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Abstract. This paper empirically explores the advantages of the collab-
oration between different parallel compute sites in a decentralized grid
scenario. To this end, we assume independent users that submit their
jobs to their local site installation. The sites are allowed to decline the
local execution of jobs by offering them to a central job pool. In our anal-
ysis we evaluate the performance of three job sharing algorithms that are
based on the commonly used algorithms First-Come-First-Serve, EASY
Backfilling, and List-Scheduling. The simulation results are obtained us-
ing real workload traces and compared to single site results. We show
that simple job pooling is beneficial for all sites even if the local schedul-
ing systems remain unchanged. Further, we show that it is possible to
achieve shorter response times for jobs compared to the best single-site
scheduling results.

1 Introduction

In recent years the demand for computing power has increased significantly as
a growing number of science areas rely on extensive simulations, like biotech-
nology, high energy physics [15], or climate research [13]. In order to provide
an on-the-spot support for high performance computing power many Massively
Parallel Processing (MPP) systems have been put into service. Those machines
are extensively shared by a local user community that submits jobs which are
adapted to the local site capabilities, for instance in the jobs’ degree of paral-
lelism. As these user communities are still growing, the utilization of such systems
is typically very high and computing power is becoming a limited resource.

This, however, is twofold: on the one hand, a high utilization is desirable for
the system provider as it allows a profitable operation of the MPP system. On
the other hand, this entails longer wait times for the execution of the users’ jobs,
decreasing customer satisfaction. To ameliorate this, system providers introduce
additional queues, restrictive quotas and partitions, or even employ more so-
phisticated scheduling concepts that allow a flexible prioritization of users, see
Franke et al. [11, 10]. However, all those approaches favor a certain group of users
at best, but do not prevent congestions induced by the overall high demand for
compute power.

This has initiated the concept of Computational Grids: the loose coupling [8]
of independent and typically diverging MPP installations to a federated source



of ubiquitous computing power. All the more, the world wide growing network
infrastructure allows an interchange of jobs among sites with an almost evanes-
cent time delay. In this way locally submitted jobs may—in case of a high local
load— also be executed on another MPP system in the federation, utilizing idle
resources. However, new scheduling problems arise in the Grid context as inter-
changing jobs between different sites while keeping or enhancing the performance
for all local user communities is a non-trivial problem.

In this paper we study the advantages for local user communities and system
providers induced by joining a decentralized Computational Grid where jobs can
be interchanged between different MPP installations. We evaluate the concept of
a global job pool which can be used by all participating sites to offer or accept
available jobs and restrict our evaluation to a small set of sites with simple
job-sharing enabled adaptations of common scheduling algorithms.

The rest of the paper is organized as follows. Current developments in the
area of research are reviewed in Section 2. Scheduling concepts for local and
distributed computing are presented in Section 3. Our model of MPP systems in a
decentralized Grid along with job policies and employed algorithms is introduced
in Section 4. The experimental setup is described in Section 5, and a detailed
evaluation of different heterogeneous site configurations is presented in Section 6.
Our paper ends with a conclusion and an outlook on future work in Section 7.

2 Background

Since the first ideas of metacomputing have been formulated by Smarr and
Catlett [21], many research activities deal with the development of concepts to
connect world wide distributed resources. Nowadays, metacomputing is replaced
by the new ideas of Grid Computing [9] which facilitates the aggregation and
sharing of heterogeneous resources distributed over large geographical areas.
Although the original Grid idea extends the term ”‘resource”’ beyond1 MPP
systems, the area of Computational Grids as the federations of several high
performance compute sites is supposed to be the most developed one. To satisfy
the growing need for compute power Grids are considered an integral part of the
usual business in the near future [22].

Admittedly, every system provider in such a federation aims to retain the
control over his system. Futhermore, his main interest lies in reaching short
response times for the local user community while keeping the utilization of his
machine as high as possible. Against this background it is unrealistic to assume
a model where a global resource management system is allowed to decide over
the local resources. As such, it is widely agreed that Grid Computing can only be
applied beneficially if the resource management and scheduling is appropriately
adapted to the environment. Therefore, almost all current Grid projects spend
special effort in the development of smart scheduling strategies.

1 For example, storage systems and network links, as well as special purpose devices
such as telescopes or satellites.



However, there is a lack of studies that empirically identify potential advan-
tages of the collaboration of compute sites using a decentralized structure and
an indirect communication model. A first study by Hamscher et al. [14] shows
potential advantages that result from different job sharing strategies. However,
their empirical results are not meant to be complete as they mainly focus on
the conception of job interchange procedures. Their paper only considers two
real workloads and they do not give exclusive single-site scheduling results for
comparison. Further, Ernemann et al. identify improvements for the average
weighted response time objective assuming hierarchical centralized scheduling
structures [4] in multi-site computing [3].

Among the large variety of studies on load balancing Lu et al. [17] devel-
oped algorithms for distributed load balancing in a grid environment assuming
an additional communication delay. However, their approach requires that the
whole local installation is controlled by a central scheduler and their evaluation
is founded on statistical workload models that can hardly be compared with
real workload traces originating from real-world job submissions. The latter also
applies to England and Weissman [2], who analyzed costs and benefits of load
sharing, limiting themselves to site configurations and reviewing average slow-
down only.

On the theoretical side, Schwiegelshohn [19] proves that the quality of two
schedules can be improved concerning the total completion time objective if an
interchange of jobs is allowed during the creation of the schedules.

3 Scheduling Concepts for Local and Distributed
Computing

In this section, we present the scheduling concepts underlying our evaluations.
First, three standard scheduling strategies are briefly recapitulated for single-site
MPP systems. Then, we introduce three very simple job-sharing algorithms that
are based on the previously introduced standard approaches.

3.1 Local Job Scheduling

The single site scenario has been discussed in research for quite a long time.
Various algorithms are available that try to minimize the response time for jobs
and to utilize the system properly. The algorithms that we chose for evaluation
purposes are most commonly applied in practice. These algorithms are in detail:

First Come First Serve (FCFS) starts the first job of the waiting queue
whenever enough idle resources are available. Despite the very low utilization
that is produced in the worst case this heuristic works well in practice [20].

List-Scheduling (LIST) as introduced by Graham [12] serves as a template
for our LIST algorithm. List-Scheduling is based on a list that is ordered
according to static job weights. The scheduler selects from the list the job
with the highest weight. In our case, the job arrival time (or release date)



is used as the list’s weight. The scheduler scans the list in ascending order
until finding a job that can be processed immediately on the currently idle
resources. Therefore, this algorithm is similar to the First-Fit strategy [1].

EASY Backfilling (EASY) requires that a runtime estimation is provided
for each job by its user [16]. If the first job of the waiting queue cannot be
started immediately, the algorithm allows an allocation of another job if it
does not delay the earliest possible start time of the first job.

3.2 Distributed Job Scheduling

For local scheduling systems, the aforementioned algorithms have been estab-
lished as quasi-standard, since they work well for a single parallel computer but
they are not optimized for any Grid interaction.

Scheduling in Grid systems can mainly be divided into two distinct layers.
The local layer is responsible for the scheduling of jobs in the current waiting
queue onto the available local resources. This allows for example the realization
of priorities for different user groups which can be formulated by the system
provider. Albeit in a very simplistic way, the aforementioned local job scheduling
algorithms cover this area, and work well for the single parallel computer view
to such an extent that they have been established as quasi-standard for many
MPP installations.

The second, higher layer is responsible for the interaction with other Grid
participants and might perform (among others) discovery, negotiation, and the
migration of jobs to remote sites. This functionality, however, is not provided by
the local scheduling algorithms and is subject to research [22].

For the structure of these two layers, a large variety of concepts exists. These
can be classified into the following two categories:

Hierarchical Scheduling The hierarchical scheduling structure utilizes a cen-
tral scheduler—the so- called meta-scheduler—which accepts the submission of
workload independent of its origin and decides on the distribution among avail-
able sites. After the decision is made, the given workload is assigned to the local
schedulers which in turn are responsible for the assignment on local resources.
The advantage of this approach is that different strategies and policies may
be applied for the meta-scheduler and the local scheduling systems. The main
disadvantage arises from the centralization concept of this approach: it inher-
ently lacks scalability and, since having a single-point-of-failure, has a very bad
fault-tolerance—if the meta-scheduler breaks down, workload handling ceases
completely.

Decentralized Scheduling In decentralized scheduling systems the distributed
local schedulers interact with each other in a direct or indirect fashion. As there
is no single-point-of- failure, the system is more reliable: possible breakdowns of
one participant does not necessarily impair the performance of the whole system.
The possibility of realizing different policies on the local and global scheduling



layers is given as in the hierarchical case, admittedly requiring more sophisticated
scheduling concepts due to the lack of a global system view.

As mentioned above, there exist two possibilities to establish the communi-
cation of distributed schedulers. In direct communication schedulers can trans-
fer/accept jobs to/from remote sites directly. This may imply searching for re-
mote sites and/or keeping a list of potential communication partners. In case
that local job execution is not possible, the scheduler may then delegate the
execution one of the known remote sites.

The second model is indirect communication by sharing a central repository.
Whenever local execution is not possible, jobs are offered this repository —for
example realized as a job pool— which then can be used by the other participants
as a second queue for occupying currently idle local resources. Since this concept
is used for the evaluations in this paper, the details are given in Section 4.3.

4 Model

In this Section, we detail the setup and actual environment model that we use
for our evaluation. First, we give an description of the site scenario. Then, we
describe the scheduling problem for a single site and specify the assumptions
that are made for the computational jobs and the formal description.

4.1 Site and Machine Environment

We assume a Computational Grid consisting of |K| independent MPP systems,
following referred to as sites. Each site k ∈ K is modeled by mk parallel proces-
sors which are identical such that a parallel job can be allocated on any subset
of these machines. Splitting jobs over multiple sites (multi-site computation) is
not allowed.

Moreover, we assume that all sites only differ in the number of available
processors, but not in their speed. As we focus on the job-sharing algorithms,
the differences in execution speeds are neglected.

Still, every site has its own local user demand for computational resources
which is reflected by the sites’ originating workload. This includes the submission
characteristics, but also the adaptation of the submitted jobs’ resource demand
to the local configuration. That is, jobs that are submitted to the local site
scheduler may not be accepted for execution elsewhere because of their resource
demand being oversized for some or all of the other sites.

4.2 Job Model

We assume rigid2 parallel batch jobs for our analysis, which are dominant on
most MPP systems. The user provides the number of required machines mj at

2 Neither moldable nor malleable, requiring concurrent and exclusive access to the
requested resources.



the release date rj of the job. The completion time of job j ∈ πk in schedule Sk

on site k is denoted by Cj(Sk). As preemptions are not allowed in many MPP
systems [6], each job starts its execution at time Cj(Sk) − pj .

Job scheduling on MPP systems is an online problem as jobs are submitted
over time and the processing time pj of job j is not available at the release date rj .
As the release and processing times are unknown, the problem is often classified
as non-clairvoyant online scheduling, see Motwani et al. [18]. In the following,
we denote the set of jobs that are submitted to a local site k by τk. Further,
system administrators often require users to provide worst case estimates p̄j of
the processing time pj to determine faulty jobs whose processing times exceed
the estimate.

Furthermore, data management of any files is neglected in this paper. In our
multi-site scenario, a job can be transmitted to a common pool without any
communication penalty while in a real implementation the transport of data
requires additional time. The communication cost can often be hidden by pre-
and postfetching before and after the execution. In such a case the overhead is
not necessarily part of the scheduling process.

4.3 Job-Sharing Algorithms

In order to establish indirect communication between sites we introduce a central
job pool from/to which local schedulers can receive/transfer jobs. All sites joining
this collaboration scenario are connected to the central pool as shown in Figure 1.
In our model, the pool is realized as a global job queue where all jobs are ordered
according to their insertion time and regardless of their local submission time.
The interaction with the pool requires a policy that decides, whether a job is
offered to the job pool or is kept in the local queue. For all our job-sharing
algorithms we apply the following universal policy:

Whenever a job from the local queue cannot be executed immediately on
the local processors, it is offered to the global job pool and removed
from the local queue.

In the following, we detail how the interaction between local queue and global job
pool is implemented by the different job-sharing (JS) algorithms. Our three job-
sharing algorithms are based on the template which is described in Algorithm 1.
In the beginning, FCFS, EASY, or LIST is applied locally (see Line 2). Following
(see Line 4), all jobs that have been considered for the current schedule during
the previous step —including all potential backfilling candidates—but could not
be scheduled immediately are moved to the pool. If no job from the local queue
could be scheduled, the algorithm is executed again, using the global job pool
(see Line 7).

For the modified FCFS policy, only the first job of each queue is considered
respectively. In the case of adapted EASY policy, the application of the algorithm
is completely separate for each queue. As such, backfilling is repeated on the
global job pool if and only if local scheduling failed. Note that only the currently



Fig. 1. Decentralized scheduling scenario sharing a central job pool.

Algorithm 1 General template for job-sharing algorithm.
Preconditions: a local job queue l, a global job pool g
1: algorithm ∈ {FCFS, EASY, LIST}
2: apply algorithm to l
3: for all considered, but locally non-schedulable jobs do
4: offer job to g
5: end for
6: if no job could be scheduled locally then
7: apply algorithm to g
8: end if

treated queue is used for finding backfilling candidates, and not the union of
locally and globally available jobs. The changed LIST policy also iterates over
the queue stopping as soon as a schedulable job has been found, and also resorts
to the global job pool if no local job could be fit into the schedule.

In the remainder of this paper we will denote the FCFS based job-sharing
algorithm as FCFS-JS, the EASY based as EASY-JS, and the LIST based
algorithm as LIST-JS respectively.

5 Experimental Setup

Before presenting our detailed evaluation results we give an overview on how
our experiments have been setup and introduce performance objectives and used
input data.



5.1 Performance Objectives

In order to measure the schedule quality and to quantify the effect on jobs
interchange we define several objectives. Remember that we denote the set of
jobs that have been submitted locally to site k by τk and all jobs that have been
actually processed on site k by πk.

Squashed Area and Utilization The first two objectives are Squashed Area
SAk and Utilization Uk, both specific to a certain site k. They are measured
from the start of the schedule Sk, that is minj∈πk

{Cj(Sk) − pj} as the earliest
job start time, up to its makespan Cmax,k = maxj∈πk

{Cj(Sk)}, that is the latest
job completion time and thus the schedule’s length.

SAk denotes the overall resource usage of all jobs that have been executed
on site k, see Equation 1.

SAk =
∑
j∈πk

pj · mj (1)

Uk describes the ratio between overall resource usage and available resources
after the completion of all jobs j ∈ πk, see Equation 2.

Uk =
SAk

mk ·
(

Cmax,k − min
j∈πk

{Cj(Sk) − pj}
) (2)

Uk describes the usage efficiency of the site’s available machines. Therefore, it is
often serving as a schedule quality metric from the site provider’s point of view.

However, comparing single-site and multi-site utilization values is illicit: since
the calculation of Uk depends on Cmax,k, valid comparisons are only admissible
if Cmax,k is approximately equal between the single-site and multi-site scenario.
Otherwise, high utilizations may indicate good usage efficiency, although the
corresponding Cmax,k value is very small and shows that only few jobs have
been computed locally while many have been delegated to other sites for remote
execution.

As such, we additionally introduce the Change of Squashed Area ∆SAk, which
provides a makespan- independent view on the utilization’s alteration, see Equa-
tion 3.

∆SAk =
SAk∑

j∈τk

pj · mj
(3)

From the system provider’s point of view this objective reflects the real change of
the utilization when jobs are shared between site compared to the local execution.

Response Time For our third objective we switch focus towards a more users-
centric view and consider the Average Weighted Response Time AWRTk relative
to all jobs j ∈ τk that have been initially submitted to site k, see Equation 4.
Note that this also respects the execution on remote sites and, as such, the
completion time Cj(S) refers to the site that executed job j.



AWRTk =

∑
j∈τk

pj · mj · (Cj(S) − rj)∑
j∈τk

pj · mj
(4)

A short AWRT describes that on average users do not wait long for their jobs
to complete. According to Schwiegelshohn et al. [20], we use the resource con-
sumption (pj ·mj) of each job j as the weight. This ensures that neither splitting
nor combination of jobs can influence the objective function in a beneficial way.

Migration Rate Finally, we measure the amount of migration in the multi-site
scenarios. To this end, we introduce a migration matrix M that shows the ratio
of job dissemination with respect to the original submission site, see Equation 5.

M =



|πkk|
|τk|

|πkl|
|τk|

· · ·

|πlk|
|τl|

|πll|
|τl|

· · ·
...

...
. . .

 (5)

In this matrix we apply the following notation:

τk Total amount of jobs that have been originally submitted to site k.
πlk Amount of jobs that have been originally submitted to site l but have been

executed on site k.

Remember that the rows denote the site where the jobs have been submitted to
while columns specify the actual execution sites. Next, we detail the data source
utilized for our investigation.

5.2 Input Data

The Parallel Workloads Archive3 provides job submission and execution traces
recorded on real-world MPP system sites, each of which containing information
on relevant job characteristics. For our evaluations, we restricted the set of used
workloads to those which contain valid runtime estimations, since the EASY and
EASY-JS algorithms depend on this data. Furthermore, we applied various pre-
filtering steps to the original—partially erroneous—data: we discard jobs with
invalid release dates (rj < 0), processing times (pj ≤ 0), node requests (mj ≤ 0),
and estimates (p̄j ≤ 0), as well as unsatisfiable resource demands (mj > m).
Furthermore, we assume overuse interdiction, effectively disallowing jobs to run
longer than the user provided runtime estimation (pj = min{pj , p̄j}). Some
details of the examined cleaned traces are given in Table 1.

3 http://www.cs.huji.ac.il/labs/parallel/workload/



Identifier n m Months Site Setup SA
1 2 3 4 5 6 7

KTH-11 28479 100 11 X X X 2017737644
CTC-11 77199 430 11 X 8279369703
LANL96-11 57715 1024 11 X 16701881984
LANL96-13 67043 1024 13 X 19467626464
LANL96-24 110769 1024 24 X X X 35426509344
SDSC00-11 29810 128 11 X X X 2780016139
SDSC00-24 54006 128 24 X X 6656350775
SDSC03-11 65584 1152 11 23337438904
SDSC03-13 78951 1152 13 X 27410557560
SDSC03-24 176268 1152 24 X X 54233113112
SDSC05-13 84876 1664 13 X 34347849760

Table 1. Details of the shortened workloads obtained from the Parallel Workload
Archive and the corresponding examined site setups 1-7.

Naturally, the total number of available processors differs in workloads which
makes it possible to model unequally sized site configurations. Further, the orig-
inal workloads record time periods of different length. In order to be able to
combine different workloads in a multi-site simulations we shortened the work-
loads to the minimum required length of all participating workloads. To reflect
different site configurations (e.g. small machine and large machine) we combine
only workloads that represent a long record period to obtain meaningful results.
Therefore, we created shortened versions of the LANL96, SDSC00, SDSC03, and
SDSC05 workloads4. The resulting seven different site configurations are listed
in Table 1.

Note that we do not shift the traces regarding their originating timezones.
We restrict our study to workloads which are all submitted within the same
timezone. Therefore, the known diurnal rhythm of job submission is similar for
all sites in our scenario and time shifts cannot be availed to improve scheduling.
In a global grid the different timezones even benefit the job scheduling as idle
machines at night can be used by jobs from peak loaded sites at noon, see
Ernemann at al. [5]. As we cannot benefit from timezone shifts the presented
results might be even better in a global grid.

6 Evaluation

We now provide results obtained for the single site case and for the different site
setups which allow the interchange of jobs.

6.1 Reference Results on the Local Sites

As it is our aim to compare the introduced simple job sharing mechanism to
the performance of standard algorithms in a single site environment, we show
these results first. In Table 2 the AWRT, U, and Cmax are given when the three

4 http://www-ds.e-technik.uni-dortmund.de/~lepping/workloads/



standard algorithms FCFS, EASY, and LIST are applied to the 11 different
workloads and the corresponding sites given in Table 1. It becomes obvious

FCFS EASY LIST
Identifier AWRT U Cmax AWRT U Cmax AWRT U Cmax

KTH-11 418171.98 68.67 29381344 75157.63 68.72 29363626 80459.27 68.72 29363626
CTC-11 58592.52 65.70 29306682 52923.79 65.70 29306682 53285.69 65.70 29306682
LANL96-11 13886.61 55.65 29306900 12441.87 55.65 29306355 13112.69 55.65 29307464
LANL96-13 14064.40 56.24 33801984 12467.31 56.24 33802986 13205.34 56.24 33802986
LANL96-24 12265.92 55.54 62292428 11105.03 55.54 62292428 11678.88 55.54 62292428
SDSC00-11 266618.82 71.53 30361813 73606.71 73.94 29374554 74529.44 73.96 29364791
SDSC00-24 2224462.43 75.39 68978708 112050.78 81.78 63591452 120173.69 82.26 63618662
SDSC03-11 72417.87 68.58 29537543 50980.20 68.74 29471588 48007.66 68.87 29413625
SDSC03-13 82149.66 69.92 34030926 54704.54 70.12 33932665 52013.62 70.14 33921090
SDSC03-24 166189.54 73.22 64299555 71021.03 73.91 63696120 72237.20 73.91 63695942
SDSC05-13 72690.44 61.08 33793591 57000.60 61.08 33793591 55190.04 61.08 33793591

Table 2. AWRT (in seconds), U (in %), and Cmax (in seconds) for the different work-
loads. The objective values are shown for the three algorithms and only single site
execution (K = 1).

that EASY outperforms the FCFS algorithm in terms of AWRT and U, what
is well known from the literature, see Feitelson and Weil [7]. However, for some
workloads the LIST algorithm performs even better than EASY which might be
due to the characteristics of some workloads. In general, both queue-iterating
procedures are superior to FCFS while there is no significant advantage of LIST
scheduling compared to EASY.

6.2 Interchange of Jobs between Two Sites

To investigate the effect of site collaboration applying the job-sharing approach
described in Section 4.3 we define three simple setups of two sites respectively
connected to the central job-pool. Every site in this setup corresponds to the
machine represented by the workload trace it processes.

In Table 3 the results of our examined setup with two collaborating sites are
listed. The objectives are given for each job-sharing algorithm compared to the
results of the corresponding single-site algorithm (denoted by ∆) and the best
single-site algorithm (denoted by ∆b) respectively. This distinction has been
made to illustrate the effect of applying job-sharing algorithms as well as to
review whether a general improvement compared with the single-site approach
is possible. To analyze the behavior systematically, we first discuss the results
compared to the related single-site scheduling algorithms.

For the constellation of two small sites, represented by KTH and SDSC00
workloads, a significant improvement in AWRT with respect to the correspond-
ing local setup can be observed. This is achieved even without affecting the
utilization or squashed area significantly. However, this does not hold for two
large sites, processing workloads like LANL96 and SDSC03. Especially for the



Site Setup 1 2 3
Workload KTH-11 SDSC00-11 LANL96-24 SDSC03-24 LANL96-24 SDSC00-24
m 100 128 1024 1152 1024 128
k 1 2 1 2 1 2

FCFS-JS
AWRTk 128043.42 139380.14 33487.04 67584.37 14277.15 40764.89
Uk 70.12 72.94 64.59 65.44 58.91 55.57
Cmax,k 29571802 2957587 62440050 64151102 62303391 63638145
SAk 2073589120 2724164663 41300491136 48359131320 37584312832 4498547287
∆ AWRTk 69.38 47.72 100.00 59.33 -16.40 98.17
∆ Uk 2.11 0.63 16.31 -10.62 6.07 -26.71
∆ SAk 2.77 -2.01 16.58 -10.83 6.07 -32.42
∆ Cmax,k -0.65 2.59 -0.24 0.23 -0.02 7.74
∆b AWRTk -70.37 -89.36 -201.55 4.51 -28.56 63.62
∆b Uk 2.04 -2.68 16.31 -11.46 6.07 -32.47
∆b SAk 2.77 -2.01 16.58 -10.83 6.09 -32.42
∆b Cmax,k -0.71 -0.68 -0.24 -0.71 -0.02 -0.07

M =
82.86 17.14 88.69 11.31 97.35 2.65
13.95 86.05 9.51 90.49 15.41 84.59

EASY-JS
AWRTk 66115.56 59015 13579.91 54019.88 12583.95 41441.88
Uk 68.95 74.80 63.20 67.24 58.33 60.28
Cmax,k 29363626 29364791 62303135 63694187 62292428 63618367
SAk 2024644907 2773108876 40318878368 49340744088 37204951541 4877908578
∆ AWRTk 12.03 19.82 -22.28 23.67 -13.32 63.01
∆ Uk 0.34 -0.21 13.79 -9.02 5.02 -26.75
∆ SAk 0.34 -0.25 13.81 -9.02 5.02 -26.72
∆ Cmax,k 0.00 0.03 -0.02 0.00 0.00 -0.04
∆b AWRTk 12.03 19.82 -22.28 23.67 -13.32 63.01
∆b Uk 0.34 -0.21 13.79 -9.02 5.02 -26.75
∆b SAk 0.34 -0.25 13.81 -9.02 5.02 -26.72
∆b Cmax,k 0.00 0.03 -0.02 0.00 0.00 -0.04

M =
79.63 20.37 88.69 13.37 97.21 2.79
15.04 84.96 9.99 90.01 17.01 82.99

LIST-JS
AWRTk 61016.52 58354.18 13509.25 51150.19 13001.56 38655.67
Uk 68.98 74.84 63.45 67.01 59.11 54.04
Cmax,k 29363626 29339969 62317990 63694095 62303391 63588898
SAk 2025505127 2772248656 49172388088 49172388088 37711932960 4370927159
∆ AWRTk 24.16 21.70 -15.93 29.17 -11.52 66.75
∆ Uk 0.38 -0.19 14.24 -9.33 6.43 -34.30
∆ SAk 0.38 -0.28 14.29 -9.33 6.45 -34.33
∆ Cmax,k 0.00 0.08 -0.04 0.00 -0.02 0.05
∆b AWRTk 18.82 20.72 -21.65 27.73 -17.08 65.50
∆b Uk 0.38 -0.16 14.24 -9.33 6.43 -34.33
∆b SAk 0.38 -0.28 14.29 -9.33 6.45 -34.33
∆b Cmax,k 0.00 0.12 -0.04 0.00 -0.02 0.00

M =
77.77 22.23 83.20 16.80 96.62 3.38
19.61 80.39 11.35 88.65 14.88 85.12

Table 3. Objective values for site setups 1-3 each with two participants (K = 2).
AWRTk and Cmax,k values are given in seconds while the Uk, SAk, and all comparative
objectives (∆, ∆b, and matrix M) are given in %.

FCFS-JS strategy, the AWRT of site 1 increases drastically. It is obvious that
in the non-cooperating case and the LANL96 workload short AWRT values are
achieved for all standard algorithms. This may be due to a comparably low uti-
lization and a special manner of use where only jobs are allowed that (a) require
a number of processors equal to a power of two and (b) use at least 32 processors.
For the job-sharing algorithms one may argue that even slight changes in uti-



lization as well as violations of the policies may result in a significant growth of
AWRT. Thus, for a low utilized system the job-sharing may be disadvantageous.

A completely different behavior can be observed when a small site (SDSC00)
cooperated with a large site (LANL96). Here, the small site migrates a higher
percentage of its jobs to the large site than vice versa. Obviously, the AWRT
of the small site improves strongly while the utilization decreases. Concerning
the large site similar effects as in the case of two large sites, discussed above,
are observed. Due to the large amount of jobs migrated from the small to the
large site the AWRT becomes longer while the utilization increases. However,
the impact of these jobs is smaller than in the previous case which may again
result from the use policy of LANL96 so that small jobs from SDSC00 can be
used to fill a gap.

The comparison of the job-sharing algorithms with the results for EASY as
the best single-site algorithm yields structurally similar results. However, for two
small sites, the EASY-JS and LIST-JS approaches even outperform EASY with
respect to AWRT. Summarizing we can formulate the following statement from
our experiments:

1. Adapting the local algorithms to job-sharing can lead to an overall AWRT
improvement for sites with high utilization and rather equal size.

2. Combining a site with low utilization and short AWRT with a more loaded
one resembles a load balancing behavior which may involve a significant
deterioration concerning AWRT for the less loaded site.

3. For disparate sized sites a significant higher percentage of job migrates from
the small to the large site than vice versa. While many jobs from the large
site cannot be executed on the small site due to oversized resource demands,
jobs from the small site may fill gaps in the schedule of the large site.

6.3 Interchange of Jobs between Three Sites

For the setup with three collaborating sites we omit a complete presentation of
the obtained simulation results and refer to the accompanying Table 4 and 5 in
the appendix. Instead we present figures of AWRT improvements and the change
in SA compared to EASY as the best single-site algorithm.

Again, we find that job-sharing yields shorter AWRT values for all partic-
ipating sites. However, the utilization at the largest site (CTC) increases in a
load balancing behavior, see Figure 2, but this does not affect the AWRT for
EASY-JS and LIST-JS.

Since the sharing of jobs results in less utilization on two sites and more on
one site while preserving or even improving the AWRT, this can be interpreted
as benefit of job-sharing: on the less utilized site the system providers have more
capabilities to serve additional customers.

A similar effect can be observed in Figure 3 for three large collaborating sites.
Here, however, the aforementioned characteristics of LANL96 seem to influence
the results. Nevertheless, for EASY- JS and LIST-JS we can identify a constant



(a) Improvements of AWRT in % (b) ∆SAb in %

Fig. 2. AWRT and ∆bSA for setup 6 with KTH-11 (m1=100), CTC-11 (m2=430),
and SDSC00-11 (m3=128) workloads and all three algorithms FCFS-JS, EASY-JS,
and LIST-JS.

(a) Improvements of AWRT in % (b) ∆SAb in %

Fig. 3. AWRT and ∆bSA for setup 4 with LANL96-13 (m1=1024), SDSC03-
13 (m2=1152), and SDSC05-13 (m3=1664) workloads and all three algorithms FCFS-
JS, EASY-JS, and LIST-JS.

or improved AWRT, while U1 increases for LANL96 and remains rather constant
or decreases for the other sites.

Analogous to the two site setups, the results shown in Figure 4 for two small
and one large sites yield a significant improvement of the small sites’ AWRT to
the expense of the large. It is possible to argue that many jobs are migrated
from the small sites with high utilization to the large site with relatively low
utilization.

In the last evaluation setting of two large and one small site, see Figure 5,
the constellation behaves similar to the two large sites setup, discussed in Sec-
tion 6.2. Again, LANL96 takes most of the shared jobs which leads to a strong
deterioration in AWRT for FCFS-JS. This effect is even intensified by jobs of-
fered by the small site SDSC00. Note that this behavior was also observed in
the two-site case with one large and one small site. For the other algorithms the
situation is alike while the AWRT deterioration is less strong.



(a) Improvements of AWRT in % (b) ∆SAb in %

Fig. 4. AWRT and ∆bSA for setup 5 with KTH-11 (m1=100), SDSC00-11 (m2=128),
and LANL96-11 (m3=1024) workloads and all three algorithms FCFS-JS, EASY-JS,
and LIST-JS.

(a) Improvements of AWRT in % (b) ∆SAb in %

Fig. 5. AWRT and ∆bSA for setup 7 with SDSC00-24 (m1=128), LANL96-
24 (m2=1024), and SDSC03-24 (m3=1152) workloads and all three algorithms FCFS-
JS, EASY-JS, and LIST-JS.

6.4 Job Pool Size Variation during Interchange

To conclude our evaluation we finally measure the job pool size to determine the
amount of jobs residing in the pool during execution. To this end, we determine
the pool size every time a job is added to or removed from the job pool for
a two site setup. The box plots in Figure 6 show the median, 25% quantile,
75% quantile as well as 5% and 95% quantile (at end of the whiskers) of the
measured data. From these results we can conclude that in comparison with
the total number of jobs processed the pool is not overcrowded. As the median
values are comparably small jobs do not reside in the pool for a long time.

7 Conclusion and Future Work

In this work we explored the behavior of collaborating MPP systems in a de-
centralized scenario. In this context, we assumed independent users who submit
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Fig. 6. Box plots of the job pool size for the two-site case considering the three job-
sharing algorithms. For each algorithm three box plots are depicted, from left to right,
KTH-11/SDSC00-11, LANL96-24/SDSC03-24, and LANL96-24/SDSC00-24.

jobs to their local compute sites, while the site schedulers were allowed to place
released jobs into a global job pool instead of starting them locally. Respectively,
the site schedulers may incorporate not only local, but also globally offered jobs
into their scheduling decision.

To this end, we analyzed common performance metrics such as average
weighted response time and utilization for the single-site, non-cooperating case,
using standard algorithms. Then, we compared them to the results for collab-
orating setups in varying configurations. To this end, we defined three simple
job-sharing algorithms that are based on modified variants of the standard al-
gorithms, adding the ability to manage the interaction with the job pool.

Our results show that in case of an unchanged local scheduling algorithm
many configurations benefit from the ability to additionally use a global job pool,
especially in the cases of machines with a high local load. Furthermore, it could
be shown that in some cases the job-sharing algorithms yield even better results
than the best standard algorithm. Against this background it is noteworthy that
our proposed job-sharing algorithms are very simple and leave ample room for
improvements.

Regarding the extension of our analysis, the possibilities are twofold: first, an
extension within the given model could be considered, including more sophisti-
cated algorithms that make better use of the global job pool as well as dedicated
distribution policies for local schedulers regarding non-schedulable jobs. An ex-
tension to the model itself could for example impose incentives and penalties
for the runtime of jobs that are migrated between sites with highly diverging
performance characteristics.



In our next steps, we will continue to examine our current setup, introducing
more sophisticated distribution strategies and extend our evaluation to other
standard algorithms such as Greedy-Scheduling with different queue ordering
policies. On the medium term we plan to replace the indirect communication
model we currently use by a direct communication model where each site sched-
uler may not only decide whether to migrate a job at all, but also to which target
machine, allowing a fully decentralized scheduling model for computational jobs.
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A Complete Results for Three Sites

Site Setup 4 5
Workload LANL96-13 SDSC03-13 SDSC05-13 KTH-11 SDSC00-11 LANL96-11
m 1024 1152 1664 100 128 1024
k 1 2 3 1 2 3

FCFS-JS
AWRTk 19916.00 45870.87 52242.80 52851.95 41162.32 16021.66
Uk 60.74 64.68 62.03 55.11 57.15 59.15
Cmax,k 33799198 33861823 33884574 29363626 29333220 29332006
SAk 2122884048 25230465816 34972683920 1618211181 2116457552 17764967064
∆ AWRTk -41.61 44.16 28.13 87.36 84.56 -15.38
∆ Uk 8.00 -7.49 1.55 -19.75 -21.16 6.27
∆ SAk 7.99 -7.95 1.82 -19.80 -23.87 6.37
∆ Cmax,k 0.01 0.50 -0.27 0.06 3.39 -0.09
∆b AWRTk -59.74 15.91 8.33 29.68 44.08 -28.77
∆b Uk 8.00 -7.79 1.55 -19.80 -23.76 6.27
∆b SAk 7.99 -7.95 1.82 -19.80 -23.87 6.37
∆b Cmax,k 0.01 0.18 -0.27 0.00 0.14 -0.09

M =
83.82 7.19 8.98 85.22 4.51 10.27
5.89 88.07 6.04 4.71 84.22 11.07
6.28 5.64 88.08 4.52 1.64 93.85

EASY-JS
AWRTk 12790.98 41567.04 46570.09 53582.19 42083.57 14797.40
Uk 61.17 66.43 60.55 54.36 59.87 58.88
Cmax,k 33802986 33861823 33884573 29363626 29333220 29332215
SAk 21171896400 25914567656 34139569728 1596217383 2217375861 17686039823
∆ AWRTk -2.59 23.80 18.28 28.71 42.83 -18.93
∆ Uk 8.75 -5.29 -0.87 -20.71 -20.12 5.80
∆ SAk 8.75 -5.46 -0.61 -20.89 -20.24 5.89
∆ Cmax,k 0.00 0.18 -0.27 -20.89 0.14 -0.09
∆b AWRTk -2.59 23.80 18.28 28.71 42.83 -18.93
∆b Uk 8.75 -5.29 -0.87 -20.89 -20.12 5.80
∆b SAk 8.75 -5.46 -0.61 -20.89 -20.24 5.89
∆b Cmax,k 0.00 0.18 -0.27 0.00 0.14 -0.09

M =
80.85 8.50 10.65 85.09 4.39 10.52
5.45 86.75 7.79 4.33 84.10 11.57
7.03 7.24 85.73 2.04 3.12 94.83

LIST-JS
AWRTk 12308.17 39608.98 45554.56 51470.82 39959.20 15031.02
Uk 61.03 65.61 61.21 51.97 54.61 59.79
Cmax,k 33796660 33861823 33884573 29363626 29333220 29320703
SAk 21120338112 25591989520 34513706152 1526159515 2022449972 17951026280
∆ AWRTk 6.61 23.85 17.55 36.03 46.38 -14.94
∆ Uk 8.51 -6.47 0.21 -24.36 -27.17 7.43
∆ SAk 8.49 -6.63 0.48 -24.36 -27.25 7.48
∆ Cmax,k 0.02 0.17 -0.27 0.00 0.11 -0.05
∆b AWRTk 1.28 27.39 20.07 31.52 45.71 -20.86
∆b Uk 8.51 -6.46 0.21 -24.36 -27.15 7.43
∆b SAk 8.49 -6.63 0.48 -24.36 -27.25 7.48
∆b Cmax,k 0.02 0.18 -0.27 0.00 0.14 -0.05

M =
78.13 10.37 11.51 85.20 4.59 10.21
6.44 85.51 8.06 4.05 84.76 11.19
7.99 8.31 83.71 2.63 3.39 93.98

Table 4. Objectives for site setup 4 and 5 each with three participants (K = 3).
AWRTk and Cmax,k values are given in seconds while the Uk, SAk, and all comparative
objectives (∆, ∆b, and matrix M) are given in %.



Site Setup 6 7
Workload KTH-11 CTC-11 SDSC00-11 SDSC00-24 LANL96-24 SDSC03-24
m 100 430 128 128 1024 1152
k 1 2 3 1 2 3

FCFS-JS
AWRTk 62338.86 57201.08 50232.14 62101.21 34797.44 66909.13
Uk 63.89 69.93 64.48 60.36 66.13 66.56
Cmax,k 29363626 29308287 29331912 63983290 62404360 64089508
SAk 1875983688 8813151320 2387988478 4912160835 42260968454 49142843942
∆ AWRTk 85.09 2.37 81.16 97.21 -183.69 59.74
∆ Uk -6.97 6.44 -11.04 -20.41 19.08 -9.09
∆ SAk -7.03 6.45 -14.10 -26.20 19.29 -9.39
∆ Cmax,k 0.06 -0.01 3.39 7.24 -0.18 0.33
∆b AWRTk 17.06 -8.05 31.76 44.57 -213.35 5.46
∆b UkL -7.03 6.44 -13.98 -26.66 19.08 -9.94
∆b SAk -7.03 6.45 -14.10 -26.20 19.29 -9.39
∆b Cmax,k 0.00 -0.01 0.15 -0.62 -0.18 -0.62

M =
80.01 14.59 5.39 80.69 9.70 9.61
3.94 92.15 3.91 2.60 86.54 10.86
5.17 14.50 80.34 2.32 8.43 89.25

EASY-JS
AWRTk 56824.14 52231.77 45829.72 40991.60 13975.35 54443.17
Uk 63.41 68.67 68.90 63.07 64.40 68.23
Cmax,k 29363626 29333225 29349199 63588898 62404876 63694151
SAk 1861958410 8662107095 2553057981 5100935288 41152934711 50062103232
∆ AWRTk 24.39 1.33 37.74 63.41 -25.85 23.08
∆ Uk -7.72 4.53 -8.08 -23.36 15.95 -7.69
∆ SAk -7.72 4.62 -8.16 -23.37 16.16 -7.69
∆ Cmax,k 0.00 -0.09 0.09 0.00 -0.18 0.00
∆b AWRTk 24.39 1.33 37.74 63.41 -25.85 23.08
∆b Uk -7.72 4.53 -8.08 -23.36 15.95 -7.69
∆b SAk -7.72 4.62 -8.16 -23.37 16.16 -7.69
∆b Cmax,k 0.00 -0.09 0.09 0.00 -0.18 0.00

M =
75.66 18.02 6.32 78.48 7.83 13.69
4.99 88.69 6.32 1.41 84.62 13.97
5.33 17.09 77.58 2.08 9.56 88.36

LIST-JS
AWRTk 53667.36 53030.53 42517.13 37582.73 14032.26 52078.06
Uk 59.96 70.54 65.54 56.22 64.86 68.66
Cmax,k 29363626 29308287 29331912 63588898 62321145 63694095
SAk 1760513685 8889577981 2427031820 4547218912 41391071039 50377683280
∆ AWRTk 33.30 0.47 42.95 67.67 -20.42 27.89
∆ Uk -12.75 7.36 -12.60 -31.65 16.78 -7.11
∆ SAk -12.75 7.37 -12.70 -31.69 16.84 -7.11
∆ Cmax,k 0.00 -0.01 0.05 0.05 -0.05 0.00
∆b AWRTk 28.59 -0.17 42.24 66.46 -26.36 26.42
∆b Uk -12.75 7.36 -12.60 -31.68 16.78 -7.11
∆b SAk -12.75 7.37 -12.70 -31.69 16.84 -7.11
∆b Cmax,k 0.00 -0.01 0.05 0.00 -0.05 0.00

M =
73.93 18.75 7.32 80.82 7.07 12.10
5.73 87.74 6.53 1.82 81.99 16.19
4.42 16.97 78.61 2.62 10.63 86.75

Table 5. Objectives for site setup 6 and 7 each with three participants (K = 3).
AWRTk and Cmax,k values are given in seconds while the Uk, SAk, and all comparative
objectives (∆, ∆b, and matrix M) are given in %.


