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Abstract. Performance evaluation in multi-cluster processor co-allocation
- like in many other parallel job scheduling problems- is mostly done by
computing the average metric value for the entire job stream. This does
not give a comprehensive understanding of the relative performance of
the different jobs grouped by their characteristics. It is however the char-
acteristics that affect how easy/hard jobs are to schedule. We, therefore,
do not get to understand scheduler performance at job type level. In this
paper, we study the performance of multi-cluster processor co-allocation
for different job groups grouped by their size, components and widest
component. We study their relative performance, sensitivity to param-
eters and how their performance is affected by the heuristics used to
break them up into components. We show that the widest component us
characteristic that most affects job schedulability. We also show that to
get better performance, jobs should be broken up in such a way that the
width of the widest component is minimized.

1 Introduction

Most research on parallel job scheduling had been focused on single Shared
Memory computers, Distributed Memory Multiprocessors and clusters [10][23].
Recently, research work has been extended to computational and data grids
[13][27] as well as multi-cluster systems [4][15]. A multi-cluster system is set up
by connecting multiple clusters (possibly in different locations) into a bigger
computational infrastructure. This is advantageous since it brings together a
higher computational power at a lower cost. Jobs submitted to the system can be
processed by any of the clusters or a combination of clusters. If multiple clusters
are to process a job, the job is broken up into components and co-allocated [7].
The relatively slower inter-cluster communication speed, however, leads to an
extended execution time of the co-allocated jobs. This leads to a lower effective
utilization of the multi-cluster system. Studies [4] have shown that despite the
drawbacks of the slower wide area network, co-allocation is a viable option.

While evaluating performance in parallel job scheduling, the mean value of
the measurement metric is mostly used. Previous studies have shown that eval-
uation using job groups is beneficial. Srinivassan et al. [22] demonstrates how a
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deeper understanding of robustness for moldable jobs’ schedulers can be obtained
using size based groups. Job groups were also used in [24] [25] when comparing
performance of Conservative and Aggressive backfilling. More studies by Feitel-
son [12] employed group-wise analysis for different job streams and measurement
metrics to show underlying performance implications.

We use job groups to study the performance of Fit Processor First Served
(FPFS) algorithm when scheduling jobs on a multi-cluster system with co-
allocation. The jobs are grouped using size, number of components and width
of the widest component. We deduce the most influential job characteristic that
determines its schedulability. We also compare two heuristics for breaking up
large jobs into components as they are being prepared for co-allocation. We also
study the sensitivity of the groups’ performance on the scheduler and job stream
parameters.

We observe that there is a remarkable performance difference among the
groups when FPFS scheduler is used. The difference is very small for the FCFS
scheduler. We also observe that the width of the widest component is the strongest
(of the three) factor that affects the performance (hence schedulability) of a cer-
tain job. Finally, we observe that performance can be improved by changing
scheduler parameters (within a certain range) and by partitioning the jobs in
such a way that the width of the widest component is minimized.

The rest of the paper is organized as follows: We describe our research model
in Section 2. In Section 3, we describe the scheduling algorithm and placement
policy used. In Section 4, we describe the set up of our experiments. In Section
5, we study the relative performance of the groups and how their performance
varies with the parameters of FPFS scheduler. We compare the effect of the
component generation heuristics on scheduler performance in Section 6. In Sec-
tion 7, we study how the proportion of the jobs broken into components affects
performance. We discuss related work in Section 8 and make conclusion and
suggestions for future work in Section 9.

2 The Research Model

2.1 Multi-cluster set up

We consider a system made up of five homogeneous clusters. The system is served
by one queue and one scheduler. The system processes jobs by pure space slicing
and is non-preemptive. In case a job has multiple components, the components
are co-allocated.

2.2 Job stream

Many supercomputer workloads have been archived [29] and analyzed. Most of
them are for single supercomputers not multi-cluster systems which we consider
in this study. Logs from the Distributed ASCI Supercomputer [26] were archived
in [29] and analyzed in [17]. Co-allocation details however were not included in
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the study and the jobs on the different clusters of DAS were archived separately.
In this work therefore, we use synthetic workloads. The jobs are online and have
exponentially distributed inter-arrival and execution times. These distributions
have also been used in previous related work [4][15]. A job’s execution time is
unknown before it finishes execution. This is because we assume that the user
is unable to accurately estimate the duration of his jobs [16].

Job size distribution :
The size of a job is defined by a distribution D(q) where the probability pi that
a job has size i is given by

pi =

{
3qi

Q if i is a power of 2
qi

Q if i is not a power of 2
(1)

D(q) (q < 1) is defined over an interval [n1, n2] (0 < n1 < n2). The parameter
q is used to vary the mean job size while Q is in such a way that pi sums up to
1. It favors small jobs and those whose size is a power of 2 which is known to be
a realistic choice [11].

Components generation :
Broadly, jobs are divided into two - small and large jobs. Large jobs are broken
into components and co-allocated. We define a parameter thres to be the size
of the largest small job. Any job whose size is bigger than thres is broken into
components. Multi-component jobs are evenly distributed among the large jobs.
If the maximum components a job can have is k, then 2, 3, · · ·k component
jobs have a proportion 1

k−1
of the large jobs. To break a job of size s into n

components, we make the first n − 1 components to have width b s
n
c each while

the nth component has width of s − (n − 1)b s
nc. We use two approaches to

determine the number of components a certain job will be broken into. We refer
to them as random and phased approach.

a. Random Approach
In random approach, we randomly chose the number of components a large
job will be broken into. If for example large jobs can have 2, 3, · · ·k compo-
nents, then every large job has a probability of 1

k−1
of being broken into any

of the possible number of components. This is used to represent a situation
where the user decides how many components his job should be broken into.

b. Phased Approach
In phased approach, the number of components a job has is determined by
its size. If large jobs can have 2, 3, · · ·k components, we identify job bounds
b1, b2, · · ·bk−1 in such a way that the number of jobs with size range (thres+
1, b1), (b1 + 1, b2) · · · (bk−2 + 1, bk−1), (bk−1 + 1, smax) (smax is the largest
job size possible) make up 1

k−1 of the large jobs. Jobs in the size range
(thres+1, b1) are broken into 2 components, those in a size range (b1 +1, b2)
are broken in 3 components and so on. This is used to represent a situation
where the system determines the number of components a job should have.
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3 The Scheduling Algorithm

We now describe the FPFS scheduling algorithm used in our research.
In FPFS, jobs are queued in their arrival order. When searching for the next

job to process, the scheduler starts from the head of the queue and searches
deeper into the queue for the first job that fits into the system. In case one is
found, it jumps all jobs ahead of it in the queue, gets allocated to the clusters
and starts execution. If none is found, the scheduler waits for a job to finish
execution or a job to arrive and the search is done again. This may however
lead to starvation of some jobs as they are continuously jumped by other jobs
from deep inside the queue. This is avoided by limiting the number of times (to
maxJumps) a job can be jumped while at the head of the queue. After being
jumped maxJumps times, no other job is allowed to jump it (and get allocated
to clusters) until enough processors has been freed (by terminating jobs) to have
it start processing. In this paper, we use FPFS(x) to represent FPFS when
maxJumps = x.

To map components to clusters, we use the Worst Fit (WFit) placement
policy. In this policy, the widest component is placed in the freest cluster (and
the smallest component in the busiest cluster). It tends to balance the load
among the clusters as well as leaving the free processors as evenly distributed as
possible among the clusters.

4 Experimental set up

4.1 Parameters used

We use clusters with 20 nodes. The job stream is generated by D(0.85) on the
interval [1, 38]. This generates jobs with average size 5.03. Our jobs can be broken
into up to 4 components. We consider a case where thres = 11 (the effect of the
value of thres is studied in Section 7). The jobs have a mean execution time of
10 and mean inter arrival time of 0.64. This leads to a load of 0.786. We chose
this load since scheduler performance is more distinct at high loads. We do not
model inter-cluster communication.

4.2 Performance evaluation

We use the Average Response Time (ART) as the measurement metric. ART
is measured for the entire job stream as well as job groups with in the job
stream. Readings are taken at a maximum relative error of 0.05 at 95% confidence
interval.

Jobs are grouped by the number of components, size and width of the widest
component.

Component wise, jobs are grouped into C1, C2, C3 and C4 groups. These
groups are made up of 1, 2, 3 and 4 component jobs. At thres = 11, C1 con-
stitutes 89.6% of the jobs and the largest 10% of the jobs are broken into com-
ponents. The details of the jobs in C2, C3 and C4 depends on the partitioning
approach used.
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Size wise, jobs are grouped in four groups S1, S2, S3 and S4 which are size-
based quartiles. S1 consists of jobs with size = 1. S2, S3 and S4 groups are made
up of jobs in the size range [2, 3], [4, 7] and [8, 38] respectively. S1, S2, S3 and S4

constitute of 24%, 26%, 26% and 24% of the job stream respectively.
Using width of the widest component, we generate groups W1, W2, W3 and W4

which are widest component based quartiles. The details of the jobs in the widest
component based groups are dependent on the partitioning approach. When us-
ing the random approach (at thres = 11), W1 and W2 consist of jobs whose
widest component is 1 and 2 while W3 and W4 consists of jobs whose width of
the widest component is in the ranges [3, 4] and [5, 19]. W1, W2, W3 and W4 jobs
constitute 24%, 26%, 38% and 12% of the job stream respectively.

5 Job Groups Performance

In this section, we investigate the (relative) performance of the different job
groups scheduled by FPFS(0) and FPFS(10). We consider a randomly parti-
tioned job stream (thres = 11). Practically, FPFS(0) is the same as FCFS since
no job is allowed to jump another. We investigate the variation of performance
of job groups with the maxJumps value and deduce the practical implication of
the (relative) performance trend.

5.1 Relative performance of job groups

The relative performance of the groups for FPFS(0)/FCFS and FPFS(10) is
summarized in Figure 1.

From Figure 1, we observe that (i) FPFS(10) performs better than FCFS
for all job groups, (ii) there is a negligible difference in the different groups’
performance for FCFS, (iii) there are big performance differences among the
job groups when FPFS(10) scheduler is used and (iv) big jobs perform poorly.

The improvement in performance as the maxJumps value increase from 0
(FCFS) to 10 can be explained by the global effect of allowing some jobs to
jump others and get scheduled. This can be looked at positively and negatively.
On the negative side, the jobs that jump may delay the time at which the jobs
they jump start execution. This is because the criteria used to allow them jump
does not put the execution time into consideration. On the positive side, the
jobs that jump actually execute on processors that would be idle. Fishing these
jobs from the queue makes it shorter hence lowering the waiting time for the
jobs initially behind the jumping job. Since these jobs are used to fill the small
remaining gaps, cases of small jobs fragmenting clusters are reduced. The net
effect of shortening the queue gives advantage to jobs that have not yet been
submitted since they find a shorter queue. Studies by Chiang et al. [6] show that
in aggressive backfilling, rarely does a backfilled job delay jobs deep into the
queue. This implies that while the disadvantage affects a few jobs at the head of
the queue, the advantages go beyond the queue. The advantages outweigh the
disadvantages hence a net gain.
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Fig. 1. Performance of different groups for FCFS (top) and FPFS(10) (bottom)

Since FCFS does not allow jobs to jump others, a job at the head of the
queue blocks all others behind it until there are enough free processors in the
system. There is therefore minimal performance difference. The slightly better
performance of small jobs can be attributed to the fact that they are less likely
to wait for long while at the head of the queue. Since FPFS allows mostly
small jobs to jump and get scheduled before others ahead of it, there is a good
performance for small jobs and a poor performance for large ones. We observe a
direct relationship between performance and size and performance and width of
the widest component. Jobs in C2, C3 and C4 basically belong to S4. The poor
performance of C2 shows the effect of size and widest component affects the
performance trend in component based trends.

The system cannot alter the size of the job since we assume they are rigid.
However, depending on the partition decisions made, the width of the widest
component can be altered. This implies that a user who is interested in improving
performance should concentrate on the partition approach and should aim at
having jobs with narrow components.
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The effect of the width of the widest component is caused by the way free
processors are distributed in the clusters as dictated by the placement policy.
Since WFit places the widest component in the freest cluster, it distributes the
free processors among the clusters as evenly as possible. It is therefore hard to
get a big block of free processors in a single cluster to process a wide compo-
nent. Since FPFS allows jobs that can fit to jump those which cannot fit, the
terminating jobs do not necessarily create the required processors as the jump-
ing jobs reduce them further. This causes relative starvation for jobs with wide
components.

5.2 Performance variations with maxJumps

We now investigate the variation of performance with maxJumps for the differ-
ent job groups. We use the size and width of the widest component partitions
to illustrate our results (components follow the same trend) and summarize the
results in Figure 2.

From Figure 2, we observe that the different job groups have a similar perfor-
mance trend. Increasing maxJumps leads to an improvement in performance.
The rate of improvement is high at low maxJumps values. At high maxJumps
values (maxJumps ≥ 10), there is a minimal improvement in performance. Large
jobs perform poorer compared to small jobs.

Increasing maxJumps gives more jumping opportunities for small jobs. At
very high maxJumps values, small jobs are processed immediately they arrive
(mean execution time is 10, therefore, the minimum mean response time is 10).

5.3 Load-wise Implication

We now investigate the implication of the deviation in performance for the dif-
ferent groups. We do this by comparing amount of the load in each group. We
summarize the comparative numerical and load composition in Table 1.

Table 1. Numerical and load contribution of the different groups (partition approach
- random, thres = 11)

Criteria

Size Widest component

Group Number(%) Load(%) Group Number(%) Load(%)

S1 24.88 5.08 W1 24.88 5.08

S2 25.64 11.49 W2 25.64 11.49

S3 25.20 24.13 W3 22.98 23.45

S4 24.28 59.30 W4 26.50 59.98

From Table 1, we observe that there is a skewed relationship between the
numerical and load wise contribution of the different job groups. This is in
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Fig. 2. Performance variations with maxJumps for job groups grouped by size (top)
and widest component (bottom)

agreement with previous studies on workload characteristics [19]. Groups S4

and W4 register worst performance and constitute more than half of the load
in the system. This implies that a big portion of the workload actually perform
worse than the average. Since a job’s contribution to the average response time
is independent of its load, the numerical minority of poor performing jobs is not
adequately implied by the ART metric.

6 The Effect of the Partitioning Format

In Section 5, we only used the random partitioning approach. We observed that
the width of the widest component highly influence performance and can be
altered by the partitioning scheme. In this section, we compare the random and
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phased partitioning approaches at thres = 11. We summarize the performance
trend in Figure 3. We use only size based groups when making performance
evaluation. This is because the partitioning approach does not influence the
distribution of jobs in S1, S2, S3 and S4. Component based groups, for phased
partitioning, are analogous to size based groups with different job proportion.
We only show S1 and S4 which are the extremes. S2 and follow the same trend.

Fig. 3. Performance variations of selected groups with maxJumps for job streams
partitioned using the random and phased approach(thres = 11)

From Figure 3, we observe that there is an improvement in performance for
jobs in S1 and S4. There is also a reduction in the difference between S4 and S1

jobs. The improvement is also registered in for FCFS.
The improvement in performance can be explained by the change in widest

component width distribution. Since phased partition approach breaks bigger
jobs into more components, the widest components gets lower hence easier to
pack.

This implies that performance can be improved by improving the scheduling
approach as well as improving the partitioning approach. Since the difference
between S1 and S4 is smaller in a phased partitioned job stream, it shows us
that the improvement in performance comes with the improvement in fairness.

7 The Effect of thres

From Section 6, we observe that it is actually necessary to break up large jobs
and co-allocate them. We took a case where thres−11. We investigate the effect
of thres value on scheduler performance. We show the trend in Figure 4.
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Fig. 4. Performance variations of FPFS(10) with thres for a randomly partitioned job
stream

From Figure 4, we observe that increasing thres leads to poor performance.
the deterioration of performance is higher for large jobs than for small jobs.

Small jobs can easily be fished from the queue by the scheduler. This implies
that whether thres is low or high, they have high chances of being scheduled.
Having a high thres however leads to poor component placement and adversely
impacts on the entire job stream. Lowering thres is therefore beneficial to the
entire job stream but mostly to the large jobs. At high thres values, the scheduler
is more unfair. The value of thres therefore needs to be kept low in th interest
of performance and fairness.

8 Related Work

Multi-cluster systems have attracted a sizeable amount of research of recent.
Some multi-cluster systems have also been set up for research in performance
analysis, co-allocation and the general field of parallel processing. These include
the Distributed ASCI Supercomputer (DAS) [26] located in The Netherlands.
Earlier work on DAS was reported by Bal et al [1]. Specific work on co-allocation
on DAS was done by Jones [15], Bucur [4] and Bucur and Epema [5], [2], [3].

Many schedulers have been proposed for parallel job scheduling [10]. For
space slicing cases like the one we are considering in this research, backfilling
has been the most popular. Backfilling seeks to allow small jobs to be processed
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before they reach the head of the queue. This is under a condition that they
do not pose a disadvantage to the jobs they jump. This is therefore catered for
in the conditions the job has to satisfy to be allowed to jump. Conservative
backfilling [18] allows the job to jump others if it will not delay the reservation
time of any job in the queue. Aggressive backfilling [20] on the other hand allows
a job to jump if it will not affect the reservation time of the job at the head of
the queue. Backfilling basically allows jobs to jump and get processed without
giving a setback to the jumped jobs. Work by Shmueli and Feitelson [21] employs
backfilling but by ensuring that the job picked is the one which can offer the
best utilization of the processor hole available. It however brings in an extra
consideration of determining how far deep in the queue the scheduler should go
while searching for the job that offers best results. This is only possible if enough
information about the jobs (execution time in this case) is known; in some cases,
they are not known [8]. Lack of knowledge of some parameters restricts what
the scheduler can do. Backfilling cannot be employed in cases where the runtime
of the jobs is unknown. This because the scheduler lacks the basis on which
reservations can be made. Lack of runtime knowledge can be caused by the
inability of the user to accurately estimate the job runtime [16]. In such a case,
a job can be allowed to jump so long as it can fit in the available processor
hole. This is done in the FPFS scheduler. Starvation is controlled by limiting
the number of times a job at the head of the queue is jumped.

The choice of the measurement metric for parallel job scheduling evaluation
has to be taken with a lot of care [14]. Some metrics may have different impli-
cations depending on the circumstance. While average waiting time and average
response time can have a similar performance for dedicated processing, they
don’t in a time sliced / preemptive cases.

Grouping jobs by their characteristics and evaluate how they perform helps in
getting a deeper understanding of the scheduler performance [12]. Srinivasan et
al. [22] use job groups to get a deeper understanding of scheduler robustness while
scheduling moldable jobs. Deeper comparative studies between Conservative and
Aggressive backfilling were studied in [25][24] by studying performance of job
groups in the job stream.

In multi cluster systems, studies have been done to study and improve sched-
uler performance. Jones [15] focused on scheduling techniques and how they are
affected by network characteristics like latencies. Bucur and Epema investigated
the performance of co-allocation in different scenarios. This involved queue pri-
oritization [5], job structures [2] and scheduling policies [3].

9 Conclusions and Future Work

We have investigated the group-wise performance of processor co-allocation in
multi-cluster systems. We use the FPFS scheduler. We have observed that in-
creasing maxJumps improves performance for the jobs that jump and those
which are jumped. There is however a higher level of unfairness as maxJumps
is increased. We have also observed that the performance can be improved by
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using a superior scheduler, a batter partitioning strategy as well as breaking up
a bigger proportion of jobs. When partitioning, the aim should be put at having
a low width of the widest component.

Our work also opens up more avenues for research. Phased partitioning has
shown an improvement in performance. There is a need to investigate a possi-
bility of a better partitioning heuristic. This is due to the fact that the widest
component is actually reducible. There is also a need to investigate the how
the job characteristics like average size and moldability affect scheduler per-
formance.Breaking up jobs into components creates a packing benefit but also
comes with a communication overhead. Communication leads to an increase in
the execution time of the job. Different jobs have different intensity of communi-
cation and different multi-cluster systems have different local area and wide area
communication speeds. There is therefore need for detailed study of communi-
cation based effects and the extent of their effects on scheduler performance.
Finally, there is a need to investigate performance behavior using smaller parti-
tions (beyond the quartiles used here) in order to get a deeper understanding of
the inter-job performance behavior.
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