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Abstract 
Current resource managers do not have adequate node allocation and distribution strategies to efficiently schedule jobs on 
multi-core multi-threaded systems.  Clusters composed of multiple cores per processor as well as multiple processors per 
node are presenting new challenges to users when trying to run their program efficiently on this class of machines. New 
allocation algorithms and their respective user interfaces need to be devised to ensure minimum contention for cache and 
memory, reduced on-chip contention, etc. as well as evaluate trade-offs between resource contentions.  

1. Introduction 
Multi-core processing is a growing industry trend as single-core processors rapidly reach the physical limits of 
possible complexity and speed. Both AMD and Intel are currently marketing dual-core processors. Quad cores are 
currently available and CPUs with larger core count will be available in 2008.  

In a clustered environment, an important factor contributing to an application’s performance is the layout of its 
processes onto the nodes, i.e. workload balancing. Developers currently worry about finding the optimal layout 
for their application on CPUs and nodes. With the introduction of multi-core and hyper-threaded processors, the 
level of complexity increases considerably. A common problem with today’s resource managers e.g. LSF[3], 
PBSpro[4], etc. is that they consider cores to be “normal” CPUs without taking into consideration locality 
between cores and memory, resources shared between cores, or other architectural features of the system. For 
users using the default node allocation scheme, the lack of extra support in the resource managers can result in a 
performance degradation and variability. 

The goals of this paper are to illustrate the problems that developers encounter when running their applications in 
a multi-socket multi-core clustered environment and to present solutions to these problems. We discuss how we 
enhanced an open-source resource manager, SLURM, to better support multi-core computing environments. 
SLURM is an integral part of HP’s XC Cluster offering [5]. The development of SLURM is a joint effort between 
Lawrence Livermore National Laboratory (LLNL), Hewlett-Packard, Bull, and LinuxNetworX. The HP XC 
cluster [5] is a scalable, Linux-based Supercomputing Utility, enabling high system utilization. It leverages 
industry-leading technology from open source, HP and its partners.  

The paper starts with a brief description of multi-core architectures. We then introduce the SLURM resource 
manager and describe the current state of multi-core support in resource managers. We show the problems users 
encounter when using multi-core systems and present our proposed solutions to these problems. We show 
performance data illustrating that both a standard benchmark (HPLinpack) and an ISV application (LSDyna) 
achieve sizeable performance improvements using the features available in the new multi-core aware SLURM.  

2. Multi-core architectures 
To achieve higher processor density and higher performance per watt, processor architectures are focusing on 
multi-core designs. CPU vendors have exploited the traditional methods to increase performance, such as higher 
clock speeds and improved internal parallelism, to the fullest and must now rely on providing resources for 
explicit parallelism. Several multi-core processor architectures that are becoming available in HP systems are 
discussed below. 

The dual-core AMD Opteron [6] provides two 64-bit Opteron cores on a single die.  Each core within a dual-core 
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Opteron has two levels of cache with none of the levels shared between cores.  L1 is a split 64KB/64KB 
instruction/data cache, and L2 is a unified 1MB cache.  In 2007, AMD plans to offer a 4-core version of the 
Opteron which will also likely have a shared level 3 cache.   

The dual-core Intel Xeon [7] provides two 64-bit Xeon Extended Memory 64 Technology (EM64T) cores on a 
single die.  Each core has two levels of cache with none of the levels shared between cores.  L1 is a split 
64KB/64KB instruction/data cache, and L2 is a unified 2MB cache.  The Intel Xeon EM64T also supports 2-way 
Hyperthreading within each core resulting in one chip providing 4 logical processors to the operating system.  In 
2007, Intel released a 4-core version of the Xeon which, with Hyperthreading, would provide 8 logical processors 
in a single package. 

The Intel Itanium Processor Family (IPF) incorporates a dual-core design in the next major revision of the 
processor code named Montecito [8]. Compared with earlier releases, the Montecito release of IPF will provide 
two Itanium 2 cores on a single die, a separate L2 I-cache, increased cache capacity, extra functional units for 
shifting and population count, and Hyperthreading.  Hyperthreading in Montecito provides hardware support for 2 
logical threads per physical core providing a total of 4 logical processors to the operating system.  

3. SLURM: Simple Linux Utility for Resource Management 
A resource manager is a tool that dispatches jobs to resources according to specified policies and constrained by 
specific criteria. SLURM is an open-source resource manager designed for Linux clusters of all sizes. The 
overview of the SLURM architecture presented in this section is an edited excerpt of the documentation available 
on the SLURM website [1] and the paper by Jette and Grondona [2].  

SLURM provides three key functions: First, it allocates exclusive and/or non-exclusive access to resources 
(compute nodes) to users for some duration of time so they can perform work. Second, it provides a framework 
for starting, executing, and monitoring work (typically a parallel job) on a set of allocated nodes. Finally, it 
arbitrates conflicting requests for resources by managing a queue of pending work.  

SLURM consists of a slurmd daemon running on each compute node, a central slurmctld daemon running on a 
management node and six command line utilities: srun, scancel, sinfo, squeue, scontrol, and smap which can run 
anywhere in the cluster. 

The six SLURM commands have the following functionalities: 

• srun is used to submit a job for execution, allocate resources, attach to an existing allocation, or initiate 
job steps.  

• scancel is used to cancel a pending or running job or job step. It can also be used to send an arbitrary 
signal to all processes associated with a running job or job step. 

• scontrol is the administrative tool used to view and/or modify SLURM state.  

• sinfo reports the state of partitions and nodes managed by SLURM. It has a wide variety of filtering, 
sorting, and formatting options. 

• squeue reports the state of jobs or job steps. It has a wide variety of filtering, sorting, and formatting 
options. By default, it reports the running jobs in priority order and then the pending jobs in priority order. 

• smap reports state information for jobs, partitions, and nodes managed by SLURM, but graphically 
displays the information to reflect network topology. 

SLURM uses a general purpose plug-in mechanism to select various features such as scheduling policies and 
node allocation mechanisms which allows it to be flexible and utilize custom as well as default methods. When a 
SLURM daemon is initiated, it reads a configuration file to determine which of the available plug-ins should be 
used. 
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4. Current state of multi-core/multi-threaded support  
In early 2006, we investigated current resource managers to understand if they had the adequate scheduling and 
node allocation strategies to efficiently schedule jobs on multi-core/multi-threaded systems. At the time of the 
investigation, we were not aware of any resource manager which has multi-core multi-threaded support. We 
investigated PBSpro 7 [4] and concluded that it allocates processors as its finest granularity. The latest version of 
LSF 6.2 [3] has an option which allows it to allocate resources at the core level but without taking into 
consideration the existing characteristics between cores. In versions of SLURM prior to v1.2 [1], the lack of 
multi-core support meant that it viewed cores as CPUs and did not make a distinction at the processor level.  

Below we illustrate the problem that users typically encountered when using the default block distribution in 
SLURM (prior to v1.2) on a four-node dual-socket dual-core cluster. 

 
Figure 1 four-node dual-core dual-processor cluster 

Figure 1 shows a four-node cluster (Node 0 to 3) with dual-socket dual-core nodes. SLURM allocates resources at 
the node/CPU granularity level which means that for this example it would view each node as having four CPUs. 
An 8-process job is initiated using SLURM by typing: “srun –n 8 a.out”. If the above system contained single-
core sockets, the default layout would result in having processes 0 and 1 on Node 0, processes 2 and 3 on Node 1, 
processes 4 and 5 on Node 2 and processes 6 and 7 on Node 3. In a dual-core environment, the default node 
allocation would be processes 0 and 1 as well as processes 2 and 3 on Node 0 and processes 4, 5, 6, and 7 on 
Node 1 leaving Node 2 and Node 3 unallocated for this job. The latter allocation is not the expected default layout 
for the non-expert user and can result in detrimental performance for certain types of applications such as memory 
bound applications. The two processes on the cores within the same processor have to share hardware resources 
which could result in resource contention.  

The existing pre-defined distributions, namely block and cyclic, are not adequate in a multi-core multi-threaded 
environment since they do not make a distinction between sockets and cores/threads. The extra levels of logical 
processors (cores and threads) in the CPU/socket should allow the job scheduler to create more elaborate 
distribution schemes.  

In the next section, we present the features we are currently adding to SLURM as part of the multi-core support. 

5. Identified problems 
We interviewed users with experience running applications on multi-core and multi-threaded systems to 
understand the problems they experience as well as the features they seek. We researched prior and ongoing work 
in the Linux kernel community to allow the Linux kernel users to take better advantage of the new architectures. 
We were especially interested in the different level of affinities in the Linux kernel and its schedulers.  

There are three major features which have been introduced in the Linux 2.6 kernel that are of interest when 
discussing multi-core support and CPU affinity.  These features include: 

• The new “O(1)” job scheduler 

• Kernel support for both process and memory affinity 
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• On-going work in page migration 

At the end of our investigation phase, we identified three major enhancements that would make SLURM more 
attractive to users by increasing its usefulness in a multi-core environment. 

The enhancements are: 

• Need for a flag or feature allowing users to “pin” processes to logical processors (node, socket, core or 
thread). HPLinpack and LSDyna experiments, carried out on a four node dual-core Opteron cluster, 
confirm the interviewees’ conclusions that pinning the processes to the cores does give better as well as 
repeatable timing results. For the non-expert users, we need to provide higher-level flags and have the 
pinning happen automatically. 

• Need for new node allocation and distribution strategies for clusters of multi-core systems. This includes 
being able to specify a block or a cyclic distribution at the core level and at the thread level as well as 
adequate default distributions for the cores and the threads. 

• Need for an adequate multi-core user interface which support the new multi-core enhancements. The user 
interface consists of low-level expert flags as well as high-level flags. The latter allows users to take 
advantage of the lower level logical processors (core or thread) without having to understand the system 
architecture in detail. 

6. Pinning processes to cores 
Process affinity is at the heart of the SLURM multi-core support since the Linux kernel job scheduler is not able 
to optimally assign processes to cores for high-performance technical computing applications. OS job schedulers, 
originally designed to achieve maximum throughput for oversubscribed workloads in single-core systems, when 
used for perfectly subscribed jobs in multi-core systems typically try to distribute load across available processors 
sometimes migrating processes to temporarily idle cores instead of staying where the cache is hot.  Users have 
observed that by pinning processes to cores, performance can be increased.  This is a result of avoiding the 
overhead of migrating processes to cores with cold caches, thereby staying close to the caches that already contain 
the data a process is accessing.  This is true even on systems comprised of multiple single-core processors.   

Linux provides several affinity controls to pin or bind processes to cores.  We have selected the 
sched_setaffinity(…) and the sched_getaffinity(…) interfaces provided in the Linux 2.6 kernel to implement our 
pinning feature [9]. These interfaces allow users, or in our case SLURM on behalf of a user, to set and get a 
process's CPU affinity mask. Setting a process’s CPU affinity allows SLURM to specify which scheduling queues 
are allowed for a given process thereby providing them with the ability to bind a process to a specific core or set 
of cores.  One of sched_setaffinity(…)’s parameter is the affinity bit mask where a 1 indicates that a process may 
use the core (ID represented by the bit position).  A mask of all 1’s indicates the process may use any core (at the 
discretion of the OS).  A mask containing a single 1 indicates a process is bound to a specific core.   

We have added the ability to SLURM for users to bind their tasks to particular logical processor (sockets, cores 
per socket, and threads per core) as well as sets of logical processors using high-level flags as well as an expert 
low-level flag (see Section 9).  We developed the SLURM affinity task plug-in using the task plug-in 
infrastructure [1]. The former encompasses all the CPU affinity pieces needed, including automatic mask 
generation when using the high-level flags, to support the process to core pinning functionality in SLURM.  We 
allow users to take advantage of this new feature in two ways. They can either provide the affinity mask directly 
to SLURM via the –cpu_bind flag or by using high-level flags (see Section 9).  

One complication that arises when binding processes to cores is that different combinations of hardware, BIOS, 
and operating systems result in different core numbering schemes.  Given, the fact that the core indexing varies 
among different systems, it is not possible to devise a single set of masks that would achieve the same results on 
all systems.  When specifying masks directly with –cpu_bind users must be aware of the core mapping in order to 
achieve a desired placement across the processors and cores.  The higher-level switches use an abstraction layer 
which will make the logical processor to physical core mapping transparent to users (see Section 10). 
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7. Node selection and allocation  
SLURM uses a general purpose plug-in mechanism for selecting various features. The node selection plug-in also 
called select plug-in determines the set of nodes to be used for a given job based on the user’s specified 
requirements. This type of plug-in is accessed within the slurmctld daemon.  

SLURM currently supports two platform-independent node-selection plug-ins: 

• select/linear – The default plug-in selects nodes assuming a one-dimensional array of nodes utilizing a 
best-fit algorithm. This plug-in does not allocate individual processors, memory, etc. and is recommended 
for systems without shared nodes.  

• select/cons_res – A plug-in that can allocate individual processors, memory, etc. within nodes. This plug-
in is recommended for systems with programs sharing nodes.  

It is important to notice that only one select plug-in can be specified for a given configuration and that the choice 
of select plug-in is done on SLURM start-up.  

We researched the different SLURM components related to node allocation to figure out how to integrate the 
multi-core support. The conclusion of our investigation phase is that because the multi-core support should 
become an inherent part of SLURM it shouldn’t be implemented as a separate node-selection plug-in.  

We updated the select/linear plug-in, the select/cons_res plug-in as well as the node-selection infrastructure 
module with a mechanism that allows selection of logical processors at a finer granularity. The updated 
mechanism continues to support node level allocation and will support finer grained distributions within the 
allocated nodes. Users will be able to specify the number of nodes, sockets, cores and threads. Their applications 
should be distributed across a specified number of logical processors and the enhanced node allocation 
mechanisms will grant the requested layout if the resources are available. 

8. New multi-core process distributions 
The introduction of multi-core processors allows for more advanced distributions. Our first new approach is to 
create planes of cores. We plan to divide the cluster into planes (including a number of cores on each node) and 
then schedule first within each plane and then across planes. This approach results in new useful layouts. On a 
dual-socket node with quad-core sockets, this distribution could result in: as few as one plane (i.e. where the 
logical processors are scheduled by first filling up the nodes and then scheduling across the nodes) or as many as 
eight planes (always schedule across the nodes first). Two planes would provide better locality but potentially 
more contention for other resources. On the other hand, four planes (scheduling across the logical processors) 
would minimize contention for cache and memory. 

We reused the srun “–distribution” flag to allow users to specify the new distribution methods (see Section 9): 

“srun –distribution plane=<# of cores within a plane> <srun arguments>” 

9. Enhanced user interface 
The increase in complexity of the processors and thereby of the systems makes it more difficult for users to 
specify a job’s layout on the existing resources. Our goal is for SLURM to provide an intuitive user interface to 
help users allocate their jobs in this environment.  We have enhanced the user interface such that it is powerful for 
expert users, easy to use for naïve users as well as satisfactory for intermediate users. We preserve the existing 
interface and functionality to ensure backward compatibility. 

As described above, several features required for adequate multi-core support have been identified as absent from 
SLURM. Adding these new features to SLURM required enhancing the user interface to providing users with the 
necessary functionality.  

The enhancements impacting the user interface are: 

• A finer grained node allocation method. We allow users to specify the number of sockets, cores and 
threads they want for their applications. We extended srun’s user interface as well as the reporting tools 
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sinfo, scontrol, and squeue to correctly handle the various levels of logical processors. 

• New distribution methods.  The srun user interface is expanded to accommodate for the new distributions. 

• A flag allowing users to “pin” processes to cores. The new srun –cpu_bind flag provides users with that 
functionality. The high-level flags (Category I and II described below) pin processes to logical processors 
transparently to the users. 

The complexity of the srun command line increases dramatically with the complexity of the systems SLURM 
manages. We experienced both an increase in the srun command-line length as well as in the number of flags a 
user is required to remember. Following the existing SLURM philosophy, we have also devised a number of 
shortcuts to limit the length of command line.  

Overview of new srun flags 
It is important to note that many of these flags are only meaningful if the processes' affinity is set. In order for the 
affinity to be set, the task/affinity plugin must be first enabled in slurm.conf:  

 TaskPlugin=task/affinity          # enable task affinity    

In the case where we set the affinity at a higher level than the lowest level of logical processor (core or thread) we 
allow the processes to roam within a specific socket or core. We introduce the notion of fat masks to describe 
affinity masks which bind a process to more than one logical processor. 

Several new flags have been defined to allow users to better take advantage of the new architecture by explicitly 
specifying the number of sockets, cores, and threads required by their application. Figure 2 summarizes the new 
multi-core flags.  

Low-level (explicit binding)  
--cpu_bind=...  Explicit process affinity binding and control options  
High-level (automatic mask generation)  
--sockets-per-node=S Number of sockets in a node to dedicate to a job (minimum or range)  
--cores-per-socket=C Number of cores in a socket to dedicate to a job (minimum or range)  
--threads-per-core=T Number of threads in a core to dedicate to a job (minimum or range)  
-B S[:C[:T]] Combined shortcut option for --sockets-per-node, --cores-per-socket, --threads-per-core 
New Distributions  
-m / --distribution  Distributions of: block | cyclic | hostfile | plane=x | [block|cyclic]:[block|cyclic]  
New Constraints  
--minsockets=MinS Nodes must meet this minimum number of sockets  
--mincores=MinC Nodes must meet this minimum number of cores per socket  
--minthreads=MinT Nodes must meet this minimum number of threads per core  
Memory as a consumable resource  
--job-mem=mem maximum amount of real memory per node required by the job.  
Task invocation control  
--ntasks-per-node=ntasks number of tasks to invoke on each node  
--ntasks-per-socket=ntasks number of tasks to invoke on each socket  
--ntasks-per-core=ntasks number of tasks to invoke on each core  
Application hints  
--hint=compute_bound use all cores in each physical socket  
--hint=memory_bound use only one core in each physical socket  
--hint=[no]multithread [don't] use extra threads with in-core multi-threading  

Figure 2: New srun flags to support the multi-core/multi-threaded environment 
 
10. Motivation behind high-level srun flags 
The motivation behind allowing users to use higher level srun flags instead of --cpu_bind is that the later can be 
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difficult to use. The proposed high-level flags are easier to use than --cpu_bind because: 

• Affinity mask generation happens automatically when using the high-level flags.  

• The length and complexity of the --cpu_bind flag vs. the length of the combination of -B and                   
--distribution flags make the high-level flags much easier to use. 

Also as illustrated in the example below it is much simpler to specify a different layout using the high-level flags 
since users do not have to recalculate mask or logical processor IDs. The new approach is effortless compared to 
rearranging the mask or map. 

Given a 32-process MPI job and a four dual-socket dual-core node cluster, we want to use a block distribution 
across the four nodes and then a cyclic distribution within the node across the physical processors. We have had 
several requests from users that they would like this distribution to be the default distribution on multi-core 
clusters. Below we show how to obtain the wanted layout using 1) the new high-level flags and 2) --cpubind 

10. 1 High-Level flags 
Using SLURM's new high-level flag, users can obtain the above described layout on HP XC [5] with:  

# mpirun -srun -n 32 -N 4 –B 4:2 --distribution=block:cyclic a.out 
or  

# mpirun -srun -n 32 –N 4 -B 4:2 a.out 
(since –distribution=block:cyclic is the default distribution) 

Where –N is the number of nodes to dedicate to a job. The cores are shown as c0 and c1 and the processors are 
shown as p0 through p3. The resulting task IDs (t ID) are:  

 

 c0 c1  c0 c1 
p0 t0 t4 p1 t1 t5 
p2 t2 t6 p3 t3 t7 

 

The computation and assignment of the task IDs is transparent to the user. Users don't have to worry about the 
core numbering (Section 6) or any setting any CPU affinities. By default CPU affinity will be set when using 
multi-core supporting flags.  

10.2 Low-level flag –cpu_bind 
Using SLURM's –cpu_bind flag, users must compute the logical processor IDs or taskset masks as well as make 
sure they understand the core numbering on their system. Another problem arises when core numbering is not the 
same on all nodes. The --cpu_bind option only allows users to specify a single mask for all the nodes. Using 
SLURM high-level flags remove this limitation since SLURM will correctly generate the appropriate masks for 
each requested nodes. 

10.2.1 On a four dual-socket dual-core node cluster with block core numbering  
The cores are shown as c0 and c1 and the processors are shown as p0 through p3. The CPU IDs within a node in 
the block numbering are: (this information is available from the /proc/cpuinfo file on the system) 

 c0 c1  c0 c1 
p0 0 1 P1 2 3 
p2 4 5 P3 6 7 
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 resulting in the following taskset mapping for processor/cores and task IDs which users need to calculate:  

taskset mapping for processor/cores 
 c0 c1  c0 c1 

p0 0x01 0x02 p1 0x04 0x08
p2 0x10 0x20 p3 0x40 0x80

 

The above maps and task IDs can be translated into the following mpirun command: 

# mpirun -srun -n 32 -N 4 --cpu_bind=mask_cpu:1,4,10,40,2,8,20,80 a.out 
or 

# mpirun -srun -n 32 -N 4 --cpu_bind=map_cpu:0,2,4,6,1,3,5,7 a.out 

10.2.2 On a four dual-socket dual-core node cluster with cyclic core numbering 
On a system with cyclically numbered cores, the correct mask argument to the mpirun/srun command looks like: 
(this will achieve the same layout as the command above on a system with block core numbering.) 

# mpirun -srun -n 32 -N 4 --cpu_bind=map_cpu:0,1,2,3,4,5,6,7 a.out 

10.2.3 Block map_cpu on a system with cyclic core numbering 
If users do not check their system’s core numbering before specifying the map_cpu list and thereby do not realize 
that the new system has cyclic core numbering instead of block numbering then they will not get the expected 
layout.. For example, if they decide to re-use their mpirun command from above: 

# mpirun -srun -n 32 -N 4 --cpu_bind=map_cpu:0,2,4,6,1,3,5,7 a.out 

they get the following unintentional task ID layout: 

 c0 c1  c0 c1 
p0 t0 t2 p1 t4 t6 
p2 t1 t3 p3 t5 t7 

 

 since the processor IDs within a node in the cyclic numbering are: 

 c0 c1  c0 c1 
p0 0 4 p1 1 5 
p2 2 6 p3 3 7 

The important conclusion is that using the –cpu_bind flag is not trivial and that it assumes that users are experts. 

 
11. Performance results 
To evaluate the performance of binding processes to cores we examined the behavior of the HPLinpack 
benchmark using the HPL program [11] as well as of an ISV application, LSDyna [11].  The HPLinpack 
benchmark solves a dense system of linear equations and is used to rank the Top 500 supercomputer sites. LS-
Dyna is a general-purpose, explicit and implicit finite element program used to analyze the nonlinear dynamic 
response of three-dimensional inelastic structures. Both benchmarks were run on a system with a 2.6 Linux 
kernel. 

Table 1 shows the performance of HPLinpack measured with and without affinity controls. The taskset [10] 
command uses the sched_{get,set}affinity(…) interfaces hereby allowing processes to be bound to a specific core 
or to a set of cores.  

 

 

task ids 
 c0 c1  c0 c1 

p0 t0 t4 P1 t1 t5 
p2 t2 t6 P3 t3 t7 
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Table 1 HPLinpack with N=32381 run on 16 cores (4 nodes x 2 sockets x 2 cores) 

Configuration CPUs Time (sec) % Speedup 
No affinity control used 16 467.16  
taskset 0xf  16 481.83 -3.04% 
taskset 0x1; 0x2; 0x4; 0x8 16 430.44 8.53% 
–cpu_bind=map_cpu:0,1,2,3 
-B 1:1 16 430.36 8.55% 

 

Binding processes to sockets or cores using taskset improves the application’s performance.  The greatest benefit 
is seen when binding to specific cores (0x1, 0x2, 0x3, 0x4 versus 0xf). The underlying functionality provided by 
taskset (sched_setaffinity) is the same as used in both HP MPI and SLURM (activated via the --cpu_bind option) 
([12] and [13]).  The SLURM process binding supports non-HP MPI programs as well. It is our goal that HP MPI 
will use the SLURM multi-core support including the process binding on platforms such as XC where SLURM is 
available. 

We also evaluated the effects of CPU binding on a larger, long-running application by examining the performance 
of LSDyna using a data set simulating a 3-car collision.  Without any CPU binding, the overall run-time of the 
application on a single 2GHz DL385 dual-socket dual-core (Opteron) system is roughly 2 days and 6 hours.  In 
Table 2, the performance of LSDyna is shown using different numbers of cores and nodes and various bindings. 

Table 2 Performance comparison of LSDyna with and without CPU binding 

 C
or

es
 

 N
od

es
 

Binding 

CPU binding option 
low-level flag 
high-level flag Time (sec) 

 
Time (D:H:M:S) 

 
Speedup 

% Speedup 
vs. no 

binding 
1 1 No  194,809 2:06:06:49 1.00  

1 1 Yes --cpu_bind=map_cpu:0 
-B 1:1 194,857 2:06:07:37 1.00 -0.02% 

2 1 No  104,994 1:05:09:54 1.86  

2 1 Yes --cpu_bind=map_cpu:0,1 
-B 1:1 110,702 1:06:45:02 1.76 -5.16% 

2 1 Sockets --cpu_bind=map_cpu:0,2 
-B 1:1-1 104,620 1:05:03:40 1.86 0.36% 

2 2 No  102,336 1:04:25:36 1.90  

2 2 Yes --cpu_bind=map_cpu:0 
-B 1:1 100,266 1:03:51:06 1.94 4.72% 

8 2 No  33,616 0:09:20:16 5.80  

8 2 Yes --cpu_bind=map_cpu:0,1,2,3 
-B 1:1 31,996 0:08:53:16 6.09 5.06% 

8 4 No  28,815 0:08:00:15 6.76  

8 4 Yes --cpu_bind=map_cpu:0,1 
-B 1:1 28,532 0:07:55:32 6.83 0.99% 

8 4 Sockets --cpu_bind=map_cpu:0,2 
-B 1:1-1 26,081 0:07:14:41 7.47 10.48% 

 

On a dual-processor dual-core node, running LSDyna without binding which allows the OS to schedule the job 
across the cores, is 5.16% faster than forcing the job to bind to cores on the same socket.  Binding the job to cores 
on the separate sockets, however, only improved performance slightly at 0.36% which means that we are likely 
reproducing what the OS was doing automatically.  This demonstrates how the memory bandwidth is shared 
between cores on the same socket. Separating the two processes onto separate sockets for a memory bound 
application, improves performance by increasing the overall memory bandwidth. 

Examining an “8 core 2 node” run (resulting in all 4 cores utilized on both nodes), we conclude that binding 
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processes to cores runs 5.06% faster.  Once a job’s processes use all available cores, the additional OS processes 
result in a total number of “runable” processes than is greater than the number of cores. In this case, binding 
becomes necessary to avoid performance degradation. 

When examining the placement of the processes on a loaded system, processes in the unbound run were seen to 
continually move between the cores which is due to the fact that OS processes cause the total number of runable 
processes to exceed the number of available cores.  With binding, however, the processes stay on the selected core 
even when the system is fully utilized system.   

On a less loaded system, unbound processes tend to stay on the core where they are initiated. This is the reason 
why the relative improvement of binding drops off with an “8-core 4-node” run (only two cores are utilized per 
node, leaving two cores idle).  Compared to an “8-core 4-node” run with no binding, binding to cores on the same 
socket ran only 0.99% faster.  We expect this run to represent the binding the OS did automatically. Since the 
system was only half utilized we saw very little migration between sockets. Binding to cores on separate sockets, 
however, ran 10.48% faster due to improved memory bandwidth since only one core was used in each of the two 
sockets.  

 

12. Conclusion 
The multi-core support we added to SLURM is available starting with SLURM version 1.2 [1]. It allows users to 
use SLURM’s default settings on clusters of multi-core nodes without suffering any application performance 
degradation or large variation in application runtime from run to run. We considered different approaches as well 
as investigated several features which would help SLURM better support job launching and resource management 
in a multi-core environment. We decided to add support for all three types of users i.e. expert, intermediate, and 
naïve users rather than focusing on a single type. We believe that the high-level flags are easy to use and will 
allow even novice users to take close to full advantage of the new architecture. The process binding is generated 
automatically when users use the high-level switches thereby allowing users to access very sophisticated 
functionalities without having to understand the underlying hardware in detail.  
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