processes (no additional
latency).

quest, and the vertical axis indicates the elapsed time
of the entire resource reservation process. Details of
elapsed times are shown on the right hand side. cre-
ate / reserve / polling / commit / polling in all graphs
correspond to User’s invocation in Fig. 7. All of the re-
sults show the shortest elapsed time for ten trials over
WSREF/GSI, respectively.

Comparing the three graphs, the elapsed times of
Fig. 9 and Fig. 10 are comparable, and longer than
those of Fig. 8; this is because the latest reservation
process at an RM determines the total elapsed time in
transactions. On the other hand, when the number of
RMs increases, the elapsed times increase because of
the load at GRS, but they are around 6.7 [sec]. There-
fore, the GridARS co-allocation framework works effi-
ciently on Grids on which GRS and RMs are widely-
distributed.

6 Case Study: a Trans-pacific Experi-
ment using GridARS

We conducted a demonstration [14] at GLIF2006[15]
and SCO06[16]. In this demonstration, a user booked
trans-pacific computing and network resources man-
aged by different organizations, and we performed op-
erations an actual parallel applications over the re-
served resources. The demonstration was in coopera-
tion with G-lambda and the EnLIGHTened Computing
project[17].

In this experiment, a user submits requirements on
resources from the portal system, GridARS makes cor-

responding reservations, and then the user invokes a
parallel application via WS GRAM of GT4. The par-

7000

6000 polling

5000 commit
4000

3000
polling

Elapsed time [ms]

2000

1000
reserve

Create

1 2 3 4 5 6 7 8

#of RMs

Figure 9. Elapsed time of simultaneous re-
source reservation processes (additional la-
tency on the path to RM1).

allel application starts at the reserved time, automat-
ically,. We use QM/MD simulation developed using
GridMPI[18] for the application program.

QM/MD simulation simulates a chemical reaction
process based on the Nudged Elastic Band (NEB)
method[19]. In this simulation, the energy of each im-
age is calculated by combining classical molecular dy-
namic (MD) simulation with quantum mechanics (QM)
simulation, in parallel. MD and QM simulations were
performed on distributed clusters in Japan and the US
using GridMPI, which is a Grid-enabled reference im-
plementation of MPI.

The experimental environment is as follows:

o # of sites (clusters) = 10 (7 sites in Japan and 3
sites in the US)

e # of network domains = 4 (3 domains in Japan
and 1 domain in the US)

e CRM composition GridARS-WSRF/GT4,
PluS[20] and GridEngine[6] (Japan), Maui[21]
and TORQUE[7] (US)

e NRM composition : NRMs developed by KDDI
R&D Labs, NTT, EnLIGHTened Computing ,
and AIST, respectively. EnLIGHTened Com-
puting and AIST NRMs were developed using

GridARS-WSRF/GT4.

We booked computing and network resources in
the US via HARC (Highly-Available Resource Co-
allocator)[22] developed by EnLIGHTened. The En-
LIGHTened and G-lambda teams developed wrappers
to enable interoperability across our middleware stacks,
so that GRS could book resources in the US with our

7000
6000
5000 commit

4000

3000 ,
polling

Elapsed time [ms]

2000

1000

reserve
create

of RMs

Figure 10. Elapsed time of simultaneous re-
source reservation processes (additional la-
tencies on the paths to all RMs).

distributed transactions. PluS and Maui are plugin
schedulers which allow advance reservation on existing
batch queuing systems.

Fig. 11 shows the reservation resource monitor ser-
vice display and the simulation results output at the
experiment.

In this demonstration, we sent 10 [min] reservation
requests, submitted a QM/MD simulation into local
scheduler queues in the reserved sites, and performed
the simulation, continuously. Although the reservation
cycle is shorter than that of general use cases, GridARS
worked stably during the demonstrations.

7 Related Work

There have been several global schedulers which al-
low metacomputing over distributed computing envi-
ronment. In Moab Grid Suites[4], the Moab Grid
Workload Manager can co-allocate distributed comput-
ing resources managed by the Maui Cluster Scheduler
and TORQUE Resource Manager. Moab is a commer-
cial Grid scheduling suite, and it also provides mon-
itoring and reporting tools and a portal system for
end users In general use, only administrators can make
reservations, but users can submit a reservation request
and their jobs from the portal.

CSF4 (Community Scheduler Framework)[5] devel-
oped using GT4 is a WSRF-based scheduling frame-
work for computing resources. The CSF MetaSched-
uler can submit user jobs to queuing systems, Platform
LSF[23], GridEngine, and Open PBS[24]. CSF sup-
ports an advance reservation capability for LSF clus-
ters. CSF is open source and provides a Portlet GUI,

[
B

ES
=
=

==
x
X

TKB (16.0)

AKB (16.0)

| FUK (2.0)

LA1 (8.0)
RAT1 (6.0)

BT2 (16.0)

Figure 11. The reservation resource moni-
tor service display and the simulation results
output at the experiment.

but LSF is a commercial queuing system.

GUR[25] is a global scheduler which supports ad-
vance reservation. It is offered in cooperation with
the Catalina external scheduler, and can work with
TORQUE and LoadLeveler. GUR finds and books
available resources to communicate with Catalina
schedulers, one by one. Communication between GUR
and Catalina is SSH or GSI-enabled SSH.

While Moab, CSF, and GUR support only com-
puting resources, the VIOLA MetaScheduling Service
(MSS)[26] can co-allocate both computing and network
resources as well as work with GridARS. MSS works on
UNICORE|27]-based Grid environments. The commu-
nication between MSS and the other components will
be based on WS-Agreement[28] for establishing agree-
ment between a service provider and consumer.

HARC developed by the EnLIGHTened Computing
project is a co-allocation system, which consists of Ac-
ceptors and Resource Managers. HARC applies the
Paxos commit protocol[29] to enhance fault-tolerancy
of the Acceptor (coordinator) side. Each requirement
on resources is represented by an XML documents and
sent to the HARC Acceptors and Resource Managers
by REST-styled HT'TP messaging.

However, there are no other co-allocation systems
which support a safe transaction process by 2PC over
the standard WSRF interface and that satisfies all the
requirements as described in Section 2.

8 Conclusions

We propose the GridARS Grid co-allocation frame-
work for management of various distributed resources
such as computers and network, and we developed a
general 2P C advance reservation protocol over WSREF.

The GridARS co-allocation architecture consists of
Global Resource Scheduler (GRS) and Resource Man-
agers (RM) and automatically co-allocates required re-
sources, simultaneously. The main components of Gri-
dARS are GridARS-Coscheduler and Grid ARS-WSRF.
GridARS-Coscheduler finds suitable resources for each
user and co-allocates the resources based on distributed
transactions. GridARS-WSRF is an interface module
for the proposed advance reservation protocol.

Using a reference implementation, called GridARS-
WSRF /GT4, we investigated the basic performance of
the 2PC reservation process over WSRF/GSI on emu-
lated Grid environments. The results showed that the
GridARS co-allocation framework and the simultane-
ous reservation process worked efficiently on Grids on
which GRS and RMs are widely-distributed.

Also, we described a case study of Grid co-allocation
for transpacific computing and network resources us-
ing GridARS-WSRF/GT4. The experiment shows Gri-
dARS can co-allocate distributed computing and net-
work resources managed by various multiple-domain
local schedulers, stably.

For future work, we plan to make the reservation
protocol more practical and investigate suitable co-
allocation algorithms for multiple resources. We also
plan to collaborate with other Grid co-allocation sys-
tems, such as VIOLA MSS.

Achknowledgements

We thank all of the members of G-lambda and the
EnLIGHTened Computing project. This work is partly
funded by the Science and Technology Promotion Pro-
gram’s “Optical Paths Network Provisioning based on
Grid Technologies” of MEXT, Japan.

References

[1] TeraGrid: http://www.teragrid.org/.

[2] OASIS Web
Services Resource Framework (WSRF) TC: Web
Services Resource 1.2 (WS-Resource) Committee
Specification (2006).

[3] Foster, I.: Globus Toolkit Version 4: Software
for Service-Oriented Systems, IFIP International

10

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Conference on Network and Parallel Computing,
Springer-Verlag LNCS 3779, pp. 2-13 (2005).

Moab Grid Sched-
uler (Silver) Administrator’s Guide, version 4.0:
http://www.clusterresources.com/products/
mgs/docs/.

Community Scheduler Framework:
http://sf.net/projects/gest.
Grid Engine:

http://gridengine.sunsource.net/.

TORQUE Resource
Manager: http://www.clusterresources.com/
resource-manager.php.

Ganglia Monitoring
http://ganglia.info/.

System:

OASIS

Web Services Notification (WSN) TC: Web Ser-
vices Base Notification 1.3 (WS-BaseNotification)
Public Review Draft 02 (2005).

A. Anjomshoaa and F. Brisard and M. Drescher
and D. Fellows and A. Ly and S. McGough and D.
Pulsipher and A. Savva: Job Submission Descrip-
tion Language (JSDL) Specification v1.0 (2005).

Takefusa, A., Hayashi, M., Nagatsu, N., Nakada,
H., Kudoh, T., Miyamoto, T., Otani, T., Tanaka,
H., Suzuki, M., Sameshima, Y., Imajuku, W.,
Jinno, M., Takigawa, Y., Okamoto, S., Tanaka,
Y. and Sekiguchi, S.: G-lambda: Coordination of
a Grid Scheduler and Lambda Path Service over
GMPLS, Future Generation Computing Systems,
Vol. 22(2006), pp. 868-875 (2006).

Takefusa, A., Hayashi, M., Hirano, A., Okamoto,
S., Kudoh, T., Miyamoto, T., Tsukishima, Y.,
Otani, T., Nakada, H., Tanaka, H., Taniguchi,
A. and Sameshima, Y.: GNS-WSI2 Grid Net-
work Service - Web Services Interface, version 2,
OGF19, GHPN-RG (2007).

The G-lambda
http://www.g-lambda.net/.

project:

Thorpe, S. R., Battestilli, L., Karmous-Edwards,
G., Hutanu, A., MacLaren, J., Mambretti, J.,
Moore, J. H., Sundar, K. S., Xin, Y., Take-
fusa, A., Hayashi, M., Hirano, A., Okamoto,
S., Kudoh, T., Miyamoto, T., Tsukishima, Y.,
Otani, T., Nakada, H., Tanaka, H., Taniguchi,

A.) Sameshima, Y. and Masahiko Jinno: G-
lambda and EnLIGHTened: Wrapped In Mid-
dleware Co-allocating Compute and Network Re-
sources Accross Japan and the US, Submitted to
GridNets2007.

[15] GLIF: Global Lambda Integrated Facility:
http://wuw.glif.is/.

[16] SCO06: http://sc06.supercomputing.org/.

[17] The EnLIGHTened Computing
http://enlightenedcomputing.org/.

project:

[18] GridMPI: http://www.gridmpi.org/.

[19] Ogata, S., Shimo, F., Kalia, R., Nakano, A.
and Vashisha, P.: Hybrid Quantum Mechani-
cal/Molecular Dynamics Simulations on Parallel
Computers: Density Functional Theory on Real-
space Multigrids, Computer Physics Communica-
tions, p. 30.

[20] Nakada, H., Takefusa, A., Ookubo, K., Kishimoto,
M., Kudoh, T., Tanaka, Y. and Sekiguchi, S.:
Design and Implementation of a Local Schedul-
ing System with Advance Reservation for Co-
allocation on the Grid, Proceedings of CIT2006
(2006).

[21] Maui Cluster Scheduler:
http://www.clusterresources.com/pages/

products/maui-cluster-scheduler.php.

[22] HARC: The Robust
Co-allocator:

http://www.cct.lsu.edu/ "maclaren/HARC/.

Highly-Available

[23] Zhou, S.: LSF: Load sharing in large-scale hetero-
geneous distributed systems, Proceedings of Work-

shop on Cluster Computing (1992).

[24] OpenPBS: http://www.openpbs.org/.

[25] Yoshimoto, K., Kovatch, P. and Andrews, P.:
Co-scheduling with User-Settable Reservations,
Job Scheduling Strategies for Parallel Processing,
Springer Verlag, pp. 146-156 (2005). Lect. Notes

Comput. Sci. vol. 3834.

[26] Barz, C., Pilz, M., Eickermann, T., Kirtchakova,
L., Waldrich, O. and Ziegler, W.: Co-Allocation
of Compute and Network Resources in the VIOLA

Testbed, TR-0051, CoreGrid (2006).

[27] UNICORE:

http://www.kfa-juelich.de/unicore/.

11

[28]

[29]

Andrieux, A., Czajkowski, K., Dan, A., Keathey,
K., Ludwig, H., Nakata, T., Pruyne, J.,
Rofrano, J., Tuecke, S. and Xu, M.: Web Ser-
vices Agreement Specification (WS-Agreement).
https://forge.gridforum.org/sf/docman/do/
downloadDocument/projects.graap-wg/

docman.root.current drafts/doc6090 (2005).

Gray, J. and Lamport, L.: Consensus on Trans-
action Commit, MSR-TR-2003-96, Microsoft Re-
search (2004).

