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Abstract 
 

The TeraGrid is a closely linked community of diverse resources: computational, data, and 
experimental, e.g., the imminent very large computational system at the University of Texas, the 
extensive data facilities at SDSC, and the physics experiments at ORNL. As research efforts become 
more extensive in scope, the co-scheduling of multiple resources becomes an essential part of scientific 
progress. This can be at odds with the traditional management of the computational systems, where 
utilization, queue wait times, and expansion factors are considered paramount and anything that affects 
their performance is considered with suspicion. The only way to assuage concerns is with intensive 
investigation of the likely effects of allowing advance reservations on these performance metrics. 
To understand the impact, we developed a simulator that reads our actual production job log and 
reservation request data to investigate different scheduling scenarios.  We explored the effect of 
reservations and policies using job log data from two different months within consecutive years and 
present our initial results.  Results from the simulations suggest that utilization, expansion factor and 
queue wait time indeed can be affected negatively by significant numbers and size of reservations, but 
this effect can be mitigated with appropriate policies.   
 
1.  Introduction 
 
Scientists need to reserve computational 
resources for different reasons.  For instance, a 
scientist may need resources at a specific time 
to meet a deadline or perform a demonstration.   
A scientist may also want to co-schedule 
multiple resources. Creating reservations is one 
way of allowing jobs to run simultaneously at 
more than one site or resource and guarantees 
that a resource is available at a specific time.  
Many local schedulers can implement policies 
and operate independently from a centralized 
scheduler without requiring coordination 
between sites with different scheduling goals.  
This is in contrast with other co-scheduling 
mechanisms [1,2,3]. 
 
Reservations may reduce batch job throughput 
of a system, as measured by utilization, average 
expansion factor and average queue wait time.  
A study of the effect of reservations on 
utilization and expansion factor [4] concluded 
that meta-scheduled reservations equivalent to 

up to 15 percent of the workload result in less 
impact than fixed time slots set aside for cross-
site jobs.  In that study, a real workload was 
used to compare baseline utilization and 
expansion factor in the presence and absence of 
synthetic reservations.  In this study, we sample 
real user reservations to find the point at which 
user reservations interfere unacceptably with 
the batch workload.  We seek to determine 
whether policies restricting reservation creation 
can moderate the negative effect of reservations 
on utilization, expansion factor and queue wait 
time. In some cases, the effect of reservations 
can even be advantageous: allowing a “clean 
start’ with an opening for large, efficient jobs to 
begin. 
 
The San Diego Supercomputer Center [5] offers 
several compute resources including DataStar.  
DataStar consists of 2,528 Power4+ processors 
connected via IBM’s Federation High 
Performance Switch (HPS).  272 of the nodes 
have eight processors per node and 11 of the 
nodes have 32 processors.  In aggregate, the 



machine has over 7 TB of memory.  This 
machine has been in production since April of 
2004 and delivers over 14 million service units 
(SU, representing one hour of processor wall-
clock time) per year.  DataStar runs 
LoadLeveler [6] as the resource manager and 
Catalina [7] as the scheduler.  DataStar is also 
part of the TeraGrid. 
 
The TeraGrid [8] is a multi-year effort 
sponsored by the National Science Foundation 
(NSF) to construct the nation’s largest grid.  
The TeraGrid hosts a variety of diverse 
resources including over 100 TF of High 
Performance Computing (HPC) power and a 
spallation neutron resource: an accelerator-
based neutron source [9]. These resources are 
connected via a dedicated high-speed network 
of 10-30 Gb/s.  User allocations are fungible at 
different sites throughout the TeraGrid.  A 
General Parallel File System (GPFS) [10] is 
exported from SDSC enabling users to access 
the same files at different sites without copying 
files around.  This capability facilitates 
metascheduling. 
 
The TeraGrid currently consists of nine sites: 
the National Center Supercomputing 
Applications, San Diego Supercomputer Center 
(SDSC), Argonne National Laboratory, the 
National Center for Atmospheric Research, 
Pittsburgh Supercomputer Center, Texas 
Advanced Computing Center, Indiana 
University, Purdue and Oak Ridge National 
Laboratory. 
 
The TeraGrid is interested in metascheduling 
capabilities including user-settable reservations 
[11]. User-settable reservations are favored 
since they are more efficient with staff time.  A 
Metascheduling Requirements Analysis Team 
(RAT) [12] was formed to explore the 
capabilities, Resource Provider (RP) 
requirements, and software technologies 
required to assist in the formal adoption of 
metascheduling capabilities.  RPs have 
expressed concerns about how their local 
scheduling goals will be affected by 
metascheduling capabilities, including 

reservations.  Most sites are planning to 
implement reservations but are unsure how 
reservations will impact their queues and 
overall machine utilization.  They are 
considering how to set policies that would help 
ameliorate the effect.   
 
Using a simulator with real job log data from 
the actual production queue on DataStar, we 
can see how local jobs are affected by the 
reservations from the co-scheduled jobs and 
compare the results without the reservations.  
The simulator gives us a controlled and 
repeatable environment to see the outcomes of 
the scheduling decisions made by the policies 
of the scheduler.   With this we can assess the 
impact of reservations and make appropriate 
policies. For instance,  a site may want to limit 
the impact of reservations created by a specific 
user.  This site could create a policy within the 
scheduling software to only allow a limited 
number of reservations created by that user.  
Some sites want to offer the co-scheduling 
feature with reservations and are willing to 
balance any potential decrease in their overall 
utilization by introducing increased charges for 
reservations. 
 
The evaluation of parallel job scheduling 
algorithms is fraught with problems, a long but 
probably not exhaustive list forms the 
“Frachtenberg pitfalls”[13]. It is beyond the 
scope of this paper to demonstrate the 
avoidance of all 32 of these, but the great 
majority are circumvented by the technique of 
using a real workload, rather than a simulated 
one. The jobs are actual submissions to the 
SDSC machine DataStar, with the addition of 
putative reservations to determine the impact on 
the gross queuing parameters such as usage and 
queue waits, with and without throttling 
restrictions. 
 
2.  Hypothesis 
 
While user-settable reservations would enable 
co-allocated grid jobs and make efficient use of 
staff time, system administrators are often 
reluctant to allow users to make reservations at 



will.  This stems from a fear that injecting 
reservations will disrupt the job queue, 
resulting in degraded utilization, average 
expansion factor and average queue wait time. 
We hypothesize that the impact of user-settable 
reservations on the job queue can be controlled 
through policies throttling reservation creation.  
The scheduler used at SDSC and in this 
simulation study allows users to create 
reservations only after all eligible jobs have 
been given reservations.  This means that the 
existing job queue is not affected by user-
settable reservations. Subsequent jobs would 
need to be scheduled around those reservations.  
 
The policy we use to throttle user-settable 
reservations is that the total node-seconds of 
user-settable reservations within any sliding 7 
day period must not exceed 256 nodes * 12 
hours worth of node-seconds.  This represents 
all unshared batch nodes in the system for half 
a day each week. 
 
3.  The Simulator 
 
We developed a simulator to explore the impact 
of reservations on a real production workload.  
The simulator allows us to replay the exact 
workload, vary the number of reservations and 
observe the effects. We selected three 
parameters to evaluate the effects of 
reservations: machine utilization, expansion 
factor and queue wait time. 
 
Diagram 1 depicts the five major components 
of our simulator: Simulation Core, Catalina, 
LoadLeveler simulators, and accounting and 
reservation databases. The core is written in 
Python and uses SimPy simulation framework 
[14]. The simulation core depends heavily on 
the simulation clock. Our simulator is 
designated DES (Discrete Event Simulator). In 
DES, time can be advanced into a discrete time 
where an event is happening; other times of 
non-activity are simply skipped. The core is 
responsible for keeping track of active jobs, 
queued jobs, and exiting jobs, adjusting the 
discrete simulation clock, and keeping track of 
current and future reservations. 

 
The next component is Catalina [7]. Catalina is 
our production scheduler on SDSC’s Datastar. 
It is written in Python. Catalina is stateless. A 
scheduling iteration is independent than that of 
the past and that of the future. 
 
LoadLeveler [6] is Datastar’s resource manager 
software from IBM. It is responsible for 
accepting job submissions and to signal the 
nodes to run jobs. It has many different 
components and a set of APIs to access its 
functions. To become an external scheduler, 
Catalina uses many of the LoadLeveler API 
calls to perform its duty. For example, it uses 
API calls to query the status of jobs, machines, 
resources, adapters, etc. Catalina also uses the 
API to instruct LoadLeveler to run a job on a 
node. Since we are going to run a discrete event 
simulator, LoadLeveler behavior must be 
simulated. LoadLeveler is not stateless; 
therefore it is impossible for the simulator to 
advance the simulation clock discretely. To 
overcome this problem, we wrote LoadLeveler 
wrapper scripts.  
 
The LoadLeveler API calls that we need are 
qj_ll, llq, and rj_ll. qj_ll or query job 
LoadLeveler queries LoadLeveler for all jobs 
known to LoadLeveler. qj_ll outputs the name 
of the job, owner, group, node amount 
requested, wall clock time requested, switch 
adapter window requirement, along with other 
job properties. When a job is queued, its 
information will be included in qj_ll output. 
 
llq or LoadLeveler query works similarly to 
qj_ll. llq records current job information and 
display them in human readable format. 
 
rj_ll or run job LoadLeveler is a wrapper script 
written in C to start a job currently in the queue.  
 
SDSC has accounting and reservation 
databases. These databases are updated 
regularly. The accounting database consists of 
finished jobs information; such as job id, 
owner, group, account, charges, amount of wall 
clock time used, return code, location to 



binaries, location to input and output files, etc. 
For historical purposes, we can query the 
database and obtain information about jobs that 
were submitted by a particular user on a 
particular day in the past.  
 
The reservation database stores information 
about user settable reservations on Datastar. It 
has information about the reservation creation 
date, reservation start date, reservation end 
date, owner, etc.  
 
The simulation consists of cycles. A cycle is 
broken down into five steps: the input step 
(Step 1), the recording step (Step 2), the 
scheduling step (Step 3), the execution step 
(Step 4), and the reporting step (Step 5). The 
simulation terminates if all jobs and 
reservations in accounting and reservation 
databases have been completed or the time limit 
has been reached. The time limit should be set 
to be the time when all the jobs and 
reservations finishes plus few days of buffer 
period.  
 
In the beginning of the simulation, we 
initialized the simulation clock to zero, read the 
job accounting and reservation database, and 
load them to memory in a queue sorted by their 
relative submit time. Each job and reservation 
has a relative submit time. For example, a job 
submitted on midnight, January 2, 2007 has 
relative start time of 86400 seconds, if the 
simulation begins on January 1, 2007. This 
technique allows us to distribute jobs according 
to real life distribution. Reservations are 
distributed uniformly across simulation time. 
 
In Step 1, the simulation core reads the value of 
simulation clock and reads the memory for any 
job that submits at that time. If such job or 
reservation exists, it will update the next 
simulation time to the next job submission time 
or reservation creation time in memory and 
dequeue the current job or reservation. 
  
In Step 2, any jobs extracted from Step 1 are 
inserted to the qj_ll and llq simulator. 
Effectively, the jobs information are registered 

to LoadLeveler. This is the recording step. 
Also, in this step, reservations extracted from 
Step 1 are submitted to Catalina. If there are no 
jobs or reservations extracted from Step 1, the 
simulation continues to Step 3. 
 
In Step 3, the simulator calls Catalina to run a 
scheduling iteration. In this iteration, Catalina 
reads qj_ll and llq that are already populated 
with jobs in Step 2. Therefore, the newly 
submitted jobs are now being considered for 
execution. Also in this step, reservation 
requests are either granted or rejected 
depending on the active reservation policy. In 
Step 3, Catalina passes log information about 
active jobs and reservations to the core. Look at 
the text below for more detail.  To reduce the 
amount of processing time, the scheduler 
iteration occurs every fifteen minutes of 
simulation time between job submission or 
completion. 
 
 43258  :: job (ds002.236406.0) requesting 
(6) node is here  
 43639  :: job (ds002.236408.0) requesting 
(6) node is here  
 44100  :: ********** begin executing 
catalina_schedule_jobs.py ********* 
 44100  :: ********** executed 
catalina_schedule_jobs.py ******** 
 44110  :: job(ds002.236408.0) has been 
waiting for (471) and now it is running.  
 44110  :: total node usage is now (53) or 
(20.00) percent 
 44110  :: job(ds002.236406.0) has been 
waiting for (852) and now it is running.  
 44110  :: total node usage is now (59) or 
(22.00) percent 
 44321  :: job(ds002.236408.0) is done 
running. it ran for (211.0) seconds 
 44321  :: total node usage is now (53) or 
(20.00) percent 
 44334  :: job(ds002.236355.0) is done 
running. it ran for (31724.0) seconds 
 44334  :: total node usage is now (51) or 
(19.00) percent 
 44795  :: job(ds002.236406.0) is done 
running. it ran for (685.0) seconds 
 44795  :: total node usage is now (45) or 
(17.00) percent 
 45000  :: ********** begin executing 
catalina_schedule_jobs.py ********* 
 45000  :: ********** executed 
catalina_schedule_jobs.py ******** 

 
 
In Step 4, Catalina checks its internal tables to 



see if it can run one or more jobs at present. If 
so, it calls rj_ll simulator with the eligible job 
ids as input parameters. It logs this action to 
simulation core. At the end of this executing 
step, the simulation cleans finished jobs by 
flushing their entries from llq and qj_ll 
simulator internal table. If there is no job to be 
run at present, Catalina skips this step. 
Reservations are handled analogously. 
 
In Step 5 or the reporting step, the simulator 
print logs into standard output. We can see a 
message with a timestamp for each action 
performed on the job or reservation. The text 
above is an example of our simulator output. 
 
At the end of Step 5, simulation clock is 
advanced to the next event time and Step 1 
restarts. Output from Step 5 allows us to 
calculate wait time for each job, expansion 
factor for each job, and instantaneous overall 
utilization at various point in time. With this 
information, we can calculate higher-level 
metrics presented in later sections. 
 
The simulation strives to provide the actual 
production environment with jobs arriving to 
the queue at the same distribution as the 
historical job distribution. The jobs we simulate 
are a copy of actual jobs from Datastar. We also 
simulate jobs that finished earlier than its 
requested wall clock time. The simulator uses 
historical reservation information from 
TeraGrid. In the base case, we can see how our 
simulator resembles the historical production 
schedule. One factor that deviates us from 
actual production schedule is the fact that we 
don’t simulate node failures, either hardware or 
software.  
 
We wrote ~1000 lines of code to implement the 
simulation core and the LoadLeveler simulator 
components.  The code for the Simulator will 
be freely available after approval by UCSD’s 
Technology Transfer Office.  It will work with 
generic queue-based external schedulers and 
resource managers. 
 

 
Diagram 1. Simulation Flowchart. 
 
4.  Evaluation Criteria 
 
To judge the impact on our scheduling goals, 
we examined the average queue wait time for 
each job, the expansion factor for each job, and 
total utilization of the machine. Queue wait 
time measures the length of time between when 
a job comes into the queue and when it starts 
running. It is measured in hours. The expansion 
factor is the ratio of the sum of requested wall-
clock time and queue wait time divided by the 
requested wall-clock time. Expansion factor is 
unit-less; the lower the expansion factor is, the 
better. Finally, utilization is the percentage of 
the entire cluster being used during the 
simulation.  
 
To measure impact on the job queue, we use 
utilization, average expansion factor and 
average system queue wait time:  

Utilization =
job! _ node_ seconds

Available_ node_ seconds  

Equation 1. Utilization equation 
 

Average_ expansion _ factor =
(exp_ factor * job _ node_ seconds)

alljobs!
job _ node_ seconds

alljobs

!
 

Equation 2. Average expansion factor 
equation 
 

Average_ system _ queue_wait _ time =
( job _wait _ time* job _ node_ seconds)

all _ jobs!
job _ node_ seconds

all _ jobs

!
 

Equation 3. Average system queue wait time 
equation 



 
5.  The Simulation 
 
We wanted to see the effect of real, requested 
reservations on our normal workload.  We also 
wanted to see how many reservations it would 
take to significantly interfere with our 
scheduling goals.  Lastly, we wanted to know if 
our scheduling goals could be maintained by 
using policies.   
 
To accomplish these objectives, we planned 
three runs: (1) a baseline run using only the real 
production workload, (2) a run including real 
reservation requests and (3) a run with policies 
enabled to control the number of reservations. 
To really show the effect of reservation in our 
production job mix, we used one year worth of 
reservations on our system over a month period 
of time.  
 
Additionally we use two different job mix, one 
from March 2006 and one from March 2007. 
The reservation data however, are the same 
between the two sets of runs. 
 
For the simulation, we used DataStar’s real 
production workload from the two months, 
based on job submission time. 
 
In the first week of simulation time, there were 
767 jobs in the queue. The job mix included 
jobs from one to 256 nodes (full machine) with 
a duration of one to 18 hours (the maximum 
time that can be requested).  Six jobs requested 
the full machine and 29 requested 128 nodes or 
more.  We injected 15 reservations during each 
week of simulation time,, all actually requested 
through TeraGrid, with job sizes from eight to 
128 with a duration of four to 18 hours.  
 
In 2006, TeraGrid users requested reservations 
for 60 co-scheduled jobs. We used these real-
life requests as the basis for our reservations for 
both simulations. Compressing a year's worth 
of actual reservations into a month of simulated 
job scheduling should overstate the impact of 
real reservations on the system. 
 

Graphs 1 and 2 show the number of jobs 
requested at each node count for 2006 and 
2007.   The colors are not significant, only to 
help identify the jobs.  Graph 3 shows the 
reservations requested for 2006, which was 
used for both the 2006 and 2007 simulations. 
 

 
Graph 1.  Job Histogram for March 2006. 
 

 
Graph 2.  Job Histogram for March 2007. 
 

 
Graph 3.  Reservation Histogram for 2006. 



 
6. Results 
 

 
Graph 4.  Average Expansion Factor for All 
Jobs 
 
 

 
Graph 5.  Average Wait Time for All Jobs 
 
From the job data from March 2006, 722 jobs 
completed during the simulation time.  The 
three scenarios simulated were: baseline, 
baseline+reservations, 
baseline+reservations+policy restrictions. For 
this particular workload, the baseline queue 
wait time was 6.03 hours, and expansion factor 
was 2.05.  When reservations were added to the 
schedule, there was a drastic increase in queue 
wait time to 74.0 hours.  Expansion factor also 
increased to 7.35. 
 
This would be expected, since jobs were 
scheduled around the obstructing reservations.  
Some jobs would probably be delayed, 
resulting in longer queue wait times.  When 
restricting policies were added, to throttle 

requested reservations, queue wait time 
dropped to 4.44 hours and expansion factor 
went to 1.70.  This was unexpected, since these 
metrics are even better than in the baseline, no-
reservations scenario.  A plausible explanation 
for this effect is that wide reservations (those 
spanning much of the machine) create backfill 
or afterfill windows that allow large jobs to run 
more quickly than without reservations in 
place.  The reservations would have the effect 
of preventing small, long jobs from blocking 
large jobs. In fact, when looking at the 
simulation data in detail, it became clear that 
two injected reservations, one for 130 nodes 
and one for 128 nodes, created a space in the 
schedule for a 256-node job to run earlier than 
it would have in the absence of reservations.  
This case shows that some combinations of 
workload and reservations may result in 
increased efficiency. 
 
For the March 2007, 706-job workload, a 
different pattern occurred. The baseline queue 
time was 13.7 hours, with expansion factor at 
2.53.  When reservations were added, queue 
time went to 107 hours, and expansion factor 
went to 9.35.  With throttling policies, queue 
wait time recovered to 44.0 hours, and 
expansion factor went to 5.21.  With this 
workload, reservations had a large negative 
impact on scheduling metrics.  The throttling 
policies were able to reduce this effect, but 
scheduling was still less efficient than the 
baseline case. 
 
One factor to consider is that the simulation 
does not enforce max jobs per user queued 
policies, so there can be a hundred one-node, 30 
minute jobs waiting to run, giving a very poor 
expansion factor.  On DataStar, we limit the 
users to six jobs queued at a time, so you 
wouldn't see the poor expansion factor due to 
queue stuffing.  We would need to examine the 
individual job expansion factors to know if 
that's what's going on in the simulation. 

 



 
Graph 6.  March 2006 Utilization. 
 

Graph 7.  March 2007 Utilization.
  
Utilization percentage snapshots were taken 
throughout the simulations.  When reservations 
are counted as utilized parts of the machine, 
overall utilization remains high.  There are 

some periods in which reservations or 
reservations+policy results in lower utilization 
than baseline, but these are not the rule. 
 



Graph 8.  March 2006 Queue Length. 

Graph 9.  March 2007 Queue Length.  
 
To address the effect of a long job queue on 
user job submission behavior [13], we 
examined the length of the job queue as the 
simulation progressed. Graphs of the queue 
depth throughout the simulation suggest that in 
the baseline and baseline+reservations+policy 
scenarios the queue depth stayed within a 
realistic regime: 90 waiting jobs for 2006, 150 
waiting jobs for 2007.  The baseline + 
reservations queue depth rises much higher than 
the other two scenarios.  Users might be 
expected to stop submitting jobs before the 
queue depth reaches that point.  The 
baseline+reservation queue depth may 
represent a worst-case scenario for expansion 
factor and queue wait time, in which users 
continue to blindly submit jobs regardless of 
queue depth. 

 
Graph 10.  2006 Expansion factor (by job 
size) . 

 
Graph 11.  2007 Expansion factor (by job 
size).  



We wanted to breakdown the components of 
our expansion factor and wait time changes by 
job size.  The small jobs are one-node jobs, the 
medium jobs are 2-64 nodes and the large are 
65-256. This would allow us to determine 
whether different size classes of jobs were 
disproportionately affected by injection of 
reservations. In 2006, medium-sized jobs 
suffered more as measured by an expansion 
factor increase, especially in the 
baseline+reservations case.  In 2007, the 
expansion factors of large jobs increased over 
the 2006 simulation.  In this simulation, the 
overall expansion factor with policy did not 
recover to the baseline case. 
 

 
Graph 12.  Average Wait Time for 2006 
Based on Job Size. 
 

 
Graph 13.  Average Wait Time for 2007 
based on Job Size.  
 
In 2006, medium-sized jobs suffered more as 
measured by an increase in average wait time, 
especially in the baseline+reservations case.  In 
2007, the average expansion factor and the 
average wait time for both medium and large 
jobs suffered in the baseline+reservations 
scenario. Even after applying our throttling 
policy, medium and large jobs did not recover 
expansion factor and queue wait time to the 

baseline case. In general, medium jobs can be 
expected to suffer more than small-short or 
large jobs. In a single-queue, priority-based, 
reservations scheduling system, medium jobs 
may be too small to be granted top priority in 
the queue and may be too large to fit in natural 
backfill windows. We see here that the effect 
on large jobs is dependent on the workload, 
since the March 2006 and March 2007 
workloads displayed a different effect of 
reservations on large jobs.  
 
7.  Future Work 
 
In the next few months we will develop 
hypotheses on the effects of reservations as a 
function of reservation size, duration, and 
advance notice. From these hypotheses we will 
fashion several postulated policies that attempt 
to provide the advantages of advanced 
reservations while reducing the deleterious 
effects on utilization, queue waits, and 
expansion factors to a minimum. Indeed, it is 
possible, that, dependent on the details of the 
job mix, it may be possible to improve some of 
these in many situations with an appropriate 
policy. 
  
8.  Conclusions  
 
By running two different production job 
workloads (from DataStar, March 2006 and 
March 2007) through three different reservation 
scheduling scenarios (baseline, 
baseline+reservations, 
baseline+reservations+policy), we show that 
injecting reservations can have a large negative 
impact on   average expansion factor and 
average queue wait time.  This effect can be 
moderated by policies that throttle reservation 
injection.  System utilization was not 
necessarily worse when reservations were 
added to the system.  The utilization appears to 
be very dependent on job mix.  One concern 
with simulating the workload was the effect of 
extremely deep job queues on user psychology.  
In the case of baseline+reservations, queue 
depths could run to almost 400 jobs in the 
queue.  Would users continue to submit jobs 



under that circumstance?  On the other hand, 
with throttling policies in place, queue depth 
was comparable to the baseline scenario. 
 
One of the most interesting aspects of this work 
is that the introduction of advance reservations 
can, under some circumstances, be 
advantageous to the existing job mix. The 
effects of the reservations come from three 
areas: its “width”, or number of nodes, the 
impact of its “leading edge”, and that of its 
“trailing edge”. For simplicity, we can consider 
the effects of machine-wide reservation, where 
all nodes are requested (a not unusual scenario, 
since most reservations tend to be significantly 
larger than normal jobs). The machine must be 
drained for the reservation to begin, which 
naturally tends to produce “holes” in the job 
mix, reducing utilization. However, when the 
reservation ends, the job scheduler has had an 
increased time to try to put an efficient set of 
jobs together to fully utilize the empty machine 
at the end of the reservation. Indeed, users will 

have been continually submitting jobs for the 
duration of the reservation, increasing the job 
pool available to the scheduler. This can lead to 
increased utilization immediately following the 
reservation. 
 
It is clear that while the deleterious effects of 
the reservations “leading edge” are independent 
of the duration of the reservations, the 
advantageous effects of the “trailing edge” 
increase with the duration of the reservation. 
Thus, the effects of allowing reservations can 
be moved towards the positive by policies that 
have a minimum duration requirement. We will 
investigate this in future work. The “width” of 
the reservation can have similar effects, but 
these are dependent on the job mix on the 
particular machine being used. Obviously the 
history of the job mix is available to the local 
scheduler: it may be possible to feed back that 
information into advance reservation policies to 
again reduce the negative impact. 
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