
Impact of Reservations on Production Job Scheduling

Martin W. Margo, Kenneth Yoshimoto, Patricia Kovatch, Phil Andrews
San Diego Supercomputer Center, University of California, San Diego

{mmargo, kenneth, pkovatch, andrews} @sdsc.edu

Abstract

The TeraGrid is a closely linked community of diverse resources: computational, data, and
experimental, e.g., the imminent very large computational system at the University of Texas, the
extensive data facilities at SDSC, and the physics experiments at ORNL. As research efforts become
more extensive in scope, the co-scheduling of multiple resources becomes an essential part of scientific
progress. This can be at odds with the traditional management of the computational systems, where
utilization, queue wait times, and expansion factors are considered paramount and anything that affects
their performance is considered with suspicion. The only way to assuage concerns is with intensive
investigation of the likely effects of allowing advance reservations on these performance metrics.
To understand the impact, we developed a simulator that reads our actual production job log and
reservation request data to investigate different scheduling scenarios. We explored the effect of
reservations and policies using job log data from two different months within consecutive years and
present our initial results. Results from the simulations suggest that utilization, expansion factor and
queue wait time indeed can be affected negatively by significant numbers and size of reservations, but
this effect can be mitigated with appropriate policies.

1. Introduction

Scientists need to reserve computational
resources for different reasons. For instance, a
scientist may need resources at a specific time
to meet a deadline or perform a demonstration.
A scientist may also want to co-schedule
multiple resources. Creating reservations is one
way of allowing jobs to run simultaneously at
more than one site or resource and guarantees
that a resource is available at a specific time.
Many local schedulers can implement policies
and operate independently from a centralized
scheduler without requiring coordination
between sites with different scheduling goals.
This is in contrast with other co-scheduling
mechanisms [1,2,3].

Reservations may reduce batch job throughput
of a system, as measured by utilization, average
expansion factor and average queue wait time.
A study of the effect of reservations on
utilization and expansion factor [4] concluded
that meta-scheduled reservations equivalent to

up to 15 percent of the workload result in less
impact than fixed time slots set aside for cross-
site jobs. In that study, a real workload was
used to compare baseline utilization and
expansion factor in the presence and absence of
synthetic reservations. In this study, we sample
real user reservations to find the point at which
user reservations interfere unacceptably with
the batch workload. We seek to determine
whether policies restricting reservation creation
can moderate the negative effect of reservations
on utilization, expansion factor and queue wait
time. In some cases, the effect of reservations
can even be advantageous: allowing a “clean
start’ with an opening for large, efficient jobs to
begin.

The San Diego Supercomputer Center [5] offers
several compute resources including DataStar.
DataStar consists of 2,528 Power4+ processors
connected via IBM’s Federation High
Performance Switch (HPS). 272 of the nodes
have eight processors per node and 11 of the
nodes have 32 processors. In aggregate, the

machine has over 7 TB of memory. This
machine has been in production since April of
2004 and delivers over 14 million service units
(SU, representing one hour of processor wall-
clock time) per year. DataStar runs
LoadLeveler [6] as the resource manager and
Catalina [7] as the scheduler. DataStar is also
part of the TeraGrid.

The TeraGrid [8] is a multi-year effort
sponsored by the National Science Foundation
(NSF) to construct the nation’s largest grid.
The TeraGrid hosts a variety of diverse
resources including over 100 TF of High
Performance Computing (HPC) power and a
spallation neutron resource: an accelerator-
based neutron source [9]. These resources are
connected via a dedicated high-speed network
of 10-30 Gb/s. User allocations are fungible at
different sites throughout the TeraGrid. A
General Parallel File System (GPFS) [10] is
exported from SDSC enabling users to access
the same files at different sites without copying
files around. This capability facilitates
metascheduling.

The TeraGrid currently consists of nine sites:
the National Center Supercomputing
Applications, San Diego Supercomputer Center
(SDSC), Argonne National Laboratory, the
National Center for Atmospheric Research,
Pittsburgh Supercomputer Center, Texas
Advanced Computing Center, Indiana
University, Purdue and Oak Ridge National
Laboratory.

The TeraGrid is interested in metascheduling
capabilities including user-settable reservations
[11]. User-settable reservations are favored
since they are more efficient with staff time. A
Metascheduling Requirements Analysis Team
(RAT) [12] was formed to explore the
capabilities, Resource Provider (RP)
requirements, and software technologies
required to assist in the formal adoption of
metascheduling capabilities. RPs have
expressed concerns about how their local
scheduling goals will be affected by
metascheduling capabilities, including

reservations. Most sites are planning to
implement reservations but are unsure how
reservations will impact their queues and
overall machine utilization. They are
considering how to set policies that would help
ameliorate the effect.

Using a simulator with real job log data from
the actual production queue on DataStar, we
can see how local jobs are affected by the
reservations from the co-scheduled jobs and
compare the results without the reservations.
The simulator gives us a controlled and
repeatable environment to see the outcomes of
the scheduling decisions made by the policies
of the scheduler. With this we can assess the
impact of reservations and make appropriate
policies. For instance, a site may want to limit
the impact of reservations created by a specific
user. This site could create a policy within the
scheduling software to only allow a limited
number of reservations created by that user.
Some sites want to offer the co-scheduling
feature with reservations and are willing to
balance any potential decrease in their overall
utilization by introducing increased charges for
reservations.

The evaluation of parallel job scheduling
algorithms is fraught with problems, a long but
probably not exhaustive list forms the
“Frachtenberg pitfalls”[13]. It is beyond the
scope of this paper to demonstrate the
avoidance of all 32 of these, but the great
majority are circumvented by the technique of
using a real workload, rather than a simulated
one. The jobs are actual submissions to the
SDSC machine DataStar, with the addition of
putative reservations to determine the impact on
the gross queuing parameters such as usage and
queue waits, with and without throttling
restrictions.

2. Hypothesis

While user-settable reservations would enable
co-allocated grid jobs and make efficient use of
staff time, system administrators are often
reluctant to allow users to make reservations at

will. This stems from a fear that injecting
reservations will disrupt the job queue,
resulting in degraded utilization, average
expansion factor and average queue wait time.
We hypothesize that the impact of user-settable
reservations on the job queue can be controlled
through policies throttling reservation creation.
The scheduler used at SDSC and in this
simulation study allows users to create
reservations only after all eligible jobs have
been given reservations. This means that the
existing job queue is not affected by user-
settable reservations. Subsequent jobs would
need to be scheduled around those reservations.

The policy we use to throttle user-settable
reservations is that the total node-seconds of
user-settable reservations within any sliding 7
day period must not exceed 256 nodes * 12
hours worth of node-seconds. This represents
all unshared batch nodes in the system for half
a day each week.

3. The Simulator

We developed a simulator to explore the impact
of reservations on a real production workload.
The simulator allows us to replay the exact
workload, vary the number of reservations and
observe the effects. We selected three
parameters to evaluate the effects of
reservations: machine utilization, expansion
factor and queue wait time.

Diagram 1 depicts the five major components
of our simulator: Simulation Core, Catalina,
LoadLeveler simulators, and accounting and
reservation databases. The core is written in
Python and uses SimPy simulation framework
[14]. The simulation core depends heavily on
the simulation clock. Our simulator is
designated DES (Discrete Event Simulator). In
DES, time can be advanced into a discrete time
where an event is happening; other times of
non-activity are simply skipped. The core is
responsible for keeping track of active jobs,
queued jobs, and exiting jobs, adjusting the
discrete simulation clock, and keeping track of
current and future reservations.

The next component is Catalina [7]. Catalina is
our production scheduler on SDSC’s Datastar.
It is written in Python. Catalina is stateless. A
scheduling iteration is independent than that of
the past and that of the future.

LoadLeveler [6] is Datastar’s resource manager
software from IBM. It is responsible for
accepting job submissions and to signal the
nodes to run jobs. It has many different
components and a set of APIs to access its
functions. To become an external scheduler,
Catalina uses many of the LoadLeveler API
calls to perform its duty. For example, it uses
API calls to query the status of jobs, machines,
resources, adapters, etc. Catalina also uses the
API to instruct LoadLeveler to run a job on a
node. Since we are going to run a discrete event
simulator, LoadLeveler behavior must be
simulated. LoadLeveler is not stateless;
therefore it is impossible for the simulator to
advance the simulation clock discretely. To
overcome this problem, we wrote LoadLeveler
wrapper scripts.

The LoadLeveler API calls that we need are
qj_ll, llq, and rj_ll. qj_ll or query job
LoadLeveler queries LoadLeveler for all jobs
known to LoadLeveler. qj_ll outputs the name
of the job, owner, group, node amount
requested, wall clock time requested, switch
adapter window requirement, along with other
job properties. When a job is queued, its
information will be included in qj_ll output.

llq or LoadLeveler query works similarly to
qj_ll. llq records current job information and
display them in human readable format.

rj_ll or run job LoadLeveler is a wrapper script
written in C to start a job currently in the queue.

SDSC has accounting and reservation
databases. These databases are updated
regularly. The accounting database consists of
finished jobs information; such as job id,
owner, group, account, charges, amount of wall
clock time used, return code, location to

binaries, location to input and output files, etc.
For historical purposes, we can query the
database and obtain information about jobs that
were submitted by a particular user on a
particular day in the past.

The reservation database stores information
about user settable reservations on Datastar. It
has information about the reservation creation
date, reservation start date, reservation end
date, owner, etc.

The simulation consists of cycles. A cycle is
broken down into five steps: the input step
(Step 1), the recording step (Step 2), the
scheduling step (Step 3), the execution step
(Step 4), and the reporting step (Step 5). The
simulation terminates if all jobs and
reservations in accounting and reservation
databases have been completed or the time limit
has been reached. The time limit should be set
to be the time when all the jobs and
reservations finishes plus few days of buffer
period.

In the beginning of the simulation, we
initialized the simulation clock to zero, read the
job accounting and reservation database, and
load them to memory in a queue sorted by their
relative submit time. Each job and reservation
has a relative submit time. For example, a job
submitted on midnight, January 2, 2007 has
relative start time of 86400 seconds, if the
simulation begins on January 1, 2007. This
technique allows us to distribute jobs according
to real life distribution. Reservations are
distributed uniformly across simulation time.

In Step 1, the simulation core reads the value of
simulation clock and reads the memory for any
job that submits at that time. If such job or
reservation exists, it will update the next
simulation time to the next job submission time
or reservation creation time in memory and
dequeue the current job or reservation.

In Step 2, any jobs extracted from Step 1 are
inserted to the qj_ll and llq simulator.
Effectively, the jobs information are registered

to LoadLeveler. This is the recording step.
Also, in this step, reservations extracted from
Step 1 are submitted to Catalina. If there are no
jobs or reservations extracted from Step 1, the
simulation continues to Step 3.

In Step 3, the simulator calls Catalina to run a
scheduling iteration. In this iteration, Catalina
reads qj_ll and llq that are already populated
with jobs in Step 2. Therefore, the newly
submitted jobs are now being considered for
execution. Also in this step, reservation
requests are either granted or rejected
depending on the active reservation policy. In
Step 3, Catalina passes log information about
active jobs and reservations to the core. Look at
the text below for more detail. To reduce the
amount of processing time, the scheduler
iteration occurs every fifteen minutes of
simulation time between job submission or
completion.

 43258 :: job (ds002.236406.0) requesting
(6) node is here
 43639 :: job (ds002.236408.0) requesting
(6) node is here
 44100 :: ********** begin executing
catalina_schedule_jobs.py *********
 44100 :: ********** executed
catalina_schedule_jobs.py ********
 44110 :: job(ds002.236408.0) has been
waiting for (471) and now it is running.
 44110 :: total node usage is now (53) or
(20.00) percent
 44110 :: job(ds002.236406.0) has been
waiting for (852) and now it is running.
 44110 :: total node usage is now (59) or
(22.00) percent
 44321 :: job(ds002.236408.0) is done
running. it ran for (211.0) seconds
 44321 :: total node usage is now (53) or
(20.00) percent
 44334 :: job(ds002.236355.0) is done
running. it ran for (31724.0) seconds
 44334 :: total node usage is now (51) or
(19.00) percent
 44795 :: job(ds002.236406.0) is done
running. it ran for (685.0) seconds
 44795 :: total node usage is now (45) or
(17.00) percent
 45000 :: ********** begin executing
catalina_schedule_jobs.py *********
 45000 :: ********** executed
catalina_schedule_jobs.py ********

In Step 4, Catalina checks its internal tables to

see if it can run one or more jobs at present. If
so, it calls rj_ll simulator with the eligible job
ids as input parameters. It logs this action to
simulation core. At the end of this executing
step, the simulation cleans finished jobs by
flushing their entries from llq and qj_ll
simulator internal table. If there is no job to be
run at present, Catalina skips this step.
Reservations are handled analogously.

In Step 5 or the reporting step, the simulator
print logs into standard output. We can see a
message with a timestamp for each action
performed on the job or reservation. The text
above is an example of our simulator output.

At the end of Step 5, simulation clock is
advanced to the next event time and Step 1
restarts. Output from Step 5 allows us to
calculate wait time for each job, expansion
factor for each job, and instantaneous overall
utilization at various point in time. With this
information, we can calculate higher-level
metrics presented in later sections.

The simulation strives to provide the actual
production environment with jobs arriving to
the queue at the same distribution as the
historical job distribution. The jobs we simulate
are a copy of actual jobs from Datastar. We also
simulate jobs that finished earlier than its
requested wall clock time. The simulator uses
historical reservation information from
TeraGrid. In the base case, we can see how our
simulator resembles the historical production
schedule. One factor that deviates us from
actual production schedule is the fact that we
don’t simulate node failures, either hardware or
software.

We wrote ~1000 lines of code to implement the
simulation core and the LoadLeveler simulator
components. The code for the Simulator will
be freely available after approval by UCSD’s
Technology Transfer Office. It will work with
generic queue-based external schedulers and
resource managers.

Diagram 1. Simulation Flowchart.

4. Evaluation Criteria

To judge the impact on our scheduling goals,
we examined the average queue wait time for
each job, the expansion factor for each job, and
total utilization of the machine. Queue wait
time measures the length of time between when
a job comes into the queue and when it starts
running. It is measured in hours. The expansion
factor is the ratio of the sum of requested wall-
clock time and queue wait time divided by the
requested wall-clock time. Expansion factor is
unit-less; the lower the expansion factor is, the
better. Finally, utilization is the percentage of
the entire cluster being used during the
simulation.

To measure impact on the job queue, we use
utilization, average expansion factor and
average system queue wait time:

Utilization =
job! _ node_ seconds

Available_ node_ seconds

Equation 1. Utilization equation

Average_ expansion _ factor =
(exp_ factor * job _ node_ seconds)

alljobs!
job _ node_ seconds

alljobs

!

Equation 2. Average expansion factor
equation

Average_ system _ queue_wait _ time =
(job _wait _ time* job _ node_ seconds)

all _ jobs!
job _ node_ seconds

all _ jobs

!

Equation 3. Average system queue wait time
equation

5. The Simulation

We wanted to see the effect of real, requested
reservations on our normal workload. We also
wanted to see how many reservations it would
take to significantly interfere with our
scheduling goals. Lastly, we wanted to know if
our scheduling goals could be maintained by
using policies.

To accomplish these objectives, we planned
three runs: (1) a baseline run using only the real
production workload, (2) a run including real
reservation requests and (3) a run with policies
enabled to control the number of reservations.
To really show the effect of reservation in our
production job mix, we used one year worth of
reservations on our system over a month period
of time.

Additionally we use two different job mix, one
from March 2006 and one from March 2007.
The reservation data however, are the same
between the two sets of runs.

For the simulation, we used DataStar’s real
production workload from the two months,
based on job submission time.

In the first week of simulation time, there were
767 jobs in the queue. The job mix included
jobs from one to 256 nodes (full machine) with
a duration of one to 18 hours (the maximum
time that can be requested). Six jobs requested
the full machine and 29 requested 128 nodes or
more. We injected 15 reservations during each
week of simulation time,, all actually requested
through TeraGrid, with job sizes from eight to
128 with a duration of four to 18 hours.

In 2006, TeraGrid users requested reservations
for 60 co-scheduled jobs. We used these real-
life requests as the basis for our reservations for
both simulations. Compressing a year's worth
of actual reservations into a month of simulated
job scheduling should overstate the impact of
real reservations on the system.

Graphs 1 and 2 show the number of jobs
requested at each node count for 2006 and
2007. The colors are not significant, only to
help identify the jobs. Graph 3 shows the
reservations requested for 2006, which was
used for both the 2006 and 2007 simulations.

Graph 1. Job Histogram for March 2006.

Graph 2. Job Histogram for March 2007.

Graph 3. Reservation Histogram for 2006.

6. Results

Graph 4. Average Expansion Factor for All
Jobs

Graph 5. Average Wait Time for All Jobs

From the job data from March 2006, 722 jobs
completed during the simulation time. The
three scenarios simulated were: baseline,
baseline+reservations,
baseline+reservations+policy restrictions. For
this particular workload, the baseline queue
wait time was 6.03 hours, and expansion factor
was 2.05. When reservations were added to the
schedule, there was a drastic increase in queue
wait time to 74.0 hours. Expansion factor also
increased to 7.35.

This would be expected, since jobs were
scheduled around the obstructing reservations.
Some jobs would probably be delayed,
resulting in longer queue wait times. When
restricting policies were added, to throttle

requested reservations, queue wait time
dropped to 4.44 hours and expansion factor
went to 1.70. This was unexpected, since these
metrics are even better than in the baseline, no-
reservations scenario. A plausible explanation
for this effect is that wide reservations (those
spanning much of the machine) create backfill
or afterfill windows that allow large jobs to run
more quickly than without reservations in
place. The reservations would have the effect
of preventing small, long jobs from blocking
large jobs. In fact, when looking at the
simulation data in detail, it became clear that
two injected reservations, one for 130 nodes
and one for 128 nodes, created a space in the
schedule for a 256-node job to run earlier than
it would have in the absence of reservations.
This case shows that some combinations of
workload and reservations may result in
increased efficiency.

For the March 2007, 706-job workload, a
different pattern occurred. The baseline queue
time was 13.7 hours, with expansion factor at
2.53. When reservations were added, queue
time went to 107 hours, and expansion factor
went to 9.35. With throttling policies, queue
wait time recovered to 44.0 hours, and
expansion factor went to 5.21. With this
workload, reservations had a large negative
impact on scheduling metrics. The throttling
policies were able to reduce this effect, but
scheduling was still less efficient than the
baseline case.

One factor to consider is that the simulation
does not enforce max jobs per user queued
policies, so there can be a hundred one-node, 30
minute jobs waiting to run, giving a very poor
expansion factor. On DataStar, we limit the
users to six jobs queued at a time, so you
wouldn't see the poor expansion factor due to
queue stuffing. We would need to examine the
individual job expansion factors to know if
that's what's going on in the simulation.

Graph 6. March 2006 Utilization.

Graph 7. March 2007 Utilization.

Utilization percentage snapshots were taken
throughout the simulations. When reservations
are counted as utilized parts of the machine,
overall utilization remains high. There are

some periods in which reservations or
reservations+policy results in lower utilization
than baseline, but these are not the rule.

Graph 8. March 2006 Queue Length.

Graph 9. March 2007 Queue Length.

To address the effect of a long job queue on
user job submission behavior [13], we
examined the length of the job queue as the
simulation progressed. Graphs of the queue
depth throughout the simulation suggest that in
the baseline and baseline+reservations+policy
scenarios the queue depth stayed within a
realistic regime: 90 waiting jobs for 2006, 150
waiting jobs for 2007. The baseline +
reservations queue depth rises much higher than
the other two scenarios. Users might be
expected to stop submitting jobs before the
queue depth reaches that point. The
baseline+reservation queue depth may
represent a worst-case scenario for expansion
factor and queue wait time, in which users
continue to blindly submit jobs regardless of
queue depth.

Graph 10. 2006 Expansion factor (by job
size) .

Graph 11. 2007 Expansion factor (by job
size).

We wanted to breakdown the components of
our expansion factor and wait time changes by
job size. The small jobs are one-node jobs, the
medium jobs are 2-64 nodes and the large are
65-256. This would allow us to determine
whether different size classes of jobs were
disproportionately affected by injection of
reservations. In 2006, medium-sized jobs
suffered more as measured by an expansion
factor increase, especially in the
baseline+reservations case. In 2007, the
expansion factors of large jobs increased over
the 2006 simulation. In this simulation, the
overall expansion factor with policy did not
recover to the baseline case.

Graph 12. Average Wait Time for 2006
Based on Job Size.

Graph 13. Average Wait Time for 2007
based on Job Size.

In 2006, medium-sized jobs suffered more as
measured by an increase in average wait time,
especially in the baseline+reservations case. In
2007, the average expansion factor and the
average wait time for both medium and large
jobs suffered in the baseline+reservations
scenario. Even after applying our throttling
policy, medium and large jobs did not recover
expansion factor and queue wait time to the

baseline case. In general, medium jobs can be
expected to suffer more than small-short or
large jobs. In a single-queue, priority-based,
reservations scheduling system, medium jobs
may be too small to be granted top priority in
the queue and may be too large to fit in natural
backfill windows. We see here that the effect
on large jobs is dependent on the workload,
since the March 2006 and March 2007
workloads displayed a different effect of
reservations on large jobs.

7. Future Work

In the next few months we will develop
hypotheses on the effects of reservations as a
function of reservation size, duration, and
advance notice. From these hypotheses we will
fashion several postulated policies that attempt
to provide the advantages of advanced
reservations while reducing the deleterious
effects on utilization, queue waits, and
expansion factors to a minimum. Indeed, it is
possible, that, dependent on the details of the
job mix, it may be possible to improve some of
these in many situations with an appropriate
policy.

8. Conclusions

By running two different production job
workloads (from DataStar, March 2006 and
March 2007) through three different reservation
scheduling scenarios (baseline,
baseline+reservations,
baseline+reservations+policy), we show that
injecting reservations can have a large negative
impact on average expansion factor and
average queue wait time. This effect can be
moderated by policies that throttle reservation
injection. System utilization was not
necessarily worse when reservations were
added to the system. The utilization appears to
be very dependent on job mix. One concern
with simulating the workload was the effect of
extremely deep job queues on user psychology.
In the case of baseline+reservations, queue
depths could run to almost 400 jobs in the
queue. Would users continue to submit jobs

under that circumstance? On the other hand,
with throttling policies in place, queue depth
was comparable to the baseline scenario.

One of the most interesting aspects of this work
is that the introduction of advance reservations
can, under some circumstances, be
advantageous to the existing job mix. The
effects of the reservations come from three
areas: its “width”, or number of nodes, the
impact of its “leading edge”, and that of its
“trailing edge”. For simplicity, we can consider
the effects of machine-wide reservation, where
all nodes are requested (a not unusual scenario,
since most reservations tend to be significantly
larger than normal jobs). The machine must be
drained for the reservation to begin, which
naturally tends to produce “holes” in the job
mix, reducing utilization. However, when the
reservation ends, the job scheduler has had an
increased time to try to put an efficient set of
jobs together to fully utilize the empty machine
at the end of the reservation. Indeed, users will

have been continually submitting jobs for the
duration of the reservation, increasing the job
pool available to the scheduler. This can lead to
increased utilization immediately following the
reservation.

It is clear that while the deleterious effects of
the reservations “leading edge” are independent
of the duration of the reservations, the
advantageous effects of the “trailing edge”
increase with the duration of the reservation.
Thus, the effects of allowing reservations can
be moved towards the positive by policies that
have a minimum duration requirement. We will
investigate this in future work. The “width” of
the reservation can have similar effects, but
these are dependent on the job mix on the
particular machine being used. Obviously the
history of the job mix is available to the local
scheduler: it may be possible to feed back that
information into advance reservation policies to
again reduce the negative impact.

9. References

[1] D. Feitelson, L. Rudolph, U. Schwiegelshohn, “Parallel Job Scheduling – A Status Report”, 10th

Workshop on Job Scheduling Strategies for Parallel Processing, 2004.

[2] J. Singaga, H. Mohamed, D. Epema, “Dynamic Co-Allocation Service in Multicluster Systems”,

10th Workshop on Job Scheduling Strategies for Parallel Processing, 2004.

[3] A. Sodan, L. Lan, “LOMARC – Lookahead Matchmaking for Multi-Resource Coscheduling”, 10th

Workshop on Job Scheduling Strategies for Parallel Processing, 2004.

[4] Q. Snell, M. Clement, D. Jackson, C. Gregory, “The Performance Impact of Advance Reservation

Meta-scheduling”, Job Scheduling Strategies for Parallel Processing: IPDPS 2000 Workshop,
JSSPP 2000, Cancun, Mexico, May 2000, Proceedings, Lecture Notes in Computer Science vol.
1911, pp. 137-153, 2000.

[5] San Diego Supercomputer Center at UCSD, http://www.sdsc.edu

[6] IBM LoadLeveler, http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp

[7] Catalina scheduler, http://www.sdsc.edu/catalina

[8] TeraGrid, http://www.teragrid.org

[9] Neutron source, http://en.wikipedia.org/wiki/Spallation_Neutron_Source

[10] P. Andrews, C. Jordan, P. Kovatch, “Massive High-Performance Global File Systems for Grid

Computing”, Research Paper, SuperComputing 2005, Seattle, WA, November 2005.

[11] K. Yoshimoto, P. Kovatch, P. Andrews, “Co-scheduling with User-Settable Reservations”, 11th

Workshop on Job Scheduling Strategies for Parallel Processing, 2005.

[12] Metascheduling Requirement Analysis Team final report,

http://www.teragridforum.org/mediawiki/images/b/b4/MetaschedRatReport.pdf

[13] E. Frachtenberg, DG. Feitelson, “Pitfalls in Parallel Job Scheduling Evaluation”, Job Scheduling

Strategies for Parallel Processing, Springer, 2005.

[14] SimPy, http://simpy.sourceforge.net/

