Probabilistic Backfilling

Avi Nissimov and Dror G. Feitelson
Department of Computer Science

The Hebrew University of Jerusalem

Abstract

Backfilling is a scheduling optimization that requires
information about job runtimes to be known. Such
information can come from either of two sources: esti-
mates provided by users when the jobs are submitted,
or predictions made by the system based on histor-
ical data regarding previous executions of jobs. In
both cases, each job is assigned a precise prediction
of how long it will run. We suggest that instead the
whole distribution of the historical data be used. As
a result, the whole backfilling framework shifts from
a concrete plan for the future schedule to a proba-
bilistic plan where jobs are backfilled based on the
probability that they will terminate in time.

1 Introduction

Scheduling parallel jobs for execution is similar to bin
packing: each job needs a certain number of proces-
sors for a certain time, and the scheduler has to pack
these jobs together so that most of the processors will
be utilized most of the time. To perform such pack-
ing effectively, the scheduler needs to know how many
nodes each job needs, and for how long. The number
of processors needed is typically specified by the user
when the job is submitted. The main question is how
to estimate how long each job will run.

The simplest solution to this question is to require
the user to provide a runtime estimate [6]. However,
logs of jobs that have run on large scale parallel su-
percomputers reveal that user runtime estimates are
very inaccurate [7]. The reason for this is that sys-
tems typically kill jobs that exceed their estimate,
giving users a strong incentive to over-estimate the
runtimes of their jobs.

The alternative to wuser-provided estimates is
system-generated predictions. Practically all systems
collect information about jobs that have run in the
past. This information can then be mined to gener-

ate predictions about the runtimes of newly submit-
ted jobs. Algorithms for generating such predictions
are described in Section 2.

Prediction algorithms typically work in two steps.
Given a newly submitted job, they first scan the avail-
able historical data and look for “similar” jobs that
have executed in the past. For example, similar jobs
may be defined as all the jobs that were executed on
behalf of the same user on the same number of proces-
sors. They then apply some function to the runtimes
of this set of jobs. For example, the function can be
to compute the distribution of runtimes, and extract
the 90th percentile. This value is then used as the
runtime prediction for the new job.

Our starting point is to observe that this
prediction-generation process loses information: we
have information about the runtimes of many previ-
ous similar jobs, but we reduce this into the single
number the prediction. Why not use all the avail-
able information instead? This means that schedul-
ing decisions will be made based on assumed distri-
butions of runtimes, rather than based on predictions
of specific runtimes.

The advantage of making a specific prediction is
that the scheduling becomes deterministic: when we
want to know whether a job can run or not, we as-
sume it will run for the predicted time, and then check
whether we have enough processors that are free for
this duration. But if we use a distribution, we are
reduced to probabilistic arguments. For example, we
may find that there is an 87% chance that the pro-
cessors will be free for the required time. But this is
actually a more accurate representation of the situa-
tion at hand, so it has the potential to lead to better
performance.

We apply the above ideas in the context of backfill-
ing schedulers. Backfilling is an optimization usually
applied to FCFS scheduling that allows small and
short jobs to run ahead of their time provided they
fit into holes that were left in the schedule. In our new

approach, this fit becomes a probabilistic prediction;
jobs will be backfilled provided there is a high prob-
ability that they will fit. In other words, we define
a threshold 7 and perform the backfilling provided
that the probability that the job will not terminate
in time is less than 7.

In keeping with the spirit of backfilling, the mean-
ing of “will not terminate in time” is that the back-
filled job will delay the first queued job. The algo-
rithm for calculating this is described in detail in Sec-
tion 4. The results of simulations that assess how well
this performs are then shown in Section 5.

2 Algorithms that Use
Predictions

There are many different algorithms that require pre-
dictions or user estimates of job runtimes, including
EASY backfilling and shortest-job-first. In EASY
backfilling, jobs are backfilled provided they do not
delay the first queued job [6]. One of the conditions
used to verify this is that the backfilled job will ter-
minate before the time when enough processors for
the first queued job will become available. This re-
quires the runtimes of currently executing jobs to be
known (in order to find out when they will free their
processors), and the runtime of the potential backfill
job (to find out if it will terminate in time). Shortest
job first requires runtime knowledge in order to sort
the jobs.

There has been some debate in the literature on
whether accurate runtime predictions are actually im-
portant. Somewhat surprisingly, the first papers on
this issue indicated that inaccurate predictions lead
to improved performance [3, 13]. However, more re-
cent research has shown that accurate estimates are
indeed beneficial [1, 12, 11], thus providing added mo-
tivation for the quest for more accurate predictions.

Several algorithms have been suggested to enable
runtime predictions based on historical data. Gib-
bons first partitions the historical data into classes
based on the user and the executable. Importantly,
executions on different numbers of processors are in-
cluded in the same class. He then finds a quadratic
least-squares fit of the runtime as a function of the
number of processors used. This is used to compute
a prediction for the requested number of processors
[5]. Smith et al. also divide jobs into classes, but
use various job attributes in addition to the user and
executable. They then use the mean runtime of all

previous executions in the class as the prediction [10].
Mu’alem and Feitelson suggest using the mean run-
time in the class plus 1.5 standard deviations, to re-
duce the danger of under-prediction [7]. Tsafrir et
al. use the simplest scheme of all: they just use the
average runtime of the last two terminated job that
have been submitted by the same user [11].

The problem with using runtime predictions other
than user estimates with backfilling is the fact that
the jobs may be under-predicted. Killing the jobs in
this situation is highly undesirable, since the users
have neither tools to avoid it nor indication that this
is going to happen. Therefore, the only reasonable
way to solve under-prediction is to violate the reser-
vation for the first job in the queue and delay it until
the processors become available [11]. But there is no
promise such delays will ever stop, unless we forbid
future backfilling, because the backfilled jobs may in
their turn also be under-predicted.

The same question arises when the predictions are
initially set too large, like when using doubling (or
tripling, quadrupling and so on) [11]. If the system
were a single-user system, then this strategy would
probably be good it pushes forward the jobs with
less requirements (on average), so the average waiting
time is expected to decrease. However, since we are
dealing with multi-user systems, such an approach is
insufficient, and may appear extremely unfair.

In this work, however, we use EASY-backfilling
as the base algorithm. According to [11], when the
predictions are correct, the overall performance of
EASY-backfilling usually improves.

3 Predicting Job Runtime
Distributions

Both backfilling-based schedulers and SJF use single-
value predictions due to their simplicity. But in fact
predicting a job’s runtime cannot usually be done de-
terministically. A job’s runtime depends on many fac-
tors, that include not only system internal conditions
such as the network load, but also terminations due to
errors and user cancellations. These last factors are
external to the system, and they greatly complicate
runtime prediction. Errors usually show incorrect be-
havior pretty soon after a job starts, and many faults
may be discovered long before a job would have ter-
minated without the error. Users also know this, and
they tend to test partial output soundness soon after
their jobs start. Therefore, in cases of errors the job

is usually terminated or canceled almost immediately.
For instance, 2613 out of 5275 (-50%) canceled jobs
in the SDSC-SP2 trace whose user estimates were set
for at least 200 minutes were canceled within 20 min-
utes after their start times (this and other traces we
use come from the Parallel Workloads Archive [9]; see
Table 1). Modeling these scenarios is impossible with
single-value predictions: a single value can give either
a mean or a quantile of the job’s runtime distribution,
but cannot model the whole distribution.

Another problem with single-value predictions is
the fact that they should contain all the information
upon which scheduling decisions are made. Differ-
ent deviations from the real runtime cause different
and possibly incomparable damage. This leads to
prediction policies that are scheduler-dependent. An
extreme example is backfilling, which kills jobs whose
runtimes are longer than the user estimates. Thus,
over-predictions are much less damaging than under-
predictions. Therefore the user estimates tend to be
biased upwards, as users tend to give high estimates
fearing their jobs will be killed.

Predicting the distribution of a job’s runtime is
based on the concept of locality of sampling [2]. This
makes a distinction between the global distribution
of runtimes, when looking at a long time span, and
the local distribution of runtimes that is observed at
a certain instant. The idea is that runtimes like
other workload attributes exhibit locality, so the
local distribution is much more predictable than the
global one.

To utilize this observation, we divide time into
short slices, and characterize the runtime distribution
in each one using binning. In particular, the model
groups jobs arriving within each 15-minute slice of
time together. The runtime distribution was modeled
for each slice individually. The modeling is done by
defining a set of discrete bins, and counting how many
job runtimes fall in each bin. The bin sizes used were
logarithmic, with ranges that grow by a factor of 1.8;
this gives a better resolution for short jobs, which are
more numerous. The values 15 minutes and 1.8 were
selected empirically so as to maximize the observed
locality in several different workload traces [8§].

To reduce complexity it is desirable to track only a
limited number of distinct distributions. The tradeoff
here is that using more distributions increases accu-
racy, but also increases the complexity of the model-
ing. Therefore we want to find the number that pro-
vides good accuracy at an acceptable cost. In most
cases it turned out that 16 distinct distributions pro-

vide reasonable results.

Coming up with representative distributions in-
volves a learning process. Once enough data is avail-
able (we use one week’s worth of activity) a set of 16
representative distributions is learned using an itera-
tive process. The learnt distributions are then used
in the HMM model described below as predictions for
the different jobs. Typically only 2-3 iterations are
needed to converge to an acceptable set; using more
typically results in overfitting. The criterion for con-
vergence is that the distance from the previous model,
multiplied by the square root of the number of sam-
ples (all the jobs observed so far) is smaller than a
given threshold. Later, as more data is accumulated,
this will grow again beyond the threshold, and the
learning process is repeated using all the additional
data accumulated so far. Thus the quality of the
model is expected to inprove the longer the system is
in use.

The final stage of the modeling is to create a Hid-
den Markov Model (HMM) to describe transitions
and see how things change. The model has 16 states,
corresponding to the different runtime distributions.
States may have self-loops to account for situations
where the local distribution stays the same for more
than 15 minutes. Checking the observed distributions
of how long each state is in effect indeed revealed that
in the vast majority of cases this is geometrically dis-
tributed.

The distributions and model are learned on-line as
more jobs are submitted and terminate. Thus when
running the algorithm on a job trace, initially it is
impossible to provide good predictions. when enough
information accumulates, the model tracks the state
that the system is in, and uses the distribution that
characterizes this state as the prediction for newly
submitted jobs.

4 Using Distributions in the
Scheduling Algorithm

Given historical data regarding previous job execu-
tions, one can fit a model of the distribution of run-
times or just use the empirical distribution. This sec-
tion discusses the ways how this information can be
practically used by a scheduler. In particular, we base
our work on the EASY backfilling scheme.

Given that runtimes are continuous, keeping his-
torical data about multiple jobs can burden the sys-
tem and increase the complexity of the scheduling

algorithm. For that reason we will assume the distri-
bution is discretized by dividing the runtimes into N
bins. The sizes of the bins will be logarithmic: there
will be many bins for short runtimes, and the top bins
each represent a large range of runtimes.

EASY backfilling maintains a queue of waiting jobs
(ones that have been submitted but have not yet
started) ordered by their submission times. The steps
of the EASY backfilling scheduling procedure, which
is executed each time a job arrives or terminates, are
as follows:

1. As long as there are enough idle processors to
start the first job in the wait queue, remove this
job from the queue and start it.

2. Given the first job in the queue that cannot start
because of insufficient idle processors, find when
the required number will become free and make
the reservation for this job.

3. Continue scanning the queue, and start (backfill)
jobs if they don’t violate this reservation.

However, the idea of the algorithm can be expressed
more concisely. In fact, Step 2 is more of an im-
plementation issue than part of the core of the algo-
rithm. Thus steps 2 and 3 can be united as follows:
“Continue scanning the queue, and start jobs if this
doesn’t delay the start time of the first job in the
queue”. This is independent of how the condition of
not delaying the first job is verified. And we can also
relax the condition, and replace it with a condition
that it will not be delayed with a high probability.

In EASY backfilling each job is assigned a single
value for its predicted runtime, and this prediction
is used as the exact runtime in a very deterministic
way. But if we don’t have a single-value prediction,
but rather a distribution, it is not possible to make
such a decision in a deterministic way. Instead, there
are many cases with different probabilities that may
contradict each other. Therefore we need to summa-
rize all these possibilities. To do so, we define a single
parameter that is the confidence probability 7. Our
new condition for backfilling will be that the probabil-
ity that the backfilling postpones the start of the first
job in the queue is less than T.

Let us now formalize this idea. For simplicity, it is
assumed that the job runtimes are independent; thus,
for each two jobs with runtimes Ry, Rg, we have that
Pr(R1, R2) = Pr(Ry) Pr(R2) (as usual, here and ev-
erywhere, Pr(R;) denotes the probability of random
variable R; to have its value). In particular, this
means that the event of the availability of processors

at different times due to terminations of the currently
running jobs and the distribution of the backfilled
job’s runtime are independent.

The following notation will be useful. Suppose the
current time is tyg. Assuming that the job we are
considering is indeed backfilled, we denote its (un-
known) true termination time by ¢.. For each time ¢,
to <t < oo, we denote by ¢(t) the number of proces-
sors that are released by the currently running jobs
before and including time ¢. Also, let ¢, be the num-
ber of processors that must be released to start the
first job in the queue, and ¢ the number needed to
start both the first job and the backfill job together.
Armed with these notations, we can say that the al-
gorithm should backfill iff

Pr(3t € (to,te) 1 cqg <c(t) <c) < T

In words: the probability that there exists some time
t before the termination of the backfilled job when
the number of released processor’s is enough to start
the first job in the queue but not enough to run both
jobs so the backfilling postpones the start of the
first job in the queue is smaller than 7.

However, the termination time %, is not known. In-
stead, we have a distribution. Integrating over all the
possible termination times of the backfilled job we
then receive the condition

/ Pr(te, 3t € (to,te) 1 cg < c(t) < c)dte < T.
to

Since by assumption of job runtimes independence ¢,
and c¢(t) are independent, this probability is

/ Pr(te) Pr(3t € (to,te) 1 cg < c(t) < c)dte < 7.

to

The first factor in the integrand is modeled by the
predictor — it is exactly the predicted distribution of
the job’s runtime. As noted above these probabilities
are typically modeled discretely, by dividing the run-
time into bins and predicting the probability to fall
into each bin. The second factor is much harder to
calculate.

First of all, in order to calculate the second factor,
we must calculate the probability Pr(c(t) > ¢) for
any given time ¢ and any given requirement c. The
probability of processor availability given termination
probabilities at time ¢ of the currently running jobs is
calculated using Dynamic Programming. The matrix
cell M,[n][c] denotes the probability that at time ¢,
the jobs 1..n have released at least ¢ processors. This

Algorithm 1 Runtime bin probability recalculation

1 double[] recalculate(Job job)
2 // old model

3 double o0ld_p[N] = job.model;

4 // new distribution model

5 double new_p[N];

6 double upperBound = job.userEstimate;

7 double lowerBound = currentTime-job.startTime;

8 for each runtime bin j do {

9 double newBinStart =

10 max{bin[j].start, min{lowerBound, bin[j].end}};
11 double newBinEnd =

12 min{bin[j].end, max{upperBound, bin[j].start}};
13 new_p[j] = old_p[jl*

14 (log(newBinEnd)-log(newBinStart)) /

15 (log(bin[j].end)-log(bin[j].start));

16 b

17 normalize(new_p);

18 return new_p;

19 }

is calculated recursively as

M[n]le] = My[n —1][c] +
(Mi[n — 1][c — ¢n] — My[n — 1][c]) - Pi[n].

The first term denotes the case when enough pro-
cessors are already idle without termination of job
number n. The second term is the probability that
only the termination of job n freed the required pro-
cessors. This is the product of two factors: that jobs
1.n — 1 freed at least ¢ — ¢, but not ¢ processors,
and that the last job terminated in time (¢, is num-
ber of processor used by job number n, and P;[n]
is the probability that job number n terminates not
later than ¢). The initialization of the dynamic pro-
graming sets the obvious values: M,;[x][0] = 1 (we
are sure that the jobs have released at least 0 pro-
cessors), and M[0][x] = O (zero jobs do not release
any number processors). In the algorithm implemen-
tation, these values may be calculated on-the-fly; for
instance, if ¢ < ¢, (the number of required proces-
sors is smaller than the number of processors used
by job number n), then M;[n — 1][c — ¢,] doesn’t ex-
ist in the real matrix, because the index is negative,
but can easily be substituted by 1, so that M;[n][c] =
Min = 1][e] + (1 = Mi[n — 1][c]) - P[n]. If n is the
number of running jobs, then Pr(c(t) > ¢) = M[n][c].

The above requires calculating the probabilities of
running job terminations before or at the time ¢ (de-
noted above as P;[]). Each time the scheduler is

called, a larger part of the distributions becomes irrel-
evant, because the jobs have already run longer than
the times represented by the lower bins. Therefore
the distributions needs to be recalculated. Because
our data is discretized, the job runtime probabilities
are estimated only at the ends of the runtime bins.
The upper and lower bounds of job runtimes are the
user estimate (since the job is killed after it; this
is used even before the job starts) and the current
runtime of the job (currentTime-job.startTime).
Log-Uniform intra-bin interpolation is used. Algo-
rithm 1 presents the recalculation procedure for the
runtime bin probabilities. Line 3 receives the job
distribution model as proposed by the predictor (re-
minder: N is the number of the runtime bins, and
j = 1..N is the index of a runtime bin). Lines 9-
12 ensure that the new runtime bin boundaries sat-
isfy the old bin boundaries and global boundaries. If
the runtime bin doesn’t intersect the global bound-
aries then newBinStart==newBinEnd and therefore
new_p[j]=0. Lines 13-15 recalculate the probabil-
ity measure remainders after log-uniform interpola-
tion.

After all the events representing the possible ter-
mination of a job are inserted into a list and sorted
by the time, one can easily calculate the vector of
termination probabilities at time t.

Let A(t) be the event that ¢ is the real start time of
Q[O] (the first job in the queue) without backfilling,

enough processors to run
QI0] even at time t-1
c(t-1)>=c_q

enough processors
to run Q[O] at time t
c(t)y>=c_q

\ :

enough processors to run both
QI0] and the backfill job at time t
c(t)>=c

want to compute
probability that can
run Q[0] but not both
at time t but not before

intersection hard to compute
::: SO compute an approximation
c(t-1)>=c

Figure 1: Explanation of the Pr(A(t)) formula.

and that backfilling of the job delays the first job
beyond this time. This means that

A(t) = (t € (to, te))A(Vs < t,c(s) < cq)N(cqg < c(t) <)

In words, t is before the end time of backfilled job and
t is the first time when the first job in the queue can
start but only if this job isn’t backfilled. Therefore,
according to our probabilistic backfilling condition,
the backfilling should happen iff

Pr(3t € (to,te) : A(t)) < 7

But the events are disjoint, therefore the total prob-
ability is the integral of probabilities:

te
/ Pr(A(t)dt < 7
to
The problem is to calculate Pr(A(t)).
Suppose t € (to,t.). Let us change the definition
of ¢ to be discrete time (in any units). Due to the
monotonicity of ¢(t), Pr(A(t)) = Pr(c(t — 1) < ¢g A
g < ct) <c). Ife(t) > core(t—1) > ¢, then
c(t) > ¢q4, since ¢ > ¢, and c¢(t) is monotonous (see
Venn diagram in Figure 1). Therefore,

(1)

Pr(A(t)) = Pr(e(t) > ¢q) = Pr(e(t —1) > ¢q Ve(t) > ¢)
= M,[n][cq] — Pr(c(t — 1) > ¢q V c(t) > ¢).

But in the second term, the two events in the dis-
junction don’t imply each other, so

Pr(c(t—1) > cq Ve(t) > ¢) =

= Pr(c(t — 1) > ¢q) + Pr(c(t) > ¢) —
Pr(c(t — 1) > ¢g Ac(t) > ¢)

= M;—1[n][cq] + Mi[n][c] —

Pr(c(t —1) > ¢g A c(t) >)

The last term is pretty hard to calculate. However,
it has a lower bound of M;_1[n][c] — the probability
that before the last event there were enough proces-
sors to run both jobs (which implies ¢(t —1) > ¢, and
¢(t) > ¢). Using all the above considerations leads to
the bound

Pr(A(t)) = (M[n][cq] = My[n][]) — @)
(Mi—1[n]leq] = Me—1[n][])
The integral over ¢ of Pr(A(t)) in Equation (1)
turns into a sum when time is discretized. Replac-
ing Pr(A(t)) with the lower bounds from Equation
(2) leads to a telescoping series. Since the first item
equals 0 (because initially the number of proces-
sors is less than ¢;), the total sum is My, _1[n]cq] —
M;,_1[n][c]. But although each of M;[n][cq], My[n][c]
is monotonically growing as a function of ¢, their dif-
ference is not monotonous; while all Pr(A(t)) > 0,
and their sum is monotonous. This means we have a
tighter bound of

> Pr(A(1)

te(to,te)

> tergi)tic){Mt [n][cq) — Mi[n][c]}

To summarize, the version of EASY backfilling that
uses runtime distributions rather than point predic-
tions will backfill a job if the following condition holds

ZPr(te)

That is, if the probability that such a time exists is
less than the threshold. Algorithm 2 presents the
simplified pseudo-code of this backfilling scheduler.
Some notes on the implementation: The result vari-
able is monotonously growing, so once it is bigger
than the threshold the total result is false for sure, so
no further calculations are run. The pMax variable is

e AMifn]leq] = Milnlle]} < 7

Algorithm 2 The distribution-based condition for backfilling.

bool shouldBackfill(Job job) {
List events =
int n = <# of running jobs>
double P[n];
// max(t){M[n] [c]-M[n][cO]}
double pMax = 0O;
double result = 0;

<list of job terminations sorted by time>

int c0 = <# of processors needed to run Q[0]>

int ¢ =
for each j=runtime bin do {

<# of processors needed to run both jobs>

for each e in events before bin[j].end do {

P[e.job] += e.probability;

<calculate M using Dynamic Programming, given P>

pMax =
}
result += job.model[j]*pMax;
}
return result < THRESHOLD;

max{pMax, M[n][c0]-M[n][cl};

also monotonously growing. This means that if the
remaining runtime bin probability multiplied with
the current pMax together with the current result
are bigger than the threshold, it is also enough to stop
calculating and return false. These improvements are
very important, since the scheduler runs on-line. Our
simulations (reported in the next section) indicate
that indeed the overhead of the scheduler is very low:
simulating a full year of activity, with order of 100,000
calls to the scheduler, takes about half an hour.

If the predictor returns no runtime prediction
(which might happen if no historical data is avail-
able), then the single probability event is inserted,
which is the user estimate with probability of 1. If
this is the case for all the running jobs, then the al-
gorithm works exactly like the original EASY algo-
rithm: all the termination events come from the run-
ning jobs’ terminations by user estimates, and there-
fore the algorithm works in a very deterministic way.

5 Results

The probabilistic backfilling scheme described above
was evaluated by comparing it with EASY backfilling,
using simulations of several workloads available from
the Parallel Workloads archive [9] (Table 1). In these
workload logs, jobs that are canceled before they start
have 0 runtime and also 0 processors. These jobs were
removed from the simulation. If a job requires more

avg avg
log duration jobs wait run
CTC SP2 6/96-5/97 77,222 425.7 188.0
KTH SP2 9/96-8/97 28,489 334.6 161.8
SDSC SP2 4/98-4/00 59,725 429.6 123.6
SDSC Blue 4/00 1/03 243,314 720.2 95.5

Table 1: Workloads used in the analysis and simula-
tions. Average wait and run times are in minutes.

processors than the machine has, the requirement is
aligned to the machine size.

The runtime distributions were modeled using a
Hidden-Markov Model with 16 states, where each
state corresponds to a runtime distribution. The
model grouped jobs arriving within a 15-minute slice
of time together. The runtime distribution was mod-
eled using logarithmic bins, with ranges that grow
by a factor of 1.8. The details of the modeling are
presented in detail in [8]. The threshold used for the
probabilistic backfilling was 7 = 0.05.

In order to avoid the influence of the runtime dif-
ferences between the traces we used waiting time for
the performance metric. The system is a multi-user
system, therefore fairness is also an issue. Therefore,
the Li-type metrics that take the average or sum of
all the jobs’ metric values are not enough a job
that suffers from bad service is not compensated by
the fact that in average the jobs wait little in the

SDSC SP2
1 //
0.75 /7%
i
L
=) o
8 0.5 R
0.25
EASY ——
EASY+HMM
0 1 1 1
1s 10s 1m 10m 1h 5h 1d 3d
Wait Time
SDSC BLUE
! T
7 L
0.75 // $
0.5
0.25
EASY ——
EASY+HMM
0 1 1 1
1s 10s 1m 10m 1h 5h 1d 3d

Wait Time

CTC SP2

1 T T
225
0.75 R
[}
—
!
0.5
0.25
EASY ——
EASY+HMM
0 1 1
1s 10s 1m 10m 1h 5h 1d 3d
Wait Time
KTH SP2

1 //',ﬁ

0.75 7

-

3% |

0.5
0.25
EASY ——
EASY+HMM
0 1 1 1

10m 1h 5h 1d 3d
Wait Time

1s 10s 1m

Figure 2: CDF of waiting time for Probabilistic EASY vs. base EASY. The arrows show the jobs that benefit

from the probabilistic approach.

queue. In order to present the complete picture of
what is going on for all the jobs the full CDFs of the
waiting times are presented.

Figure 2 compares the conventional EASY sched-
uler with the probability-based scheduler. The X-axis
is the waiting times of the jobs in a logarithmic scale,
and the Y-axis its CDF. The CDF doesn’t start from
0, since there a large fraction of the jobs don’t wait
in the queue at all: around 50% of the jobs for SDSC
Blue and KTH, slightly less for SDSC SP2, and more
than 75% of the jobs for CTC.

As the results are shown in the form of a CDF,
a curve that is lower and more to the right implies
higher wait times and thus worse performance. Con-
versely, a curve that is higher and to the left indicates
lower wait times and better performance. The arrows
represent the fraction of jobs for which waiting time
improved due to the probabilistic approach this
is the interval of the CDFs where the results for the
probabilistic scheme (dashed line) are to the left of
and above the EASY results (solid line).

The conclusions of this chart is that usually most
of the jobs that had to wait at all are better off using
the probabilistic approach. Note that the X-axis is
logarithmic, and actually covers a very large range —
it changes by a factor of 2.5 x 108. Therefore, when

Trace name EASY Probabilistic

CTC SP2 21.3 min 18.1 min -15.2%
SDSC SP2 364 min 373 min +2.6%
SDSC Blue 131 min 105 min -19.5%
KTH SP2 114 min 113 min -0.6%
Total -8.7%

Table 2: Arithmetic mean of waiting times.

Trace name EASY Probabilistic

CTC SP2 28.2 sec 25.3sec -10.1%
SDSC SP2 639 sec 635 sec -0.7%
SDSC Blue 203 sec 135sec -33.6%
KTH SP2 181 sec 147 sec -18.9%
Total -16.7%

Table 3: Geometric mean of waiting times.

the line moves left even for a little, this may represent
an improvement factor of 2. Also, it looks that if
the job started waiting, it usually waits for at least a
minute. Another finding is that there is a place in the
chart where the line is almost straight. This means
that the waiting time distribution at some intervals
is close to a log-uniform distribution.

Tables 2 and 3 summarize the improvements in the
wait time metric in the form of the arithmetic and
geometric means. The formula for calculating the
geometric mean is exp([f(w)In max{w, wmin }dw),
where w is the job’s waiting time, f(w) is its PDF and
Win 1S the commonly used threshold of 10 seconds,
see for instance [4]. Therefore, the improvement in
the geometric mean metric value is exactly the area
between the lines of the chart that are to the right of
W = Wmin-

6 Conclusions

Scheduling algorithms such as backfilling and SJF re-
quire job runtimes to be known, or at least predicted.
Previous work has always assumed that such predic-
tions have to be point estimates. In contradistinction,
we investigate the options of predicting the distribu-
tion from which the actual runtime will be drawn.
This is then integrated into the EASY backfilling al-
gorithm, and shown to reduce the expected waiting
time and improve the wait-time distribution.

Once a distribution-based probabilistic backfilling
algorithm is in place, several courses of additional re-
search suggest themselves. One is a comparison with
the performance obtained by other (single value) pre-
diction schemes. Another is a deeper investigation
of alternative ways to predict distributions. In this
work we used a rather complex HMM-based predic-
tion scheme. A possible alternative is to just use the
empirical distribution of jobs by the same user. This
holds promise because it provides more focus on the
local process, as opposed to the HMM which takes
a global view at the possible expense of predictions
for a single job. But an thorough experimental study
is needed to verify and quantify the relative perfor-
mance of the two approaches.

References

[1] S-H. Chiang, A. Arpaci-Dusseau, and M. K. Ver-
non, “The impact of more accurate requested
runtimes on production job scheduling perfor-
mance”. In Job Scheduling Strategies for Parallel
Processing, pp. 103-127, Springer Verlag, 2002.
Lect. Notes Comput. Sci. vol. 2537.

[2] D. G. Feitelson, “Locality of sampling and diver-
sity in parallel system workloads”. In 21st Intl.
Conf. Supercomputing, Jun 2007.

[3] D. G. Feitelson and A. Mu’alem Weil, “Utiliza-
tion and predictability in scheduling the IBM
SP2 with backfilling”. In 12th Intl. Parallel Pro-
cessing Symp., pp. 542 546, Apr 1998.

[4] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn,
K. C. Sevcik, and P. Wong, “Theory and prac-
tice in parallel job scheduling”. In Job Schedul-
ing Strategies for Parallel Processing, pp. 1-34,
Springer Verlag, 1997. Lect. Notes Comput. Sci.
vol. 1291.

[5] R. Gibbons, “A historical application profiler
for use by parallel schedulers”. In Job Schedul-
ing Strategies for Parallel Processing, pp. 58 77,
Springer Verlag, 1997. Lect. Notes Comput. Sci.
vol. 1291.

[6] D. Lifka, “The ANL/IBM SP scheduling sys-
tem”. In Job Scheduling Strategies for Parallel
Processing, pp. 295 303, Springer-Verlag, 1995.
Lect. Notes Comput. Sci. vol. 949.

[7] A. W. Mu’alem and D. G. Feitelson, “Utiliza-
tion, predictability, workloads, and user runtime
estimates in scheduling the IBM SP2 with back-
filling”. IEEE Trans. Parallel & Distributed Syst.
12(6), pp. 529-543, Jun 2001.

[8] A. Nissimov, Locality And Its Usage In Par-
allel Job Runtime Distribution Modeling Using
HMM. Master’s thesis, The Hebrew University,
Oct 2006.

[9] “Parallel workloads archive”. URL
http://www.cs.huji.ac.il/labs/parallel /workload/ .

W. Smith, I. Foster, and V. Taylor, “Predicting
application run times using historical informa-
tion”. In Job Scheduling Strategies for Parallel
Processing, pp. 122-142; Springer Verlag, 1998.
Lect. Notes Comput. Sci. vol. 1459.

D. Tsafrir, Y. Etsion, and D. G. Feitelson, “ Back-
filling using system-generated predictions rather
than user runtime estimates”. IEEE Trans. Par-
allel & Distributed Syst. 18(6), pp. 789 803, Jun
2007.

D. Tsafrir and D. G. Feitelson, “The dynamics
of backfilling: solving the mystery of why in-
creased inaccuracy may help”. In IEEE Intl.
Symp. Workload Characterization, pp. 131 141,
Oct 2006.

D. Zotkin and P. J. Keleher, “.Job-length estima-
tion and performance in backfilling schedulers”.

In 8th Intl. Symp. High Performance Distributed
Comput., Aug 1999.

[10]

[11]

[12]

[13]

