
Probabilisti
 Ba
k�llingAvi Nissimov and Dror G. FeitelsonDepartment of Computer S
ien
eThe Hebrew University of JerusalemAbstra
tBa
k�lling is a s
heduling optimization that requiresinformation about job runtimes to be known. Su
hinformation 
an 
ome from either of two sour
es: esti-mates provided by users when the jobs are submitted,or predi
tions made by the system based on histor-i
al data regarding previous exe
utions of jobs. Inboth 
ases, ea
h job is assigned a pre
ise predi
tionof how long it will run. We suggest that instead thewhole distribution of the histori
al data be used. Asa result, the whole ba
k�lling framework shifts froma 
on
rete plan for the future s
hedule to a proba-bilisti
 plan where jobs are ba
k�lled based on theprobability that they will terminate in time.1 Introdu
tionS
heduling parallel jobs for exe
ution is similar to binpa
king: ea
h job needs a 
ertain number of pro
es-sors for a 
ertain time, and the s
heduler has to pa
kthese jobs together so that most of the pro
essors willbe utilized most of the time. To perform su
h pa
k-ing e�e
tively, the s
heduler needs to know how manynodes ea
h job needs, and for how long. The numberof pro
essors needed is typi
ally spe
i�ed by the userwhen the job is submitted. The main question is howto estimate how long ea
h job will run.The simplest solution to this question is to requirethe user to provide a runtime estimate [6℄. However,logs of jobs that have run on large s
ale parallel su-per
omputers reveal that user runtime estimates arevery ina

urate [7℄. The reason for this is that sys-tems typi
ally kill jobs that ex
eed their estimate,giving users a strong in
entive to over-estimate theruntimes of their jobs.The alternative to user-provided estimates issystem-generated predi
tions. Pra
ti
ally all systems
olle
t information about jobs that have run in thepast. This information 
an then be mined to gener-

ate predi
tions about the runtimes of newly submit-ted jobs. Algorithms for generating su
h predi
tionsare des
ribed in Se
tion 2.Predi
tion algorithms typi
ally work in two steps.Given a newly submitted job, they �rst s
an the avail-able histori
al data and look for �similar� jobs thathave exe
uted in the past. For example, similar jobsmay be de�ned as all the jobs that were exe
uted onbehalf of the same user on the same number of pro
es-sors. They then apply some fun
tion to the runtimesof this set of jobs. For example, the fun
tion 
an beto 
ompute the distribution of runtimes, and extra
tthe 90th per
entile. This value is then used as theruntime predi
tion for the new job.Our starting point is to observe that thispredi
tion-generation pro
ess loses information: wehave information about the runtimes of many previ-ous similar jobs, but we redu
e this into the singlenumber � the predi
tion. Why not use all the avail-able information instead? This means that s
hedul-ing de
isions will be made based on assumed distri-butions of runtimes, rather than based on predi
tionsof spe
i�
 runtimes.The advantage of making a spe
i�
 predi
tion isthat the s
heduling be
omes deterministi
: when wewant to know whether a job 
an run or not, we as-sume it will run for the predi
ted time, and then 
he
kwhether we have enough pro
essors that are free forthis duration. But if we use a distribution, we areredu
ed to probabilisti
 arguments. For example, wemay �nd that there is an 87% 
han
e that the pro-
essors will be free for the required time. But this isa
tually a more a

urate representation of the situa-tion at hand, so it has the potential to lead to betterperforman
e.We apply the above ideas in the 
ontext of ba
k�ll-ing s
hedulers. Ba
k�lling is an optimization usuallyapplied to FCFS s
heduling that allows small andshort jobs to run ahead of their time provided they�t into holes that were left in the s
hedule. In our new1



approa
h, this �t be
omes a probabilisti
 predi
tion;jobs will be ba
k�lled provided there is a high prob-ability that they will �t. In other words, we de�nea threshold τ and perform the ba
k�lling providedthat the probability that the job will not terminatein time is less than τ .In keeping with the spirit of ba
k�lling, the mean-ing of �will not terminate in time� is that the ba
k-�lled job will delay the �rst queued job. The algo-rithm for 
al
ulating this is des
ribed in detail in Se
-tion 4. The results of simulations that assess how wellthis performs are then shown in Se
tion 5.2 Algorithms that UsePredi
tionsThere are many di�erent algorithms that require pre-di
tions or user estimates of job runtimes, in
ludingEASY ba
k�lling and shortest-job-�rst. In EASYba
k�lling, jobs are ba
k�lled provided they do notdelay the �rst queued job [6℄. One of the 
onditionsused to verify this is that the ba
k�lled job will ter-minate before the time when enough pro
essors forthe �rst queued job will be
ome available. This re-quires the runtimes of 
urrently exe
uting jobs to beknown (in order to �nd out when they will free theirpro
essors), and the runtime of the potential ba
k�lljob (to �nd out if it will terminate in time). Shortestjob �rst requires runtime knowledge in order to sortthe jobs.There has been some debate in the literature onwhether a

urate runtime predi
tions are a
tually im-portant. Somewhat surprisingly, the �rst papers onthis issue indi
ated that ina

urate predi
tions leadto improved performan
e [3, 13℄. However, more re-
ent resear
h has shown that a

urate estimates areindeed bene�
ial [1, 12, 11℄, thus providing added mo-tivation for the quest for more a

urate predi
tions.Several algorithms have been suggested to enableruntime predi
tions based on histori
al data. Gib-bons �rst partitions the histori
al data into 
lassesbased on the user and the exe
utable. Importantly,exe
utions on di�erent numbers of pro
essors are in-
luded in the same 
lass. He then �nds a quadrati
least-squares �t of the runtime as a fun
tion of thenumber of pro
essors used. This is used to 
omputea predi
tion for the requested number of pro
essors[5℄. Smith et al. also divide jobs into 
lasses, butuse various job attributes in addition to the user andexe
utable. They then use the mean runtime of all

previous exe
utions in the 
lass as the predi
tion [10℄.Mu'alem and Feitelson suggest using the mean run-time in the 
lass plus 1.5 standard deviations, to re-du
e the danger of under-predi
tion [7℄. Tsafrir etal. use the simplest s
heme of all: they just use theaverage runtime of the last two terminated job thathave been submitted by the same user [11℄.The problem with using runtime predi
tions otherthan user estimates with ba
k�lling is the fa
t thatthe jobs may be under-predi
ted. Killing the jobs inthis situation is highly undesirable, sin
e the usershave neither tools to avoid it nor indi
ation that thisis going to happen. Therefore, the only reasonableway to solve under-predi
tion is to violate the reser-vation for the �rst job in the queue and delay it untilthe pro
essors be
ome available [11℄. But there is nopromise su
h delays will ever stop, unless we forbidfuture ba
k�lling, be
ause the ba
k�lled jobs may intheir turn also be under-predi
ted.The same question arises when the predi
tions areinitially set too large, like when using doubling (ortripling, quadrupling and so on) [11℄. If the systemwere a single-user system, then this strategy wouldprobably be good � it pushes forward the jobs withless requirements (on average), so the average waitingtime is expe
ted to de
rease. However, sin
e we aredealing with multi-user systems, su
h an approa
h isinsu�
ient, and may appear extremely unfair.In this work, however, we use EASY-ba
k�llingas the base algorithm. A

ording to [11℄, when thepredi
tions are 
orre
t, the overall performan
e ofEASY-ba
k�lling usually improves.3 Predi
ting Job RuntimeDistributionsBoth ba
k�lling-based s
hedulers and SJF use single-value predi
tions due to their simpli
ity. But in fa
tpredi
ting a job's runtime 
annot usually be done de-terministi
ally. A job's runtime depends on many fa
-tors, that in
lude not only system internal 
onditionssu
h as the network load, but also terminations due toerrors and user 
an
ellations. These last fa
tors areexternal to the system, and they greatly 
ompli
ateruntime predi
tion. Errors usually show in
orre
t be-havior pretty soon after a job starts, and many faultsmay be dis
overed long before a job would have ter-minated without the error. Users also know this, andthey tend to test partial output soundness soon aftertheir jobs start. Therefore, in 
ases of errors the job2



is usually terminated or 
an
eled almost immediately.For instan
e, 2613 out of 5275 (�50%) 
an
eled jobsin the SDSC-SP2 tra
e whose user estimates were setfor at least 200 minutes were 
an
eled within 20 min-utes after their start times (this and other tra
es weuse 
ome from the Parallel Workloads Ar
hive [9℄; seeTable 1). Modeling these s
enarios is impossible withsingle-value predi
tions: a single value 
an give eithera mean or a quantile of the job's runtime distribution,but 
annot model the whole distribution.Another problem with single-value predi
tions isthe fa
t that they should 
ontain all the informationupon whi
h s
heduling de
isions are made. Di�er-ent deviations from the real runtime 
ause di�erentand possibly in
omparable damage. This leads topredi
tion poli
ies that are s
heduler-dependent. Anextreme example is ba
k�lling, whi
h kills jobs whoseruntimes are longer than the user estimates. Thus,over-predi
tions are mu
h less damaging than under-predi
tions. Therefore the user estimates tend to bebiased upwards, as users tend to give high estimatesfearing their jobs will be killed.Predi
ting the distribution of a job's runtime isbased on the 
on
ept of lo
ality of sampling [2℄. Thismakes a distin
tion between the global distributionof runtimes, when looking at a long time span, andthe lo
al distribution of runtimes that is observed ata 
ertain instant. The idea is that runtimes � likeother workload attributes � exhibit lo
ality, so thelo
al distribution is mu
h more predi
table than theglobal one.To utilize this observation, we divide time intoshort sli
es, and 
hara
terize the runtime distributionin ea
h one using binning. In parti
ular, the modelgroups jobs arriving within ea
h 15-minute sli
e oftime together. The runtime distribution was modeledfor ea
h sli
e individually. The modeling is done byde�ning a set of dis
rete bins, and 
ounting howmanyjob runtimes fall in ea
h bin. The bin sizes used werelogarithmi
, with ranges that grow by a fa
tor of 1.8;this gives a better resolution for short jobs, whi
h aremore numerous. The values 15 minutes and 1.8 weresele
ted empiri
ally so as to maximize the observedlo
ality in several di�erent workload tra
es [8℄.To redu
e 
omplexity it is desirable to tra
k only alimited number of distin
t distributions. The tradeo�here is that using more distributions in
reases a

u-ra
y, but also in
reases the 
omplexity of the model-ing. Therefore we want to �nd the number that pro-vides good a

ura
y at an a

eptable 
ost. In most
ases it turned out that 16 distin
t distributions pro-

vide reasonable results.Coming up with representative distributions in-volves a learning pro
ess. On
e enough data is avail-able (we use one week's worth of a
tivity) a set of 16representative distributions is learned using an itera-tive pro
ess. The learnt distributions are then usedin the HMM model des
ribed below as predi
tions forthe di�erent jobs. Typi
ally only 2�3 iterations areneeded to 
onverge to an a

eptable set; using moretypi
ally results in over�tting. The 
riterion for 
on-vergen
e is that the distan
e from the previous model,multiplied by the square root of the number of sam-ples (all the jobs observed so far) is smaller than agiven threshold. Later, as more data is a

umulated,this will grow again beyond the threshold, and thelearning pro
ess is repeated using all the additionaldata a

umulated so far. Thus the quality of themodel is expe
ted to inprove the longer the system isin use.The �nal stage of the modeling is to 
reate a Hid-den Markov Model (HMM) to des
ribe transitionsand see how things 
hange. The model has 16 states,
orresponding to the di�erent runtime distributions.States may have self-loops to a

ount for situationswhere the lo
al distribution stays the same for morethan 15 minutes. Che
king the observed distributionsof how long ea
h state is in e�e
t indeed revealed thatin the vast majority of 
ases this is geometri
ally dis-tributed.The distributions and model are learned on-line asmore jobs are submitted and terminate. Thus whenrunning the algorithm on a job tra
e, initially it isimpossible to provide good predi
tions. when enoughinformation a

umulates, the model tra
ks the statethat the system is in, and uses the distribution that
hara
terizes this state as the predi
tion for newlysubmitted jobs.4 Using Distributions in theS
heduling AlgorithmGiven histori
al data regarding previous job exe
u-tions, one 
an �t a model of the distribution of run-times or just use the empiri
al distribution. This se
-tion dis
usses the ways how this information 
an bepra
ti
ally used by a s
heduler. In parti
ular, we baseour work on the EASY ba
k�lling s
heme.Given that runtimes are 
ontinuous, keeping his-tori
al data about multiple jobs 
an burden the sys-tem and in
rease the 
omplexity of the s
heduling3



algorithm. For that reason we will assume the distri-bution is dis
retized by dividing the runtimes into Nbins. The sizes of the bins will be logarithmi
: therewill be many bins for short runtimes, and the top binsea
h represent a large range of runtimes.EASY ba
k�lling maintains a queue of waiting jobs(ones that have been submitted but have not yetstarted) ordered by their submission times. The stepsof the EASY ba
k�lling s
heduling pro
edure, whi
his exe
uted ea
h time a job arrives or terminates, areas follows:1. As long as there are enough idle pro
essors tostart the �rst job in the wait queue, remove thisjob from the queue and start it.2. Given the �rst job in the queue that 
annot startbe
ause of insu�
ient idle pro
essors, �nd whenthe required number will be
ome free and makethe reservation for this job.3. Continue s
anning the queue, and start (ba
k�ll)jobs if they don't violate this reservation.However, the idea of the algorithm 
an be expressedmore 
on
isely. In fa
t, Step 2 is more of an im-plementation issue than part of the 
ore of the algo-rithm. Thus steps 2 and 3 
an be united as follows:�Continue s
anning the queue, and start jobs if thisdoesn't delay the start time of the �rst job in thequeue�. This is independent of how the 
ondition ofnot delaying the �rst job is veri�ed. And we 
an alsorelax the 
ondition, and repla
e it with a 
onditionthat it will not be delayed with a high probability.In EASY ba
k�lling ea
h job is assigned a singlevalue for its predi
ted runtime, and this predi
tionis used as the exa
t runtime in a very deterministi
way. But if we don't have a single-value predi
tion,but rather a distribution, it is not possible to makesu
h a de
ision in a deterministi
 way. Instead, thereare many 
ases with di�erent probabilities that may
ontradi
t ea
h other. Therefore we need to summa-rize all these possibilities. To do so, we de�ne a singleparameter that is the 
on�den
e probability τ . Ournew 
ondition for ba
k�lling will be that the probabil-ity that the ba
k�lling postpones the start of the �rstjob in the queue is less than τ .Let us now formalize this idea. For simpli
ity, it isassumed that the job runtimes are independent; thus,for ea
h two jobs with runtimes R1, R2, we have that
Pr(R1, R2) = Pr(R1) Pr(R2) (as usual, here and ev-erywhere, Pr(R1) denotes the probability of randomvariable R1 to have its value). In parti
ular, thismeans that the event of the availability of pro
essors

at di�erent times due to terminations of the 
urrentlyrunning jobs and the distribution of the ba
k�lledjob's runtime are independent.The following notation will be useful. Suppose the
urrent time is t0. Assuming that the job we are
onsidering is indeed ba
k�lled, we denote its (un-known) true termination time by te. For ea
h time t,
t0 ≤ t < ∞, we denote by c(t) the number of pro
es-sors that are released by the 
urrently running jobsbefore and in
luding time t. Also, let cq be the num-ber of pro
essors that must be released to start the�rst job in the queue, and c the number needed tostart both the �rst job and the ba
k�ll job together.Armed with these notations, we 
an say that the al-gorithm should ba
k�ll i�

Pr(∃t ∈ (t0, te) : cq ≤ c(t) < c) < τ.In words: the probability that there exists some time
t before the termination of the ba
k�lled job whenthe number of released pro
essor's is enough to startthe �rst job in the queue but not enough to run bothjobs � so the ba
k�lling postpones the start of the�rst job in the queue � is smaller than τ .However, the termination time te is not known. In-stead, we have a distribution. Integrating over all thepossible termination times of the ba
k�lled job wethen re
eive the 
ondition

∫
∞

t0

Pr(te, ∃t ∈ (t0, te) : cq ≤ c(t) < c)dte < τ.Sin
e by assumption of job runtimes independen
e teand c(t) are independent, this probability is
∫

∞

t0

Pr(te) Pr(∃t ∈ (t0, te) : cq ≤ c(t) < c)dte < τ.The �rst fa
tor in the integrand is modeled by thepredi
tor � it is exa
tly the predi
ted distribution ofthe job's runtime. As noted above these probabilitiesare typi
ally modeled dis
retely, by dividing the run-time into bins and predi
ting the probability to fallinto ea
h bin. The se
ond fa
tor is mu
h harder to
al
ulate.First of all, in order to 
al
ulate the se
ond fa
tor,we must 
al
ulate the probability Pr(c(t) ≥ c) forany given time t and any given requirement c. Theprobability of pro
essor availability given terminationprobabilities at time t of the 
urrently running jobs is
al
ulated using Dynami
 Programming. The matrix
ell Mt[n][c] denotes the probability that at time t,the jobs 1..n have released at least c pro
essors. This4



Algorithm 1 Runtime bin probability re
al
ulation1 double[℄ re
al
ulate(Job job)2 // old model3 double old_p[N℄ = job.model;4 // new distribution model5 double new_p[N℄;6 double upperBound = job.userEstimate;7 double lowerBound = 
urrentTime-job.startTime;8 for ea
h runtime bin j do {9 double newBinStart =10 max{bin[j℄.start, min{lowerBound, bin[j℄.end}};11 double newBinEnd =12 min{bin[j℄.end, max{upperBound, bin[j℄.start}};13 new_p[j℄ = old_p[j℄*14 (log(newBinEnd )-log(newBinStart )) /15 (log(bin[j℄.end)-log(bin[j℄.start));16 }17 normalize(new_p);18 return new_p;19 }is 
al
ulated re
ursively as
Mt[n][c] = Mt[n − 1][c] +

(Mt[n − 1][c − cn] − Mt[n − 1][c]) · Pt[n].The �rst term denotes the 
ase when enough pro-
essors are already idle without termination of jobnumber n. The se
ond term is the probability thatonly the termination of job n freed the required pro-
essors. This is the produ
t of two fa
tors: that jobs
1..n − 1 freed at least c − cn but not c pro
essors,and that the last job terminated in time (cn is num-ber of pro
essor used by job number n, and Pt[n]is the probability that job number n terminates notlater than t). The initialization of the dynami
 pro-graming sets the obvious values: Mt[∗][0] = 1 (weare sure that the jobs have released at least 0 pro-
essors), and Mt[0][∗] = 0 (zero jobs do not releaseany number pro
essors). In the algorithm implemen-tation, these values may be 
al
ulated on-the-�y; forinstan
e, if c < cn (the number of required pro
es-sors is smaller than the number of pro
essors usedby job number n), then Mt[n− 1][c− cn] doesn't ex-ist in the real matrix, be
ause the index is negative,but 
an easily be substituted by 1, so that Mt[n][c] =
Mt[n − 1][c] + (1 − Mt[n − 1][c]) · Pt[n]. If n is thenumber of running jobs, then Pr(c(t) ≥ c) = Mt[n][c].The above requires 
al
ulating the probabilities ofrunning job terminations before or at the time t (de-noted above as Pt[ ]). Ea
h time the s
heduler is


alled, a larger part of the distributions be
omes irrel-evant, be
ause the jobs have already run longer thanthe times represented by the lower bins. Thereforethe distributions needs to be re
al
ulated. Be
auseour data is dis
retized, the job runtime probabilitiesare estimated only at the ends of the runtime bins.The upper and lower bounds of job runtimes are theuser estimate (sin
e the job is killed after it; thisis used even before the job starts) and the 
urrentruntime of the job (
urrentTime-job.startTime).Log-Uniform intra-bin interpolation is used. Algo-rithm 1 presents the re
al
ulation pro
edure for theruntime bin probabilities. Line 3 re
eives the jobdistribution model as proposed by the predi
tor (re-minder: N is the number of the runtime bins, and
j = 1..N is the index of a runtime bin). Lines 9-12 ensure that the new runtime bin boundaries sat-isfy the old bin boundaries and global boundaries. Ifthe runtime bin doesn't interse
t the global bound-aries then newBinStart==newBinEnd and thereforenew_p[j℄=0. Lines 13-15 re
al
ulate the probabil-ity measure remainders after log-uniform interpola-tion.After all the events representing the possible ter-mination of a job are inserted into a list and sortedby the time, one 
an easily 
al
ulate the ve
tor oftermination probabilities at time t.Let A(t) be the event that t is the real start time ofQ[0℄ (the �rst job in the queue) without ba
k�lling,5



enough processors
to run Q[0] at time t

c(t) >= c_q

enough processors to run

c(t−1) >= c_q

enough processors to run both
Q[0] and the backfill job at time t
c(t) >= c

want to compute
probability that can
run Q[0] but not both
at time t but not before

intersection hard to compute
so compute an approximation
c(t−1) >= c

Q[0] even at time t−1

Figure 1: Explanation of the Pr(A(t)) formula.and that ba
k�lling of the job delays the �rst jobbeyond this time. This means that
A(t) = (t ∈ (t0, te))∧(∀s < t, c(s) < cq)∧(cq ≤ c(t) < c)In words, t is before the end time of ba
k�lled job and
t is the �rst time when the �rst job in the queue 
anstart but only if this job isn't ba
k�lled. Therefore,a

ording to our probabilisti
 ba
k�lling 
ondition,the ba
k�lling should happen i�

Pr(∃t ∈ (t0, te) : A(t)) < τBut the events are disjoint, therefore the total prob-ability is the integral of probabilities:∫ te

t0

Pr(A(t))dt < τ (1)The problem is to 
al
ulate Pr(A(t)).Suppose t ∈ (t0, te). Let us 
hange the de�nitionof t to be dis
rete time (in any units). Due to themonotoni
ity of c(t), Pr(A(t)) = Pr(c(t − 1) < cq ∧
cq ≤ c(t) < c). If c(t) ≥ c or c(t − 1) ≥ c, then
c(t) ≥ cq, sin
e c > cq and c(t) is monotonous (seeVenn diagram in Figure 1). Therefore,
Pr(A(t)) = Pr(c(t) ≥ cq) − Pr(c(t − 1) ≥ cq ∨ c(t) ≥ c)

= Mt[n][cq] − Pr(c(t − 1) ≥ cq ∨ c(t) ≥ c).But in the se
ond term, the two events in the dis-jun
tion don't imply ea
h other, so
Pr(c (t − 1) ≥ cq ∨ c(t) ≥ c) =

= Pr(c(t − 1) ≥ cq) + Pr(c(t) ≥ c) −

Pr(c(t − 1) ≥ cq ∧ c(t) ≥ c)

= Mt−1[n][cq] + Mt[n][c] −

Pr(c(t − 1) ≥ cq ∧ c(t) ≥ c)

The last term is pretty hard to 
al
ulate. However,it has a lower bound of Mt−1[n][c] � the probabilitythat before the last event there were enough pro
es-sors to run both jobs (whi
h implies c(t−1) ≥ cq and
c(t) ≥ c). Using all the above 
onsiderations leads tothe bound

Pr(A(t)) ≥ (Mt[n][cq] − Mt[n][c]) −

(Mt−1[n][cq] − Mt−1[n][c])
(2)The integral over t of Pr(A(t)) in Equation (1)turns into a sum when time is dis
retized. Repla
-ing Pr(A(t)) with the lower bounds from Equation(2) leads to a teles
oping series. Sin
e the �rst itemequals 0 (be
ause initially the number of pro
es-sors is less than cq), the total sum is Mte−1[n][cq] −

Mte−1[n][c]. But although ea
h of Mt[n][cq], Mt[n][c]is monotoni
ally growing as a fun
tion of t, their dif-feren
e is not monotonous; while all Pr(A(t)) ≥ 0,and their sum is monotonous. This means we have atighter bound of
∑

t∈(t0,te)

Pr(A(t)) ≥ max
t∈(t0,te)

{Mt[n][cq] − Mt[n][c]}To summarize, the version of EASY ba
k�lling thatuses runtime distributions rather than point predi
-tions will ba
k�ll a job if the following 
ondition holds
∑
te

Pr(te) max
t∈(t0,te)

{Mt[n][cq] − Mt[n][c]} < τThat is, if the probability that su
h a time exists isless than the threshold. Algorithm 2 presents thesimpli�ed pseudo-
ode of this ba
k�lling s
heduler.Some notes on the implementation: The result vari-able is monotonously growing, so on
e it is biggerthan the threshold the total result is false for sure, sono further 
al
ulations are run. The pMax variable is6



Algorithm 2 The distribution-based 
ondition for ba
k�lling.bool shouldBa
kfill(Job job) {List events = <list of job terminations sorted by time>int n = <# of running jobs>double P[n℄;// max(t){M[n℄[
℄-M[n℄[
0℄}double pMax = 0;double result = 0;int 
0 = <# of pro
essors needed to run Q[0℄>int 
 = <# of pro
essors needed to run both jobs>for ea
h j=runtime bin do {for ea
h e in events before bin[j℄.end do {P[e.job℄ += e.probability;<
al
ulate M using Dynami
 Programming, given P>pMax = max{pMax, M[n℄[
0℄-M[n℄[
℄};}result += job.model[j℄*pMax;}return result < THRESHOLD;}also monotonously growing. This means that if theremaining runtime bin probability multiplied withthe 
urrent pMax together with the 
urrent resultare bigger than the threshold, it is also enough to stop
al
ulating and return false. These improvements arevery important, sin
e the s
heduler runs on-line. Oursimulations (reported in the next se
tion) indi
atethat indeed the overhead of the s
heduler is very low:simulating a full year of a
tivity, with order of 100,000
alls to the s
heduler, takes about half an hour.If the predi
tor returns no runtime predi
tion(whi
h might happen if no histori
al data is avail-able), then the single probability event is inserted,whi
h is the user estimate with probability of 1. Ifthis is the 
ase for all the running jobs, then the al-gorithm works exa
tly like the original EASY algo-rithm: all the termination events 
ome from the run-ning jobs' terminations by user estimates, and there-fore the algorithm works in a very deterministi
 way.5 ResultsThe probabilisti
 ba
k�lling s
heme des
ribed abovewas evaluated by 
omparing it with EASY ba
k�lling,using simulations of several workloads available fromthe Parallel Workloads ar
hive [9℄ (Table 1). In theseworkload logs, jobs that are 
an
eled before they starthave 0 runtime and also 0 pro
essors. These jobs wereremoved from the simulation. If a job requires more

avg avglog duration jobs wait runCTC SP2 6/96�5/97 77,222 425.7 188.0KTH SP2 9/96�8/97 28,489 334.6 161.8SDSC SP2 4/98�4/00 59,725 429.6 123.6SDSC Blue 4/00�1/03 243,314 720.2 95.5Table 1: Workloads used in the analysis and simula-tions. Average wait and run times are in minutes.pro
essors than the ma
hine has, the requirement isaligned to the ma
hine size.The runtime distributions were modeled using aHidden-Markov Model with 16 states, where ea
hstate 
orresponds to a runtime distribution. Themodel grouped jobs arriving within a 15-minute sli
eof time together. The runtime distribution was mod-eled using logarithmi
 bins, with ranges that growby a fa
tor of 1.8. The details of the modeling arepresented in detail in [8℄. The threshold used for theprobabilisti
 ba
k�lling was τ = 0.05.In order to avoid the in�uen
e of the runtime dif-feren
es between the tra
es we used waiting time forthe performan
e metri
. The system is a multi-usersystem, therefore fairness is also an issue. Therefore,the L1-type metri
s that take the average or sum ofall the jobs' metri
 values are not enough � a jobthat su�ers from bad servi
e is not 
ompensated bythe fa
t that in average the jobs wait little in the7
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EASY+HMMFigure 2: CDF of waiting time for Probabilisti
 EASY vs. base EASY. The arrows show the jobs that bene�tfrom the probabilisti
 approa
h.queue. In order to present the 
omplete pi
ture ofwhat is going on for all the jobs the full CDFs of thewaiting times are presented.Figure 2 
ompares the 
onventional EASY s
hed-uler with the probability-based s
heduler. The X-axisis the waiting times of the jobs in a logarithmi
 s
ale,and the Y-axis its CDF. The CDF doesn't start from0, sin
e there a large fra
tion of the jobs don't waitin the queue at all: around 50% of the jobs for SDSCBlue and KTH, slightly less for SDSC SP2, and morethan 75% of the jobs for CTC.As the results are shown in the form of a CDF,a 
urve that is lower and more to the right implieshigher wait times and thus worse performan
e. Con-versely, a 
urve that is higher and to the left indi
ateslower wait times and better performan
e. The arrowsrepresent the fra
tion of jobs for whi
h waiting timeimproved due to the probabilisti
 approa
h � thisis the interval of the CDFs where the results for theprobabilisti
 s
heme (dashed line) are to the left ofand above the EASY results (solid line).The 
on
lusions of this 
hart is that usually mostof the jobs that had to wait at all are better o� usingthe probabilisti
 approa
h. Note that the X-axis islogarithmi
, and a
tually 
overs a very large range �it 
hanges by a fa
tor of 2.5 × 106. Therefore, when

Tra
e name EASY Probabilisti
CTC SP2 21.3 min 18.1 min -15.2%SDSC SP2 364 min 373 min +2.6%SDSC Blue 131 min 105 min -19.5%KTH SP2 114 min 113 min -0.6%Total -8.7%Table 2: Arithmeti
 mean of waiting times.Tra
e name EASY Probabilisti
CTC SP2 28.2 se
 25.3 se
 -10.1%SDSC SP2 639 se
 635 se
 -0.7%SDSC Blue 203 se
 135 se
 -33.6%KTH SP2 181 se
 147 se
 -18.9%Total -16.7%Table 3: Geometri
 mean of waiting times.the line moves left even for a little, this may representan improvement fa
tor of 2. Also, it looks that ifthe job started waiting, it usually waits for at least aminute. Another �nding is that there is a pla
e in the
hart where the line is almost straight. This meansthat the waiting time distribution at some intervalsis 
lose to a log-uniform distribution.8



Tables 2 and 3 summarize the improvements in thewait time metri
 in the form of the arithmeti
 andgeometri
 means. The formula for 
al
ulating thegeometri
 mean is exp(
∫

f(w) ln max{w, wmin}dw),where w is the job's waiting time, f(w) is its PDF and
wmin is the 
ommonly used threshold of 10 se
onds,see for instan
e [4℄. Therefore, the improvement inthe geometri
 mean metri
 value is exa
tly the areabetween the lines of the 
hart that are to the right of
w = wmin.6 Con
lusionsS
heduling algorithms su
h as ba
k�lling and SJF re-quire job runtimes to be known, or at least predi
ted.Previous work has always assumed that su
h predi
-tions have to be point estimates. In 
ontradistin
tion,we investigate the options of predi
ting the distribu-tion from whi
h the a
tual runtime will be drawn.This is then integrated into the EASY ba
k�lling al-gorithm, and shown to redu
e the expe
ted waitingtime and improve the wait-time distribution.On
e a distribution-based probabilisti
 ba
k�llingalgorithm is in pla
e, several 
ourses of additional re-sear
h suggest themselves. One is a 
omparison withthe performan
e obtained by other (single value) pre-di
tion s
hemes. Another is a deeper investigationof alternative ways to predi
t distributions. In thiswork we used a rather 
omplex HMM-based predi
-tion s
heme. A possible alternative is to just use theempiri
al distribution of jobs by the same user. Thisholds promise be
ause it provides more fo
us on thelo
al pro
ess, as opposed to the HMM whi
h takesa global view at the possible expense of predi
tionsfor a single job. But an thorough experimental studyis needed to verify and quantify the relative perfor-man
e of the two approa
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