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Abstract

Most space-sharing parallel computers presently op-
erated by high-performance computing centers use
batch-queuing systems to manage processor alloca-
tion. Because these machines are typically “space-
shared,” each job must wait in a queue until suffi-
cient processor resources become available to service
it. In production computing settings, the queuing de-
lay (experienced by users as the time between when
the job is submitted and when it begins execution)
is highly variable. Users often find this variability
a drag on productivity as it makes planning difficult
and intellectual continuity hard to maintain.

In this work, we introduce an on-line system for
predicting batch-queue delay and show that it gen-
erates correct and accurate bounds for queuing delay
for batch jobs from 11 machines over a 9-year period.
Our system comprises 4 novel and interacting com-
ponents: a predictor based on nonparametric infer-
ence; an automated change-point detector; machine-
learned, model-based clustering of jobs having similar
characteristics; and an automatic downtime detector
to identify systemic failures that affect job queuing
delay. We compare the correctness and accuracy of
our system against various previously used prediction
techniques and show that our new method outper-
forms them for all machines we have available for
study.

∗The work was supported in part by NSF Grants Numbered
CCF-0526005, CCF-0331654, and NGS-0305390, and by the
San Diego Supercomputer Center

1 Introduction

Typically, high-performance multi-processor com-
pute resources are managed using space sharing, a
scheduling strategy in which each program is allo-
cated a dedicated set of processors for the duration
of its execution. In production computing settings,
users prefer space sharing to time sharing, since ded-
icated processor access isolates program execution
performance from the effects of a competitive load.
Because processes within a partition do not com-
pete for CPU or memory resources, they avoid the
cache and translation look-aside buffer (TLB) pollu-
tion effects that time slicing can induce. Addition-
ally, inter-process communication occurs with mini-
mal overhead, since a receiving process can never be
preempted by a competing program.

For similar reasons, resource owners and adminis-
trators prefer space sharing as well. As long as the
time to allocate partitions to, and reclaim partitions
from, parallel programs is small, no compute cycles
are lost to time-sharing overheads, and resources are
efficiently utilized. Thus, at present, almost all pro-
duction high-performance computing (HPC) instal-
lations use some form of space sharing to manage
their multi-processor and cluster machines.

Because each program in a space-shared environ-
ment runs in its own dedicated partition of the target
machine, a program cannot be initiated until there
are a sufficient number of processors available for it
to use. When a program must wait before it can be
initiated, it is queued as a “job” along with a descrip-
tion of any parameters and environmental inputs
(e.g. input files, shell environment variables, etc.)
it will require to run. However, because of the need
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both to assign different priorities to users and to im-
prove the overall efficiency of the resource, most in-
stallations do not use a simple first-come-first-served
(FCFS) queuing discipline to manage the queue of
waiting jobs. Indeed, a number of queue manage-
ment systems, including PBS [28], LoadLeveler [1],
EASY [20], NQS/NQE [23], Maui [22] and Gri-
dEngine [16] each offer a rich and sophisticated set of
configuration options that allow system administra-
tors to implement highly customized priority mech-
anisms.

Unfortunately, while these mechanisms can be
used to balance the need for high job throughput (in
order to ensure machine efficiency) with the desires
of end-users for rapid turnaround times, the inter-
action between offered workload and local queuing
discipline makes the amount of time a given job will
wait highly variable and difficult to predict. Users
may wait a long time – considerably longer than the
job’s eventual execution time – for a job to begin
executing. Many users often find this potential for
unpredictable queuing delay particularly frustrating
since, in production settings, they often can make
reasonable predictions of how long a program will
execute once it starts running. Without an ability to
predict its queue waiting time, however, users can-
not plan reliably to have results by a specific point
in time.

In this paper, we present a method for automati-
cally predicting bounds, with quantitative confidence
levels, on the amount of time an individual job will
wait in queue before it is initiated for execution on a
production “batch scheduled” resource. The method
consists of three interacting but essentially indepen-
dent components: a percentile estimator, a change-
point detector, and a clustering procedure. At a high
level, clustering is used to identify jobs of similar
characteristics. Within each cluster, job submissions
are treated as a time series and the change-point de-
tector delineates periods of stationarity. Finally, the
percentile estimator computes a quantile that serves
as a bound on future wait time based only on history
from the most recent stationary region in each clus-
ter. All three components can be implemented effi-
ciently so that on-line, real-time predictions are pos-
sible. Thus, for each job submission, our method can
generate a predicted bound on its delay using a sta-
tionary history of previous jobs having similar quan-
titative characteristics. In addition, as jobs complete
their time in queue, new data becomes available.
Our method automatically incorporates this infor-

mation by adjusting its clustering and change-point
estimates in response to the availability of new data.

The percentile estimation method we describe here
is a product of our previous work in predicting the
minimum time until resource failure [3, 24, 26]. In
this work, we describe its application to the prob-
lem of predicting bounds on the delay experienced
by individual jobs waiting for execution in batch-
controlled parallel systems. To do so effectively, we
have coupled this methodology with a new method
for detecting change points in the submission his-
tory and a new clustering methodology that auto-
matically groups jobs into service classes. This lat-
ter capability is necessary since many sites imple-
ment dynamically changing priority schemes that use
“small” jobs to “backfill” [19] the machine as a way
of ensuring high levels of resource utilization. More-
over, our quantile-based prediction method makes it
possible to infer when the the machine may have
crashed while the queuing system still accepts jobs
(a common failure mode in these settings where
jobs are submitted from one or more “head” nodes).
Using this new system, we have found that it is
possible to predict bounds on the delay of individ-
ual jobs that are tighter then parametric methods
based on Maximum Likelihood Estimation (MLE) of
Weibull, log-normal, and log-uniform distributions.
To achieve these tighter bounds, however, all four
components – non-parametric quantile estimation,
change-point detection, clustering, and availability
inference – must be integrated and employed in con-
cert. Because the systems in inherently an adap-
tive time series forecasting methodology, we give it
the name QBETS as an acronym for Queue Bounds
Estimation from Time Series.

We compare QBETS with various parametric
methods in terms of prediction correctness and accu-
racy. We also demonstrate how the combination of
techniques that compose QBETS improves the pre-
dictive power for production systems.

Our evaluation uses job submission traces from 11
supercomputers (including 8 currently in operation)
operated by the National Science Foundation and the
Department of Energy over the past 10 years com-
prising approximately 1.4 million job submissions.
By examining job arrival time, requested execution
time, and requested node count, we simulate each
queue in each trace and compute a prediction for
each job. Our results indicate that QBETS (which
is more effective than competitive parametric meth-
ods) achieves significantly tighter bounds on job wait
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time in most cases. Thus the system automatically
“reverse engineers” the effective priority scheme that
is in place at each site and determines what job sizes
are receiving the fastest turn-around time.

Thus, this paper makes two significant new con-
tributions with regard to predicting individual job
queue delays.

• We present QBETS as an example of an ac-
curate, non-parametric, and fully automatic
method for predicting bounds (with specific lev-
els of certainty) on the amount of queue delay
each individual job will experience.

• We verify the efficacy of QBETS and detail
its ability to automatically take into account
job resource characteristics to improve predic-
tion bounds using currently operating large-
scale batch systems, and from archival logs for
systems that are no longer in operation.

• We describe an implementation of QBETS that
provides an on-line batch queue job delay pre-
diction service to high performance computing
users and how we have made available a number
of programmatic interfaces to the system such
that others may trivially integrate QBETS into
their own projects.

We believe that these results constitute a new and
important capability for users of batch-controlled re-
sources. Using an on-line, web-based, real-time ver-
sion of QBETS [27] that allows users to generate
predictions on demand, these users are better able
to decide on which machines to use, which queues
on those machines to use, the maximum amount of
run time to request, and the number of processors
to request so as to minimize job turnaround time or
maximize the utilization of their respective time al-
locations. In a related work, we show how QBETS
has already been used to augment a real applica-
tion workflow scheduler to achieve a 2x improvement
in overall workflow completion time [25]. Our tech-
niques are also useful as a scheduling policy diag-
nostic for site administrators. For example, our re-
sults indicate that the amount of requested execution
time is a far more significant factor in determining
queue delay than is requested processor count (pre-
sumably due to back-filling [19]). One site admin-
istrator at a large scale computer center expressed
surprise at this result, since she believed she had set
the scheduling policy at this site to favor jobs with
large processor counts in an effort to encourage users

to use the resource for “big” jobs. Because short
jobs can be more readily scheduled when back-filling
is used, users are circumventing the site policy and
submitting small jobs to improve turn-around time.
In addition, we have successfully explored the use of
these types of predictions to construct a “virtual re-
source reservation” out of regular batch queue con-
trolled resource (Cf. Section 5). These examples
illustrate how QBETS is already having an impact
on large-scale batch-controlled settings by improv-
ing application turnaround time, streamlining large
scale scheduling policies, and providing a new service
to the community which has been adopted by several
projects.

This ability to make predictions for individual jobs
distinguishes our work from other previous efforts.
An extensive body of research [6, 8, 9, 11, 12, 13, 14,
32] investigates the statistical properties of offered
job workload for various HPC systems. In most of
these efforts, the goal is to formulate a model of work-
load and/or scheduling policy and then to derive the
resulting statistical properties associated with queu-
ing delay through simulation. Our approach focuses
strictly on the problem of forecasting future delay
bounds; we do not claim to offer an explanatory, or
even a descriptive, model of user, job, or system be-
havior. However, perhaps because of our narrower
focus, our work is able to achieve predictions that
are, in a very specific and quantifiable sense, more
accurate and more meaningful than those reported
in the previous literature.

In Section 2, we discuss related approaches fur-
ther, followed by a detailed description of QBETS in
Section 3. As mentioned previously, Section 4 dis-
cusses our predictor performance experiment, eval-
uation procedure and the specific results we have
achieved. We briefly cover some of the ways in which
the QBETS system is already impacting other exist-
ing research projects in Section 5. Finally, in Sec-
tion 6 we recap and conclude.

2 Related Work

Previous work in this field can be categorized into
two groups. The first group of work belongs un-
der the general heading of the scheduling of jobs on
parallel supercomputers. In works by Feitelson and
Rudolph [12, 13], the authors outline various schedul-
ing techniques employed by different supercomputer
architectures and point out strengths and deficien-
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cies of each. The prevalence of distributed memory
clusters as supercomputer architectures has led to
most large scale sites using a form of “variable par-
titioning” as described in [12]. In this scheme, ma-
chines are space-shared and jobs are scheduled based
on how many processors the user requests and how
much time they specify as part of the job submission.
As the authors point out, this scheme is effective for
cluster-type architectures but leads to fragmentation
as well as potentially long wait times for jobs in the
queue.

The second field of previous work relevant to our
work involves using various models of large-scale
parallel-job scenarios to predict the amount of time
jobs spend waiting in scheduler queues. These works
attempt to show that batch-queue job wait times can
be inferred under the conditions that one knows the
length of time jobs actually execute and that the al-
gorithm employed by the scheduler is known. Un-
der the assumption that both of these conditions are
met, Smith, Taylor and Foster introduce in [32] a
prediction scheme for wait times. In this work, the
authors use a template-based approach to categorize
and then predict job execution times. From these
execution-time predictions, they then derive mean
queue delay predictions by simulating the future be-
havior of the batch scheduler in faster-than-real time.
In practice, however even when their model fits the
execution-time data well, the mean error ranges from
33% to 73%.

Downey [8, 9] uses a similar set of assumptions for
estimating queue wait times. In this work, he ex-
plores using a log-uniform distribution to model the
remaining lifetimes of jobs executing in all machine
partitions as a way of predicting when a “cluster”
of a given size will become available and thus when
the job waiting at the head of the queue will start.
As a base case, Downey performs a simulation which
has access to the exact execution times of jobs in the
queue, plus knowledge of the scheduling algorithm,
to provide deterministic wait time predictions for the
job at the head of the queue. As a metric of success,
Downey uses the correlation between the wait times
of the head jobs during the base case simulation and
the wait times experienced by head jobs if his execu-
tion time model is used.

Both of these approaches make the underlying as-
sumption that the scheduler is employing a fairly
straightforward scheduling algorithm (one which
does not allow for special users or job queues with
higher or lower priorities), and also that the re-

source pool is static for the duration of their experi-
ments (no downtimes, administrator interference, or
resource pool dynamism).

Our work differs from these approaches in two sig-
nificant ways. First, instead of inferring from a job
execution model the amount of time jobs will wait,
we make job wait time inference from the actual
job wait time data itself. The motivation for why
this is desirable stems from research efforts [7, 17],
which suggest that modeling job execution time may
be difficult for large-scale production computing cen-
ters. Further, making inference straight from the job
wait time data, we avoid having to make underly-
ing assumptions about scheduler algorithms or ma-
chine stability. We feel that in a real world scenario,
where site scheduling algorithms are rarely published
and are not typically simple enough to model with
a straightforward procedure, it is unlikely that valid
queue wait-time predictions can be made with these
assumptions.

Second, our approach differs in the statistic we use
as a prediction. Most often, researchers look for an
estimator of the expected (mean) wait time for a par-
ticular job. Our approach instead uses bounds on
the time an individual job will wait rather than a
specific, single-valued prediction of its waiting time.
We contend that the highly variable nature of ob-
served queue delay is better represented to potential
system users as quantified confidence bounds than
as a specific prediction, since users can “know” the
probability that their job will fall outside the range.
For example, the information that the expected wait
time for a particular job is 3 hours tells the user less
about what delay his or her job will experience than
the information that there is a 75% chance that the
job will execute within 15 minutes.

3 Batch Queue Prediction

In this section, we describe our approach to the four
related problems that we must solve to implement
an effective predictor: quantile estimation1, change-
point detection, job clustering, and machine avail-
ability inference. The general approach we advo-
cate is first to determine if the machine of interest
is in a state where jobs are being serviced, next to
cluster the observed job submission history accord-
ing to jobs having similar quantitative characteristics

1We use the term “quantile” instead of the term “per-
centile” throughout the remainder of this paper.
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(e.g. requested node count, requested maximum exe-
cution time, or requested node-hours), then to iden-
tify the most recent region of stationarity in each
cluster (treated as a time series), and finally to es-
timate a specific quantile from that region to use as
a statistical bound on the time a specific job will
wait in queue. While logically the steps occur in this
order, we describe them in reverse order, providing
only a summarization of our quantile estimation and
stationarity approaches, primarily due to space con-
straints but also because we have analyzed these ex-
tensively in other publications [4, 25].

3.1 Quantile Prediction

Our goal is to determine an upper bound on a spe-
cific quantile at a fixed level of confidence, for a given
population whose distribution is unknown. If the
quantile were known with certainty, and the popu-
lation were the one from which a given job’s queue
delay were to be drawn, this quantile would serve as
a statistical bound on the job’s waiting time. For
example, the 0.95 quantile for the population will
be greater than or equal to the delay experienced
by all but 5% of the jobs. Colloquially, it can be
said that the job has a “95% chance” of experienc-
ing a delay that is less than the 0.95 quantile. We
assume that the quantile of interest (0.95, 0.99, 0.50,
etc.) is supplied to the method as a parameter by
the site administrator depending on how conserva-
tive she believes the estimates need to be for a given
user community.

However, since the quantiles cannot be known ex-
actly and must be estimated, we use an upper confi-
dence bound on the quantile that, in turn, serves as a
conservative bound on the amount of delay that will
be experienced by a job. To be precise, to say that a
method produces an upper 95% confidence bound on
a given quantile implies that the bound produced by
this method will, over the long run, overestimate the
true quantile 95% of the time. The degree of con-
servatism we assume is also supplied to the method
as a confidence level. In practice, we find that while
administrators do have opinions about what quantile
to estimate, the confidence level for the upper bound
is less meaningful to them. As a result, we typically
recommend estimating what ever quantile is desired
by the upper 95% confidence bound on that quantile.

In this work, we examine the performance of four
quantile prediction techniques. The first three are
somewhat traditional techniques, each based on fit-

ting a statistical distribution to historical data and
using the distribution quantile of interest as the pre-
dictor for the next observation. We rely on MLE
model fitting of three distributions; log-normal, log-
uniform, and Weibull. We note that for the log-
uniform and Weibull method, there is no straight-
forward way to place confidence bounds on popu-
lation quantiles and thus we use the model quan-
tile as the predictor. For the log-normal and bi-
nomial method predictors, we use the upper 95%
confidence bound, but note that even when we use
tighter confidence intervals, the resulting predictions
are not significantly impacted. The fourth approach
is a novel, non-parametric method which makes in-
ference directly from the data, instead of assuming
some pre-defined underlying distribution. Here we
describe our novel method, which we term the Bi-
nomial Method, beginning with the following simple
observation: If X is a random variable, and Xq is
the q quantile of the distribution of X, then a single
observation x from X will be greater than Xq with
probability (1 − q). (For our application, if we re-
gard the wait time, in seconds, of a particular job
submitted to a queue as a random variable X, the
probability that it will wait for less than X.95 seconds
is exactly .95.)

Thus (provisionally under the typical assumptions
of independence and identical distribution) we can
regard all of the observations as a sequence of inde-
pendent Bernoulli trials with probability of success
equal to q, where an observation is regarded as a
“success” if it is less than Xq. If there are n obser-
vations, the probability of exactly k “successes” is
described by a Binomial distribution with parame-
ters q and n. Therefore, the probability that more
than k observations are greater than Xq is equal to

1 −
k∑

j=0

(
n

j

)
· (1 − q)j · qn−j (1)

Now, if we find the smallest value of k for which
Equation 1 is larger than some specified confidence
level C, then we can assert that we are confident at
level C that the kth value in a sorted set of n observa-
tions will be greater than or equal to the Xq quantile
of the underlying population – in other words, the
kth sorted value provides an upper level-C confidence
bound for Xq.

Clearly, as a practical matter, neither the assump-
tion of independence nor that of identical distribu-
tion (stationarity as a time series) holds true for
observed sequences of job wait times from the real
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systems, and these failures present distinct potential
difficulties for our method.

Let us first (briefly) address the issue of indepen-
dence, assuming for the moment that our series is
stationary but that there may be some autocorrela-
tion structure in the data. We hypothesize that the
time-series process associated to our data is ergodic,
which roughly amounts to saying that all the salient
sample statistics asymptotically approach the cor-
responding population parameters. Ergodicity is a
typical and standard assumption for real-world data
sets; cf., e.g.,[15]. Under this hypothesis, a given
sample-based method of inference will, in the long
run, provide accurate confidence bounds.

Although our method is not invalidated by de-
pendence, a separate issue from the validity of our
method is that exploiting any autocorrelation struc-
ture in the time series should, in principle, produce
more accurate predictions than a static binomial
method which ignores these effects. Indeed, most
time-series analysis and modeling techniques are pri-
marily focused on using dependence between mea-
surements to improve forecasting [2]. For the present
application, however, there are a number of obfus-
cating factors that foil typical time-series methods.
First of all, for a given job entering a queue, there
are typically several jobs in the queue, so that the
most recent available wait-time measurement is for
several time-lags ahead. The correlation between the
most recent measurement at the time a job enters the
queue and that job’s eventual wait time is typically
modest, around 0.1, and does not reliably contribute
to the accuracy of wait-time predictions. Another is-
sue is the complexity of the underlying distribution
of wait times: They typically have more weight in
their tails than exponential distributions, and many
queues exhibit bimodal or multimodal tendencies as
well. All of this makes any linear analysis of data
relationships (which is the basis of the “classical”
time-series approach) very difficult. Thus while the
data is not independent, it is also not amenable to
standard time-series approaches for exploiting corre-
lation.

3.2 History Trimming

Unlike the issue of independence and correlation, the
issue of non-stationarity does place limitations on the
applicability of quantile prediction methods. Clearly,
for example, they will fail in the face of data with
a “trend,” say, a mean value that increases linearly

with time. On the other hand, insisting that the data
be stationary is too restrictive to be realistic: Large
compute centers change their scheduling policies to
meet new demands, new user communities migrate
to or from a particular machine, etc. It seems to be
generally true across the spectrum of traces we have
examined that wait-time data is typically station-
ary for a relatively long period and then undergoes a
“change-point” into another stationary regime with
different population characteristics. We thus use the
Binomial Method as a prediction method for data
which are stationary for periods and for which the
underlying distribution changes suddenly and rela-
tively infrequently; we next discuss the problem of
detecting change-points in this setting.

Given an independent sequence of data from a ran-
dom variable X, we deem that the occurrence of
three values in a row above X.95 constitutes a “rare
event” and one which should be taken to signify a
change-point. Why three in a row? To borrow a well-
known expression from Tukey , two is not enough
and four is too many; this comes from consideration
of “Type I” error. Under the hypothesis of identi-
cal distribution, a string of two consecutive high or
low values occurs every 400 values in a time series,
which is an unacceptable frequency for false posi-
tives. Three in a row will occur every 8000 values;
this strikes a balance between sensitivity to a change
in the underlying distribution of the population and
certainty that a change is not being falsely reported.

Now, suppose that the data, regarded as a time se-
ries, exhibits some autocorrelation structure. If the
lag-1 autocorrelation is fairly strong, three or even
five measurements in a row above the .95 quantile
might not be such a rare occurrence, since, for ex-
ample, one unusually high value makes it more likely
that the next value will also be high. In order to de-
termine the number of consecutive high values (top
5% of the population) that constitute a “rare event”
approximately in line with the criterion spelled out
for independent sequences, we conducted a Monte
Carlo simulation with various levels of lag-1 auto-
correlation in AR(1) time series [15], observed the
frequencies of occurrences of consecutive high and
low values, and generated a lookup table for rare-
event thresholds. Thus, to determine if a change-
point has occurred, we compute the autocorrelation
of the most recent history, look up the maximum
number of “rare” events that should normally oc-
cur with this level of autocorrelation, and determine
whether we have surpassed this number. If so, our
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method assumes the underlying system has changed,
and that the relevant history must be trimmed as
much as possible to maximize the possibility that
this history corresponds to a region of stationarity.
Note that indiscriminate history-trimming will not
allow our method to function properly, since the re-
sulting small sample sizes will generate unnecessarily
conservative confidence bounds.

The minimum useful history length depends
on the quantile being estimated and the level of
confidence specified for the estimate. For example,
it follows from Equation 1 above that in order to
produce an upper 95% confidence bound for the .95
quantile, the minimum history size that can be used
is 59. (This reflects the fact that .9559 < .05, while
.9558 > .05.)

3.3 Job Clustering

According to our observations and to anecdotal ev-
idence provided by users and site administrators,
there are differences among the wait times various
jobs might expect to experience in the same queue,
based purely on characteristics of the jobs such as
the amount of time and the number of nodes re-
quested. This is certainly easy to believe on an in-
tuitive level; for example, if a particular queue em-
ploys backfilling [19], it is more likely that a shorter-
running job requesting a smaller number of nodes
will be processed during a time when the machine
is being “drained.” Thus, for a given job, we might
hope to make a better prediction for its wait time if
we took its characteristics into account rather than
making one uniform prediction which ignores these
characteristics.

On the other hand, the same difficulties arise in
trying to produce regression models [32] as we en-
countered in the problem of trying to use autore-
gressive methods: In particular, the data are typi-
cally multimodal and do not admit the use of simple
quantile prediction models. We therefore explore the
idea of clustering the data into groups having simi-
lar attributes, so that we can use our parametric and
non-parametric predictors on each cluster separately.

In fact, in [5], based on advice we received from
several expert site administrators for currently oper-
ating systems, we employed a rather arbitrary parti-
tioning of jobs in each queue by processor count, run-
ning separate predictors within each partition, which
resulted in substantially better predictions. How-

ever, it would clearly be desirable to find a parti-
tion which is in some (statistical) sense “optimal”
rather than relying on such arbitrary methods; for
our purposes, it is also desirable to find a partition-
ing method that can be machine-learned and is there-
fore applicable across different queues with different
policies and user characteristics without direct ad-
ministrator intervention or tuning. Moreover, as a
diagnostic tool, it would be advantageous to be able
to compare the machine-determined clustering with
that determined by site administrators to illuminate
the effects of administrator-imposed scheduling poli-
cies. In this section, we describe our approach to this
problem, which falls under the rubric of model-based
clustering [18, 30, 35].

3.4 Model-Based Clustering

The problem of partitioning a heterogeneous data
set into clusters is fairly old and well studied [18,
21, 30, 35]. The simplest and most common clus-
tering problems involve using the values of the data,
relative to some notion of distance. Often, one pos-
tulates that the distribution within each cluster is
Gaussian, and the clusters are formed using some
well-known method, such as the so-called k-means al-
gorithm [21] or one of various “hierarchical” or “par-
titional” methods [30, 35]. If the number of clusters
is also unknown, a model-selection criterion such as
BIC [31], which we will discuss further below, is often
used to balance goodness of fit with model complex-
ity.

In fact, it is tempting, if for no other reason than
that of simplicity, to form our clusters in this way,
according to how they naturally group in terms of
one or more job attributes. Note, however, that this
method of clustering in no way takes into account the
wait times experienced by jobs, which is ultimately
the variable of interest; it is by no means clear that a
clustering of jobs by how their requested wait times
group will result in clusters whose wait-time distri-
butions are relatively homogeneous. For example, it
is possible that a subset of the requested job exe-
cution times form a nice Gaussian cluster between 8
and 12 minutes, but that due to some combination of
administrative policy, backfilling, and various “ran-
dom” characteristics of the system as a whole, jobs
requesting less than 10 minutes experience substan-
tially different wait times than those requesting more
than 10 minutes, so this cluster is actually meaning-
less in terms of predicting wait times.
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In our case, then, the situation is somewhat more
complicated than ordinary clustering: We wish to
cluster the data according to some characteristics
which are observable at the time the job is submit-
ted (explanatory variables), but using the actual wait
times (response variable) as the basis for clustering.
That is, we wish to use observed wait times to cluster
jobs, but then to determine how each cluster is char-
acterized by quantitative attributes that are available
when each job is submitted so that an arriving job
can be categorized before it begins to wait. In the
discussion that follows, we will use the requested ex-
ecution time (used to implement backfilling) as the
explanatory characteristic, but this is only for the
sake of ease of exposition.

The idea behind our method runs as follows: We
postulate that the set of requested times can be par-
titioned into k clusters C1, . . . , Ck, which take the
form of intervals on the positive time axis, such that
within each Cj the wait times are governed by an
exponential distribution with unspecified parameter
λj .

The choice of exponential distributions is some-
thing of an oversimplification – in fact a Weibull,
log-normal or hyperexponential would probably be
a more accurate choice – but the fact that the clus-
ters are relatively homogeneous makes the exponen-
tial model accurate enough with relatively little com-
putational expense; moreover, in practice, exponen-
tials are more than discerning enough to produce an
adequate number of clusters. As a check, we gener-
ated an artificial trace using different log-normally
distributed wait times corresponding to the inter-
vals of requested times [1, 100], [101, 200], [201, 300],
[301, 400], and [401, 500] and fed this data to our
clustering method. It recovered the following clus-
ters for the data: [1, 39], [40, 40], [41, 100], [101, 197],
[198, 300], [301, 398], [399, 492], [493, 493], [494, 500].
Since our method always clusters the ends together
to ensure that these clusters contain at least 59 el-
ements, the exponential clustering method recovers
the original clusters almost exactly.

We assume that the appropriate clustering is into
connected intervals along the time axis; this provides
an intuitive model for the eventual users of our pre-
dictions. Given a desired value for the number k of
clusters, then, we use a modified form of hierarchi-
cal clustering. According to this method, we start
with each unique value for the requested time in its
own cluster. We then merge the two adjacent (in the
sense of adjacency on the time axis) clusters that give

the largest value of the log-likelihood function log L,
calculated jointly across the clusters, according to
the maximum-likelihood estimators for the exponen-
tial parameters λj , which are given by #(Cj)∑

x∈Cj
x
. This

process continues until the number of clusters is equal
to k. Note that this is a well-accepted method for
clustering [21, 30, 35]; however, it does not guarantee
that the resulting clustering will maximize the log-
likelihood over all possible choices of k clusters, even
if we assume that the clusters are all intervals. This
latter problem is prohibitively expensive computa-
tionally for an on-line, real-time application, even
for moderately large data sets, and we are therefore
forced to use some restricted method.

Each arriving job can then be categorized by iden-
tifying the cluster whose minimum and maximum
requested time straddle the job’s requested time.

Continuing, the question of which value of k to
use is a problem in model selection, which recog-
nizes the balance between modeling data accurately
and model simplicity. The most generally accepted
model-selection criterion is the Bayes Information
Criterion (BIC) [31], the form of which is

BIC(θ) = log L(θ) − p

2
log n,

where θ stands for the (vector of) free parameters in
the model, L is the joint likelihood function across
the whole data set, calculated using the MLE for θ,
p is the dimensionality of θ (2k − 1 in our case: the
k − 1 break points on the time axis to define our
clusters, and the k values for the λj , all of which
are scalars), and n is the total sample size. The
first term in the BIC formula should be seen as a
measure of goodness of fit, while the second term
is a “penalty” for model complexity (i.e. one with
a large number of parameters). It is always true
that for a less restricted model (in our case, one
allowing a larger number of clusters), the log L term
will be larger, so the penalty function is critical
to avoid over-parameterizing. Maximizing the BIC
expression over a set of proposed models has good
theoretical properties and generally produces good
results in practice. Thus, our clustering strategy is
to specify a range of acceptable k-values; perform
the hierarchical clustering described above for each
of these values of k; and then calculate the BIC
expression for each resulting clustering and choose
the one for which BIC is greatest.
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3.5 Availability Inference

Curiously, it is common for a batch queuing system
to continue to accept jobs even when some form of
failure has disabled those jobs from being eligible for
execution on a set of computation nodes. We know of
no automatic detector for this condition that is part
of the production batch-scheduling systems used by
the machines in our study. Moreover, based on our
discussion of this issue with various site administra-
tors, one common solution to this problem seems to
be to rely on the users to call when they observe
that jobs are no longer being released for execution
(even though they can still be queued) and enquire
as to whether there is a “problem.”. If a ubiquitous
service for notification of machine unavailability be-
comes common, QBETS can trivially be augmented
to use such a system. In the meantime, we have
found an elegent method to infer machine failures
directly from the job waittime data.

To avoid incorporating jobs with artificially
lengthened queue delays (due to machine downtime)
in the history used for forecasting, QBETS attempts
to infer when the computational part of the machine
may be down so that these delays can be filtered. No-
tice that the combination of Binomial-based quantile
estimation and history trimming (sans clustering)
provides a relatively general non-parametric method
for estimating bounds in time series. QBETS uses
this generality in two ways.

First, it counts the number of jobs that have ar-
rived between the points in time when the sched-
uler releases jobs for execution. As each count is
generated, it is incorporated into a time series from
which the upper 0.95 quantile (with 95% confidence)
is estimated using a Binomial estimator with history
trimming. When a count exceeds this upper bound,
the QBETS predictor declares the machine to be po-
tentially down until the scheduler releases another
job for execution. This functionality is intended to
mimic user behavior in which a queue that has been
observed to grow “too long” indicates that the com-
putational nodes may be unavailable.

QBETS also maintains a second upper 0.95 quan-
tile predictor to forecast the bounds on the delay
between job releases by the scheduler, again using a
trimming Binomial estimator. If the time between
when jobs are released exceeds the prediction of the
bounds, the machine is also marked down until the
next job is released. This detector is intended to re-
flect a user’s determination that it as been “too long”

since a job was released for execution.
When QBETS temporarily marks a machine as

“down”, jobs submitted during the down periods are
not forecast. Instead, the user is given a signal that
can be interpreted to mean “it is possible that the
machine is down at this moment so no prediction is
available.” Since there is no ground truth as to when
the machines in this study were actually down (no
failure detector were or are available) it is impossible
to know the extent to which this method generates
false positive predictions. In general, however, the
number of jobs for which “no prediction” would
have been returned is a small fraction (usually less
than 1%) of the total job submission count.

4 Results

In this section, we describe our method for evaluat-
ing the performance of our chosen batch-queue wait-
time prediction system, and we then detail a set of
simulation experiments that take as input traces of
job submission logs gathered at various supercom-
puting centers. We describe the details of the sim-
ulations and then report the prediction performance
that users would have seen had the tested system
been available at the time each job in each trace was
submitted.

We investigate the problem in terms of estimat-
ing an upper bound on the 0.95 quantile of queuing
delay; however, our approach can be similarly for-
mulated to produce lower confidence bounds, or two-
sided confidence intervals, at any desired level of con-
fidence. It can also be used, of course, for any popu-
lation quantile. For example, while we have focused
in this paper on the relative certainty provided by
the .95 quantile, our method also effectively produces
confidence bounds for the median (i.e., the point of
“50-50” probability). We note that the quantiles at
the tail of the distribution corresponding to rarely
occurring but large values are more variable, hence
more difficult to estimate, than those nearer the cen-
ter of the distribution. Thus, for typical batch-queue
data, which is right-skewed with a substantial tail,
the upper quantiles provide the greatest challenge
for a prediction method. By focusing on an upper
bound for the .95 quantile, we are testing the limits
of what can be predicted for queue delay.

Note also that our assertion of retroactive pre-
diction correctness and accuracy assumes that users
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would not have changed the characteristics of the
jobs they submitted in response to the availability
of the quantile predictions we generate. Moreover,
the on-line prototype we have developed, while op-
erational, is in use by only a few users (in fact, we
ourselves used QBETS to select which site to exe-
cute many of the simulations that generated the re-
sults reported here), making it difficult to analyze
whether, and how, predictions affect workload char-
acteristics. However, unless such feedback induces
chaotic behavior, our approach is likely to continue
to make correct and accurate predictions under the
new conditions. We do plan to monitor the work-
loads experienced by various sites after the system is
deployed for general use at various large-scale sites
and report on the effects as part of our future work.

4.1 Data Sets

We obtained 11 archival batch-queue logs from differ-
ent high-performance production computing settings
covering different machine generations and time peri-
ods. From each log, we extracted data for the various
queues implemented by each site. For all systems
except the ASCI Blue Pacific system at Lawrence
Livermore National Laboratory (LLNL), each queue
determines, in part, the priority of the jobs submit-
ted to it.

The job logs come from three machines operated
by the San Diego Supercomputer Center during three
different periods: the Intel Itanium 2 based TeraGrid
cluster (sdscteragrid), The SDSC “Blue Horizon”
(sdscblue) and the IBM Power-4 system (datas-
tar). We also use traces from the Cornell Theory
Center (ctc), Lawrence Livermore National Labora-
tory’s SP-2 (llnl), the Cray-Dell cluster operated by
the Texas Advanced Computing Center (lonestar),
the National Center for Supercomputing Applica-
tions TeraGrid cluster (ncsateragrid), the Califor-
nia NanoSystems Institute Dell cluster (cnsidell),
the Tokyo Tech Tsubame Supercomputer (tsub-
ame), the Renaissance Computing Center (Renci)
research cluster (dante) and the Argonne National
Labs/University of Chicago TeraGrid (ucteragrid).
The ctc and sdscblue logs we obtained from Feit-
elson’s workload web site [10], the llnl data appears
courtesy of Brent Gorda at LLNL, and we gathered
the rest of the traces using our own infrastructure
for real-time predictions. Collectively, the data com-
prises over one million job submissions spanning ap-
proximately a 9-year period.

4.2 Simulation

Our simulator takes as input a file containing histor-
ical batch-queue job wait times from a variety of ma-
chine/queue combinations and parameters directing
the behavior of our models. For each machine/queue
for which we have historical information, we were
able to create parsed data files each of which con-
tains one job entry per line comprising the UNIX
time stamp when the job was submitted, the dura-
tion of time the job stayed in the queue before exe-
cuting, the amount of requested execution time, and
the node count.

The steady-state operation of the simulation reads
in a line from the data file, makes a prediction (using
one of the four prediction methodologies covered in
Section 3) and stores the job in a “pending queue”.
The simulation then reads the next job arrival from
the input file and, before making a prediction, po-
tentially performs a number of tasks.

First, the simulator checks whether any jobs that
had been previously queued have exited the queue
since the last job arrived, in which case each such
job is simply added to a growing list of historical job
wait times stored in memory. Although the waiting
time for the new job is carried in the trace, the pre-
dictor is not entitled to “see” the waiting time in the
history until it stops waiting in queue and is released
for execution. When the historical record changes,
the predictor is given the new record so that it can
update its internal state, if necessary.

After the queue has been updated, the current pre-
diction value is used to make a prediction for the new
job entering the queue, the simulation determines
whether the predicted time for that job is greater
than or equal to the actual time the job will spend
in the pending queue (success), or the predicted time
was less than the actual job wait time (failure). The
success or failure is recorded, and the job is placed
on the pending queue. Note that in a “live” setting
this success or failure could only be determined after
the job completed its waiting period.

In our first set of experiments, we use only the
above simulator features to make predictions for
each of the jobs in our traces, varying the predic-
tor used (binomial method, log-normal, log-uniform,
and Weibull). For our second set of experiments, we
add history trimming, automatic job clustering, and
availability inference, as described in Section 3, in
the following ways.

When a job arrives, the predictor makes a predic-
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Machine/Queue Correctness Accuracy
BM LogN LogU Weib BM LogN LogU Weib

cnsidell/ALL 0.92 0.97 0.97 0.81 1.00 0.21 0.48 2.14
dante/dque 0.82 0.75 0.96 0.40 1.00 1.28 0.48 8.82
datastar/TGnormal 0.91 0.83 0.98 0.84 1.00 4.16 0.25 3.51
datastar/express 0.93 0.88 1.00 0.84 1.00 3.16 0.11 3.90
datastar/high 0.90 0.92 0.97 0.85 1.00 0.74 0.27 1.48
datastar/normal 0.91 0.91 0.99 0.88 1.00 0.90 0.17 1.37
ucteragrid/dque 0.89 0.88 1.00 0.94 1.00 11.28 0.00 12.30
lonestar/development 0.92 0.92 1.00 0.92 1.00 3.30 0.00 4.40
lonestar/high 0.96 0.98 1.00 0.94 1.00 0.61 0.22 1.54
lonestar/normal 0.92 0.84 1.00 0.84 1.00 4.00 0.04 4.74
lonestar/serial 0.97 0.95 1.00 0.94 1.00 2.77 0.03 4.54
ncsateragrid/debug 0.93 0.88 0.99 0.91 1.00 2.02 0.14 0.59
ncsateragrid/dque 0.93 0.89 1.00 0.91 1.00 1.06 0.06 0.51
ncsateragrid/gpfs-wan 0.99 1.00 1.00 0.93 1.00 0.16 0.55 0.66
sdscteragrid/dque 0.93 0.86 0.98 0.90 1.00 2.44 0.23 0.26
tsubame/B 0.93 0.94 1.00 0.94 1.00 11.38 0.00 4.22
tsubame/default 0.93 0.84 1.00 0.84 1.00 13.16 0.01 6.22
tsubame/gaussian 0.96 0.94 1.00 0.95 1.00 137.71 0.08 23.15
tsubame/high 1.00 0.97 1.00 0.97 1.00 210.66 0.14 37.95
ctc/ALL 0.94 0.97 1.00 0.92 1.00 0.48 0.04 0.49
llnl/ALL 0.96 0.99 1.00 0.94 1.00 0.29 0.08 0.63
sdscblue/high 0.90 0.90 1.00 0.79 1.00 0.53 0.15 1.51
sdscblue/low 0.90 0.99 1.00 0.89 1.00 0.36 0.11 1.09
sdscblue/normal 0.89 0.94 1.00 0.85 1.00 0.44 0.09 1.13
sdscblue/express 0.92 0.90 0.99 0.84 1.00 1.12 0.17 2.20

Table 1: Correctness and accuracy results of four predictors without QBETS . Under Correctness, values
>= 0.95 indicate a correct result. Under Accuracy, highest RMS error ratio indicates most accurate
method.

tion using its current historical window as before and
in addition updates the availability inference engine
with the current state of the queue, which poten-
tially changes the state of the machine to ’unavail-
able’. When a job in the pending queue moves into
the historical window, it is passed to the predictor,
which may then trim the history as previously de-
scribed. Every time a pre-determined number (1000
in our study) of simulated jobs are processed, auto-
matic clustering is performed on the entire job his-
tory.

The code implementing the simulator is modular-
ized so that any individual component of the sys-
tem (predictor, history trimming system, clustering
algorithm, availability inference algorithm) can be
toggled on/off or replaced at runtime. In addition,
the nature of the prediction employed methodologies
allow the simulator to provide an “on-line” service;

meaning it can be executed in a mode where it waits
in an idle state until a new job datum arrives, at
which point it will update its history and refresh its
predictor.

4.3 Correct and Accurate Predictions

We define a correct prediction to be one that is
greater than or equal to a job’s eventual queuing de-
lay, and a correct predictor to be one for which the
total fraction of correct predictions is greater than
or equal to the success probability specified by the
target quantile. For example, a correct predictor of
the 0.95 quantile generates correct predictions for at
least 95% of the jobs that are submitted.

Notice that it is trivial to specify a correct pre-
dictor under this definition. For example, to achieve
a correct prediction percentage of 95%, a predictor
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Machine/Queue Correctness Accuracy
BM LogN LogU Weib BM LogN LogU Weib

cnsidell/ALL 0.96 0.93 0.93 0.97 1.00 0.05 1.55 0.51
dante/dque 0.80 0.69 0.87 0.72 1.00 0.05 0.71 0.40
datastar/TGnormal 0.97 0.90 0.97 0.96 1.00 0.46 0.85 0.70
datastar/express 0.97 0.87 0.99 0.93 1.00 0.78 0.59 1.28
datastar/high 0.96 0.95 0.98 0.95 1.00 0.31 0.78 0.75
datastar/normal 0.95 0.92 0.97 0.93 1.00 0.23 0.65 1.00
ucteragrid/dque 0.96 0.94 1.00 0.96 1.00 0.25 0.19 0.78
lonestar/development 0.98 0.92 1.00 0.96 1.00 2.12 0.07 2.85
lonestar/high 0.98 0.95 1.00 0.96 1.00 0.34 0.29 0.81
lonestar/normal 0.96 0.89 0.99 0.94 1.00 0.07 0.50 0.66
lonestar/serial 0.97 0.81 1.00 0.92 1.00 1.17 0.21 0.49
ncsateragrid/debug 0.96 0.86 0.98 0.91 1.00 1.37 0.55 2.02
ncsateragrid/dque 0.93 0.91 0.97 0.93 1.00 0.17 0.46 1.06
ncsateragrid/gpfs-wan 0.92 0.98 1.00 0.93 1.00 0.38 0.66 0.96
sdscteragrid/dque 0.96 0.88 0.98 0.93 1.00 0.12 0.89 0.50
tsubame/B 0.98 0.91 1.00 0.97 1.00 2.45 0.29 1.27
tsubame/default 0.97 0.94 1.00 0.96 1.00 0.05 0.18 0.73
tsubame/gaussian 0.98 0.95 1.00 0.97 1.00 177.20 0.08 8.37
tsubame/high 0.99 0.97 1.00 0.98 1.00 70.46 0.17 18.76
ctc/ALL 0.96 0.93 0.99 0.93 1.00 0.48 0.18 1.66
llnl/ALL 0.97 0.95 0.99 0.95 1.00 0.65 0.57 1.58
sdscblue/high 0.96 0.96 0.97 0.94 1.00 0.24 0.87 0.97
sdscblue/low 0.96 0.96 0.99 0.95 1.00 0.26 0.38 1.08
sdscblue/normal 0.97 0.95 0.97 0.95 1.00 0.24 0.55 1.03
sdscblue/express 0.97 0.91 0.98 0.94 1.00 0.17 0.50 0.55

Table 2: Correctness and accuracy results of four predictors using QBETS . Under Correctness, values
>= 0.95 indicate a correct result. Under Accuracy, highest RMS error ratio indicates most accurate
method.

could return an extremely large prediction (e.g., a
predicted delay of several years) for 19 of every 20
jobs, and a prediction of 0 for the 20th. To dis-
tinguish among correct predictors, we compare their
accuracy in terms of the error they generate, where
error is some measure of the difference between pre-
dicted value and the value it predicts.

In this work, we will use Root Mean Square (RMS)
error for the over-predictions as a measure of accu-
racy for correct predictors. We consider only over-
prediction error, as we believe that the error gener-
ated for the percentage of jobs that are incorrectly
predicted is relatively unimportant to the user. For
example, among predictors that are 95% correct, it
is our contention that users would prefer one that
achieves lower over-prediction error for the 95% of
the jobs it predicts correctly over one that achieves
a lower error rate on the 5% that are incorrectly pre-

dicted at the expense of greater overall error in the
correct predictions.

Note that one cannot compare predictors strictly
in terms of their error without taking into considera-
tion their correctness. For example, a predictor that
estimates the mean of each stationary region will gen-
erate a lower RMS than one that estimates the 0.95
quantile, but the mean predictor will not provide the
user with a meaningful delay bound (i.e., one having
a probability value attached to it). Thus, for a given
job workload, we only compare predictor accuracy
among those predictors that are correct.

Note also that, while RMS error is used widely
as a measure of accuracy for predictions of expected
values (e.g. in time series), its meaning is less clear
in the context of quantile prediction. In this paper,
we are focusing on estimating a time value which
is greater than the wait time of a specific job with
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probability .95. Therefore, if the distribution of wait
times is highly right-skewed, a predictor may be
working quite well and still have a very high RMS
error. Thus, the actual value of the RMS error is
not particularly meaningful; however, it is still use-
ful as a means of comparison: For a particular set
of jobs, if one correct prediction method has a lower
RMS than another, then the first method, at least
by this measure, produces tighter, less conservative
upper bounds than the second.

4.4 Experiments

We perform two experiments in order to show the
effectiveness of our prediction methods. The first ex-
periment compares the correctness and accuracy of
four different predictors for all data sets without the
use of history trimming, job clustering or availability
inference features. The results of this experiment are
shown in Table 1. From the table, we first note that
while each of the predictors is correct for some sub-
set of the traces, the only predictor that is correct for
all traces is the one based on the log-uniform distri-
bution. Thus it might appear that the log-uniform-
based method is the obvious winner for batch-queue
prediction; however, upon closer inspection it be-
comes clear that the only reason this method is get-
ting 95 percent or more of the predictions correct
for any given trace is due to its extremely conser-
vative individual predictions. This fact is reflected
in the extremely low RMS ratios for the log-uniform
method shown in Table 1 under Accuracy, which
clearly indicates that the distance between the log-
uniform predictions and the actual values is much
greater than, say, the distance between the bino-
mial method predictions and actual values for the
same set of jobs. Note that in the table, bold val-
ues indicate that the shown method also was correct
for that machine/queue/predictor tuple. The over-
conservativeness of the log-uniform predictions is also
borne out by the fact that, in general, its fraction of
correct predictions is well above the target value of
.95.

From the first set of experiments, we learned that
there is no method that is both more correct and
more accurate than the others. Our second exper-
iment uses a combination of all of the features we
have developed to improve both the correctness and
the accuracy of each of the techniques. In Table 2,
we show the results of the QBETS system on the
same traces, varying only the predictor used dur-

ing the simulation. Again, values in bold indicate
machine/queue/predictor tuples which were correct.
From these results, we can begin to see that the bi-
nomial method clearly stands apart from the rest in
terms of both correctness and accuracy. Out of 25
traces, the binomial method was correct 22 times,
which is more often than all others except for the
log-uniform. Further, note that out of the 21 traces
for which both the binomial and log-uniform meth-
ods were correct, the binomial was more accurate
for every one of them. Additionally, overall, the
binomial method was both correct and more accu-
rate than any of the other predictors in 15 out of
25 traces; this number far exceeds the performance
of any other predictor (log-normal 2/25, log-uniform
2/25, Weibull 5/25).

4.5 Correctness Analysis

Table 2 shows that when we use QBETS with the
binomial-method predictor, we are able to predict
bounds correctly for 95% or more individual job
wait times for almost all of our traces. In this sec-
tion, we explore the reasons for the effectiveness of
QBETS and suggest that, for these reasons, the non-
parametric approach should perform well when ap-
plied to other traces in the future.

In previous work [4], we showed that using history
trimming is essential to ensure that a predictor not
suffer from an inability to adjust to drastic infrequent
increases in overall job queue wait times. In Figure 1,
we can see the effect such drastic regime shifts have
on a predictor without history trimming, and observe
how trimming positively effects correctness on an ex-
ample trace, the CNSI Dell cluster default queue (cn-
sidell/ALL). On the y-axis we show delay measured
in seconds. Along the x-axis are Unix time stamps.
The relatively straight line of values near the bottom
of the graph depicts .95 quantile predictions made by
the binomial method, but without QBETS enhance-
ments, during a short time period. We can see that
although a large number of observations lie above
these predictions in the right half of the graph, there
are enough relatively low values in the history that
the inferred .95 quantile rises only very slowly. The
other set of predictions, represented on the graph
by a number of near-horizontal short segments, were
made by the binomial method with QBETS over the
same time period, is able to react to the shift toward
longer wait times and is therefore able to produce
more correct predictions. In general, this adaptivity
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Figure 1: Job queue delay times and predictions
made with and without QBETS on the CNSI Dell
cluster. Dark features (black) indicate actual job
wait times, the medium shaded (cyan on color dis-
plays) linear features depict predictions made with-
out QBETS , and the light colored features (red)
depict predictions made with QBETS .

greatly improves a predictor’s ability to achieve its
desired correctness, because such shifts are common
in almost all of our traces. We note that while his-
tory trimming is an effective enhancement for all of
the predictors, it works especially well with the bino-
mial predictor; we posit that this is due to the fact
that the binomial predictor is set up to make accurate
inferences about quantiles, so that it is able to find
changepoints in those quantiles reliably. In essence,
the accuracy of the method (Cf. Section 4.6) feeds
its correctness.

Although QBETS allows the predictor to react
to drastic wait-time shifts, there are still traces for
which it fails to meet the target percentage of cor-
rect predictions. In the cases where QBETS fails, we
observe that in general, the reason is due to frequent
drastic upward trends in wait times, which appear
as ’spikes’ in the trace graphs. Figure 2 shows such
spikes in the middle of the Dante default queue trace.
As we can see from this graph, if a large number of
jobs is queued in a relatively short amount of time,
and all of them experience wait times that are greater
than the current quantile prediction, our method will
fail to correctly make predictions for most of them,
due to the fact that a wait time is not added to the
predictor’s available history until it comes out of the
queue. Although the availability inference method
attempts to discover these degenerate data cases, it
cannot discover them all. In the traces for which
QBETS with binomial predictor is unable to succeed,

Figure 2: Actual queue delay times and QBETS bi-
nomial method predictions illustrating how frequent,
drastic linear delay increases on the Dante cluster
cause the method to fail. Dark features (black) show
actual observed job wait times, while the light fea-
tures (red on color displays) depict QBETS predic-
tions.

such as the dante default queue trace shown here,
there are many spikes that the availability inference
method does not eliminate; their negative impact on
the overall correctness measure outweighs the num-
ber of jobs the method does correctly capture.

While one might be tempted to use an extremely
conservative prediction method in order to combat
this eventuality, this strategy may require such ex-
treme measures as to make such a method unreason-
able for non-degenerate cases. We note that even the
log-uniform method, which is the most conservative
method we evaluate, fails to be correct in the face of
the dante default queue trace.

4.6 Accuracy Analysis

In terms of accuracy, the results presented above sup-
port two assertions. First, QBETS is the most accu-
rate of the methods we have tested. Second, the non-
parametric binomial quantile estimator is more effec-
tive than the corresponding parametric approaches.
That is, when the change-point detection, clustering,
and machine downtime detection features of QBETS
are omitted, and we are simply applying the bino-
mial prediction method to all jobs using the entire
history, the binomial method still provides more ac-
curate over-predictions than the other methods.

This greater accuracy, we believe, is because the
binomial technique estimates directly only a specific
quantile and not the entire distribution. In contrast,
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Figure 3: Trace from the Tsubame machine, Gaus-
sian submission queue indicating large difference be-
tween log-normal and binomial method QBETS pre-
dictions after the training period. Dark features
(black) show actual observed job wait times, medium
shaded features (cyan on color displays) depict less
conservative predictions using the log-normal, and
light features (red) show predictions when the bino-
mial method was used.

parametric approaches using MLE attempt to “fit”
the data to all quantiles and in so doing may not es-
timate the specific quantile of interest as accurately.
In particular a log-normal or Weibull model such as
we have chosen to evaluate in this experiment (and
typically used for such highly right-skewed data as in
our traces) suffers from the fact that quantiles out in
the tail of the distribution are very sensitive to the
estimated population parameters. For the same rea-
son, using a estimation technique such as MLE, the
estimated parameters are sensitive to a few very high
values in the data set. Thus an estimated quantile
for such a distribution is highly dependent on the
model’s ability, typically based on a small number
of high values in the data, to fill in its right tail. In
practice, the end result of this phenomenon is usually
that the quantile estimates produced by these para-
metric models are much more conservative than the
ones that can be made using the binomial method,
which does not need to take into account the relation-
ship between high and (irrelevant for our purposes)
low values in the way that curve fitting does.

One fundamental reason for the superior accuracy
of predictions generated using QBETS stems from
the automatic job-clustering feature, which allows
the predictor to only consider “like jobs” when mak-
ing its prediction instead of all jobs, which may be
only loosely related to the job of interest in terms of

experienced wait time. During the experiment, we
observed that QBETS automatically grouped jobs
into three to five clusters, never choosing only one
group for all jobs. Additionally, we observe that not
only is QBETS more correct in general, but that
QBETS with the binomial method predictor out-
performs the other predictors in most of the traces.
Again, the reason this is true is due to the fact
that in general the binomial method is making more
accurate predictions, as we see from Table 2 and
Table 1; this amounts to heightened sensitivity to
change-points in the data, thus allowing the history-
trimming feature to activate more often than it does
for other predictors.

This being said, there are a few cases where the
parametric models were in fact more accurate than
the binomial method. In these cases, most notably
the tsubame/guassian and tsubame/high traces, we
observe that the primary reason why the log-normal
is achieving so much better RMS errors stems from
the fact that in those traces, the training period data
included a disproportionate number of very large
wait times relative to the experimental set. The
training set can be seen in Figure 3 as the period of
observations before any predictions are being made;
notice that the binomial method starts out making
very conservative predictions based on the large num-
ber of high values in the training set, while there are
enough low values to bring down the MLE log-normal
parameters, making these predictions less conserva-
tive. In this case, data for the training period was
bimodal, with about 10% of the wait times in an
extremely high mode, orders of magnitude higher
than the bulk of the wait times in the lower mode.
This higher mode, which would have caused the log-
normal predictions to be incorrect, disappeared at
the end of the training period, leaving the binomial
method with an unrepresentative data set to begin
with and also rendering the log-normal predictions
both correct and accurate. We note two things, how-
ever: First, the experimental set was only slightly
larger than the training set, so that there was not
time to balance the anomalies in the training data,
and so may not have been reflective of long-term
performance; second, by the middle of the experi-
mental set, the binomial method predictor was able
both to make more accurate predictions than the log-
normal predictor for the relatively short wait times
and also to maintain correctness when the wait times
suddenly became longer again at the end of the trace.
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5 QBETS Impact

Currently, QBETS is providing predictions to a
growing base of HPC researchers and users around
the world. Our batch queue monitoring sensors are
gathering real-time batch queue delay data from 16
super-computers, 24 hours a day. From this database
of job delay information, the QBETS prediction soft-
ware is able to constantly generate up-to-date quan-
tile predictions through a number of interfaces. Over
the past several months, our records indicate that the
QBETS system has been accessed over 50000 times
from approximately 600 unique, non-searchbot In-
ternet hosts. This level of activity indicates that
users interested in integrating real-time QBETS pre-
dictions into their projects are using a number of
interfaces, including a C API (in the form of a UNIX
library), UNIX command line tools (for curious users
and administrative scripting), a dedicated QBETS
Web Service (for integration into existing Web Ser-
vice based projects), and our own custom QBETS
web site [27]. Using these interfaces, researchers
have been able to use QBETS to accomplish a num-
ber of tasks, including the provision of HPC site se-
lection hints for users (TeraGrid User Portal [33]),
in-advance workflow scheduling for disaster recovery
applications (LEAD Project [29]), redundant batch
queue resource provisioning for fault-tolerant sys-
tems (LEAD/VGrADS [34]). Finally, we ourselves
are building on the availability of QBETS by im-
plementing a new system for making virtual advance
reservations. Recently, we have run experimental tri-
als that show our system is capable of providing users
the ability to request an advance reservation, and
probabilistically servicing such requests using regu-
lar batch controlled resources, without modification
to the underlying batch queue software or adminis-
trative policies. As the popularity of QBETS contin-
ues to grow, we expect to add more systems to the
infrastructure and possibly even integrate our work
into existing batch queue resource managers to make
QBETS part of many default HPC software installa-
tions.

6 Conclusions

Space-shared parallel computers use queuing systems
for scheduling parallel jobs to processor partitions in
such a way that each job runs exclusively on the pro-
cessors it is given. In previous work [4, 5] we have
proposed a method for estimating bounds on the

queuing delay experienced by each each job and show
that this non-parametric method (termed the Bino-
mial Method) outperforms competitive approaches.

Still, while working with traces comprising some
1.4 million jobs from 11 supercomputer sites which,
we observed several features of the data that have
a negative effect on the performance of all of our
prediction methods. First, the data can exhibit
what might be called long-term non-stationary, in
the sense that there are infrequent events (possibly
changes in policy or other fundamental changes to
the operation of the queue) that have a substantial
and lasting effect on queueing delays. Second, we ob-
serve that while some jobs request small allocations,
other allocations are much larger. Such a situation
leads to a predictor making very conservative esti-
mates for the small jobs since we are concerned with
upper bound quantile predictions. It seems that jobs
may fall into “groups” of like jobs that one might ex-
pect to experience roughly similar queue wait-time
delays. Finally, we note that in several of our traces,
we notice sudden “spikes” in wait time delay, ex-
pressed by a drastic increase in job delay experienced
in a very short time, likely indicating that the ma-
chine of interest is experiencing a period of unavail-
ability.

We therefore introduce QBETS , which combines
history trimming, automatic job clustering, availabil-
ity inference, and various prediction methodologies
to provide a batch queue job wait time prediction
system which is shown to perform better than more
naive approaches for almost all of the data we have
access to. Additionally, we show that QBETS , with
the non-parametric binomial method quantile predic-
tor invented in our previous work, is both more cor-
rect and more accurate than any other tested tech-
nique and prediction method.

In the future, we intend to continue to improve
both the correctness and accuracy of QBETS by
exploring alternative clustering and prediction tech-
niques and applying them experimentally to our ever-
growing set of machine traces. Additionally, we in-
tend to continue to provide real-time batch-queue
wait-time predictions to the HPC user community
through continued involvment in a wide variety of
projects, and through our own batch queue predic-
tion service oriented web site. Finally, we intend to
use many of the techniques presented in this work
towards defining a functionally static resource defi-
nition out of highly dynamic, heterogeneous under-
lying compute resources.
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