New Challenges of Parallel Job Scheduling

Eitan Frachtenberg! and Uwe Schwiegelshohn?

1 Powerset, Inc.
eitan@powerset.com
2 University Dortmund
uwe .schwiegelshohn@udo.edu

Abstract. The workshop on job scheduling strategies for parallel pro-
cessing (JSSPP) studies the myriad aspects of managing resources on
parallel and distributed computers. These studies typically focus on large-
scale computing environments, where allocation and management of com-
puting resources present numerous challenges. Traditionally, such sys-
tems consisted of massively parallel supercomputers, or more recently,
large clusters of commodity processor nodes. These systems are char-
acterized by architectures that are largely homogeneous and workloads
that are dominated by both computation and communication-intensive
applications. Indeed, the large majority of the articles in the first ten
JSSPP workshops dealt with such systems and addressed issues such as
queuing systems and supercomputer workloads.

In this paper, we discuss some of the recent developments in parallel
computing technologies that depart from this traditional domain of prob-
lems. In particular, we identify several recent and influential technologies
that could have a significant impact on the future of research on parallel
scheduling. We discuss some of the more specific research challenges that
these technologies introduce to the JSSPP community, and propose to
enhance the scope of future JSSPP workshops to include these topics.

1 Introduction

The last few years have brought about many radical changes in the technolo-
gies and platforms that exhibit the same salient challenges that JSSPP focuses
on—all in the family of flexible allocation and management of multiple computer
resources. These technologies, however, depart from the traditional supercom-
puter model of relatively homogeneous architectures and applications, and add
new dimensions to those that are already being studied within JSSPP’s scope.
This paper therefore has two main goals: (1) To present some of the major tech-
nological changes and to discuss the additional dimensions they add to the set
of JSSPP challenges; and, (2) to promote and suggest research topics inspired
by these dimensions in the JSSPP community.

Such dimensions include; for example, reliability and resource allocation
across multiple sites (Grids), workloads that are a mixture of parallel, sequential,
and interactive applications on multi-core desktops, and data-intensive applica-
tions on Web servers that exhibit little or no communication. Although the



traditional topics of interest of JSSPP are still relevant and will likely continue
to attract high quality papers to the workshop, we feel the need to introduce
these new topics to JSSPP’s scope at this time, for two main reasons:

1. The field of parallel job scheduling, while still evolving, is showing signs of
maturity.

2. New technologies are exhibiting many characteristics of the problems that
the JSSPP community tackles. We believe that the JSSPP community’s
expertise can produce meaningful contributions for these technologies.

By introducing these new but related topics to the scope of JSSPP, we hope
to expand its impact and attractiveness to researchers with little or no past
exposure to traditional parallel job scheduling. After discussing these topics with
our peers, we present here a nonexhaustive list of research topics and questions
to which we believe the JSSPP community can add significant contributions.

Paper organization We have loosely grouped these topics into four technological
trends:

— Commodity parallel computers (Section 2): Parallel environments mainly
consisting of desktops and laptops with multi-core chips

— Grids (Section 3): Large-scale, heterogeneous, distributed, partially shared
computing environments

— Web servers (Section 4): Large-scale, latency-sensitive online services, and
the offline data infrastructure behind it

— Virtualization (Section: 5): Resource management inside and among multiple
virtual machines

These categories are not sorted, and in fact, under the umbrella of parallel
scheduling, have much more in common with each other than what sets them
apart. Section 6 discusses the similarities and overarching scheduling considera-
tions that affect most or all of these contemporary technologies. Finally, Section
7 concludes the paper.

2 Commodity Parallel Computers

The largest shift towards parallel computing is actually occurring right now. A
large majority of the desktop and notebook computers sold today for everyday
use employs dual-core and quad-core chips. Several server, console, and special-
purpose processors even contain between 8 and 96 cores, and the trend to increase
on-chip parallelism is expected to continue in the foreseeable future [20].

As MIT’s Leiserson writes: [41]

The Age of Serial Computing is over. With the advent of multi-core pro-
cessors, parallel-computing technology that was once relegated to uni-
versities and research labs is now emerging as mainstream.



Commodity hardware is growing increasingly more complex, with advances
such as chip heterogeneity and specialization, deeper memory hierarchies, fine-
grain power management, and most importantly, chip parallelism. Similarly,
commodity software and workloads are becoming more concurrent and diverse,
encompassing spreadsheets, content creation and presentation, 3D games, and
computationally intensive business and scientific programs, among others. With
this new complexity in hardware and software, process scheduling in the operat-
ing system (OS) becomes more challenging. Nevertheless, many commodity OS
schedulers are based on design principles that are 30 years old [20]. This dispar-
ity may soon lead to significant performance degradation. Particularly, modern
parallel architectures such as multi-core chips require more than scalable OSs:
parallel programs need parallel-aware scheduling [21]. Although the effort to
produce more scalable scheduling is already producing some results (both in
task scheduling [41] and process scheduling [24]), there is still much research
and implementation work needed before commodity parallel computing fulfills
its performance promises.

Scheduling for a mized workload The arrival of ubiquitous parallel hardware
leads to complex workloads with complex scheduling requirements, especially as
software becomes increasingly more parallel. Although the transition to parallel
software on the desktop is not immediate, it is already taking place. Popular
programming languages such as C++ and Java offer increasingly sophisticated
support for parallel programming [41], while the emerging parallel hardware
creates a stronger incentive for concurrency. Some contemporary applications
already benefit from parallel computing power, for example, parallel searches
in terabytes of data, 3D games, photo and video editing filters, and technical
computing in science and industry. Consequently, the typical desktop workload,
already highly variable and difficult to characterize, becomes even more complex
as parallel desktop applications grow in number. The scheduler designer must
now contend with an unpredictable mix of conflicting scheduling requirements,
such as:

— Media applications that require few resources, but at precise intervals and
with strict process inter-dependencies.

— Parallel applications that need synchronization and/or co-scheduling.

— Low-priority background tasks such as virus scanning.

— Interactive applications that require high responsiveness, like web browsers
or word processors.

Taking a more general view, we observe that parallelization poses two principal
challenges to the commodity scheduler: (1) processes competing over resources
suffer from degraded performance when coscheduled, and (2) collaborating pro-
cesses suffer from degraded performance when not coscheduled. To design effec-
tive schedulers for such mixed workload, we must first understand the workloads.
The job scheduling community has a rich history in characterizing and modeling
supercomputer workloads, and can employ some of the experiences and tech-
niques from that effort to similarly describe parallel desktop workloads.



Priorities Within a mixed workload we must often deal with priorities, fairness,
and user experience. Unlike a large computing center handling multiple users
with conflicting priorities and with economic constraints desktops typically have
a single user with his attention primarily focused on a single application at a time.
This additional constraint on the scheduler requires that it does its best effort in
guessing temporal user priorities and prioritizing processes accordingly without
sacrificing other scheduling goals. The dynamic nature of personal computer
usage makes this goal more difficult, because it requires the scheduler to respond
quickly to changes in user attention. This challenge again is not a new one [12],
but the introduction of parallel resources and synchronized parallel programs
complicates it beyond the scope of most existing solutions.

Power management Power consumption in chips is one of the largest challenges
faced by chip manufacturers today and has itself instigated the arrival of the
multi-core processors. Since the temperature and power of a chip is directly re-
lated to the chip’s power consumption, the chip clock’s speed is limited by its
operational thermal envelope. To further minimize and control the power output,
modern chips can selectively turn off and /or throttle down the speed of unused
logic. Increasingly, this fine-grain power control functionality is exposed to the
OS. This is where scheduling can play a vital role in managing the trade-offs
between performance and power consumption. Although some initial work has
already shown that scheduling can have a significant impact on power consump-
tion, there are as of yet no mainstream desktop schedulers that explicitly try
to optimize this factor. As the number of cores increases in the future, and as
the granularity control that the hardware exports to the OS grows finer, this
research area will likely grow more complex and challenging. On the other hand,
the rising importance of power management will also make the fruits of this
research more rewarding.

Asymmetric cores heterogeneity Merely duplicating cores in a chip is not always
a sufficient solution to the ever-increasing demand for performance. Limiting
factors such as power budget, cooling capacity, and memory performance will
still require innovative design solutions such as heterogeneous cores with selec-
tive shutdown, use of specialized coprocessors, and moving computation closer
to memory. The highly popular Cell processor, for example, comprises nine cores
of two different designs and purposes [27]. Other emerging architectures include
a relatively large number of special-purpose computing cores, such as the Clear-
Speed 96-core chip for mathematical processing, and the Azul 24-core chip for
Java applications [31,46]. Memory hierarchies are also growing more complex due
to the use of multi-core and hyper-threaded chips. Such computers are essentially
nonuniform memory access (NUMA) machines, and as such, may impose special
scheduling requirements [6]. On another end of the computing spectrum, ubig-
uitous computers, such as mobile phones, portable music and video players, and
media-convergence appliances that have strict minimum service requirements on
a low-power, low-performance platform could further stress the resource man-
agement requirements.



These architectures will require OS support to allocate their resources in-
telligently. There is already an ongoing effort to hand tune applications and
schedulers to specific architectures [54], but this effort may not be enough. Het-
erogeneous chip environments are challenging to schedule on, but also present
many opportunities for a scheduler that can map tasks to different chip compo-
nents appropriately.

Generalizing the Challenges

We noted that the introduction of parallel applications to the desktop workload
challenges the commodity parallel scheduler with potentially conflicting require-
ments. Moreover, architectural changes also produce additional constraints for
scheduling, such as heterogeneity /asymmetry, power management, and NUMA.
But unlike classical parallel computers, the presence of various classes of ap-
plications in a single workload mix—including interactive and single-threaded
applications—poses a significant additional challenge on top of the specific ap-
plication requirements. Ignoring these scheduling constraints can lead to poor
application performance because of lack of synchronization, as well as poor
system-wide performance because of contention for resources [1,14,30,49]. Fu-
ture research on parallel commodity computing must take these factors into
account.

Most contemporary commodity schedulers are challenged at all levels of
parallel execution, from the thread [6,49], through the SMP [1,16], the clus-
ter [14,23], all the way to supercomputers [30]. In particular, parallel programs
may suffer tremendously from lack of coscheduling® [14,30] as processes in par-
allel programs—as opposed to sequential and distributed programs—rely on fre-
quent synchronization for their progress. Supercomputers, with a more uniform
workload of parallel applications, typically operate in batch mode [15]. For com-
modity computers and workstations that host a multiuser, time-sharing system,
this is not an acceptable solution [36]. We believe however that effective schedul-
ing for a mixed workload is not only necessary, but also within reach, and could
incorporate lessons learned from scheduling parallel jobs on large homogeneous
systems.

Better scheduling is achieved when the OS has intimate understanding of the
hardware’s capabilities and the software’s requirements. With regard to hard-
ware, the OS should arbitrate between multiple and possibly heterogeneous re-
sources, while considering cache and memory-pressure factors. With regard to
applications, the OS needs to be cognizant of all levels of parallel execution:
thread, process, and parallel program, in addition to sequential and interac-
tive programs. Schedulers can manage these workloads by applying principles
from such fields as parallel and multimedia scheduling. Particularly, coopera-
tion, adaptivity, and classification can play a decisive role in achieving optimal
user experience and utilization on next-generation computers.

3 Coscheduling refers to scheduling all of a job’s processes at the same time, to facilitate
synchronization [37].



3 Grids

Most supercomputer workloads contain a large number of sequential applications
or applications with little parallelism [38]. With few exceptions due to exhibitive
memory consumption, most of these applications can run as well on common
desktop or server systems not requiring a parallel machine with its expensive
internal network. Therefore, executing these jobs on supercomputers is not effi-
cient in general although a limited number of them is welcome as they do not
affect the completion time of parallel jobs but increase utilization of the ma-
chine. The actual number depends on the characteristics of the workload. Many
parallel applications can exploit different degrees of parallelism, that is, they are
malleable or moldable [15]. In many of these cases, it is acceptable to forgo the
maximum degree of parallelism if a system with fewer nodes is readily available.
Therefore, it is often more efficient to acquire a Grid of machines with different
numbers of processors instead of investing a significant larger amount of money
into a big supercomputer with the same total number of processors. This is one
reason for the increasing popularity of Grids [18]. Moreover, it is often difficult
for user groups of a small enterprise to fully utilize a large parallel machine
with their own applications. However, if many of those user groups share several
parallel machines an improved average utilization can be achieved. As there are
many different resource owners in a Grid, every such Grid represents a market
in which different application owners compete for processors or other resources
of different providers. On the one hand this is likely to lead to some form of
bidding system [11]. On the other hand it increases the dynamics of machine
availability as many resource owners may additionally have high priority local
users.

Unfortunately, job scheduling on Grids is significantly more difficult than job
scheduling on single parallel machines. The most obvious reason is the separation
of the scheduling problem into two interdependent problems:

— machine allocation
— scheduling on the selected parallel processor

This problem separation is known from many parallel job scheduling prob-
lems [39] but it becomes more complicated in the presence of rigid parallel jobs
without multisite scheduling [51]. In addition, some properties of Grids also in-
fluence job scheduling. We discuss these properties and their consequences to
job scheduling in the following paragraphs.

Heterogeneity Manufacturers offer a large number of configurations for their su-
percomputers. This may include different types of nodes, like single processors or
SMP nodes, differences in the network connection, or different amounts of mem-
ory. But in practice, most supercomputer installations have only a few nodes
that are specially equipped, (for example, to execute server tasks), while almost
all worker nodes are identical [28]. As the supercomputer has a single owner, the
node equipment, is governed by a single policy resulting in similar hardware and



mostly identical software on each node. Despite the rapid development in pro-
cessor technology, few institutions abstain from mixing new and old processors
within the same machine. Instead they rather invest in a new machine if the
performance of the old one is no longer sufficient.

From the perspective of scheduling, supercomputers therefore exhibit little
node heterogeneity. Hence, most job scheduling research on supercomputers as-
sumes homogeneous nodes. But of course, heterogeneity exists among the various
resources available at a single node, like processing power, memory, or network
bandwidth [50].

In Grids, the situation changes completely: Since a Grid comprises different
installations with different owners, there is a large amount of heterogeneity in
Grids. The individual computers are typically not installed at the same time,
resulting in the use of different processor technology. Moreover, the various ma-
chine owners in a Grid have different objectives when buying their computers,
leading to different hardware and software equipment in the nodes of different
machines in the Grid. Finally, the network performance within a machine is
usually much better than the network performance between different machines.
This characteristic of Grids particularly affects so called multisite jobs [9] that
are executed on several machines in parallel. But as in practice, the performance
of these multisite jobs is bad in comparison to single site execution [3] and they
only occur rarely.

The heterogeneity within a Grid is one of the main advantages of Grid tech-
nology, since installations with many users (such as large compute centers in
universities) can never satisfy all users when selecting the next machine to buy.
Grid technology allows users to look within the Grid for the machines that are
best suited to execute their jobs. This selection increases overall efficiency, since
applications that perform poorly on local machines can be forwarded to other
better-suited machines, possibly in exchange for other applications. On the one
hand, there are system properties that are mandatory for the execution of an
application, like the availability of a certain software. Clearly, the scheduler can
easily consider these constraints. On the other hand, an application may run best
on certain processors which are in high demand while other readily available pro-
cessors will result in a reduced performance. In such situations, it is difficult for
the scheduler to make an allocation decision, since critical job information like
the execution time on the available machines may only be partially available.

Further, the above mentioned heterogeneity in supercomputers also exists
in Grids: A Grid often comprises resources of different types like storage re-
sources, computing installations and networks connecting the other resources.
Therefore, Grids are, for instance, well suited for applications analyzing large
amounts of data, like evaluations of experiments in particle physics. For reasons
of cost and efficiency, experiment data are stored in large data centers that are
specially equipped with hardware. An application requires the transfer of these
data to an appropriate computing facility. Therefore, the execution of such an
application consists of a workflow with several stages [19]. While most schedul-
ing problems on parallel processors deal with independent jobs, Grid scheduling



uses precedence constraints and scheduling routes through different resources
effectively transforming job scheduling problems into a kind of job shop schedul-
ing problems [39]. This property of Grid scheduling problems directly influences
the scheduling techniques on parallel processors: For instance, to consider the
processing time of the data transfer, computer resources must be reserved in
advance. Hence, simple batch job scheduling is not sufficient anymore, and most
Grid schedulers support advance reservation [48].

Because of the existence of different resource owners in a Grid, the Grid
scheduler is not run by these resource owners as in the supercomputer case, but
rather by an independent broker. This Grid scheduler may then interact with
the local schedulers that are run on each machine and also support local users
that do not submit their jobs via the Grid [45].

Service Level Agreements A supercomputer typically has a single owner and is
governed by a single policy that determines the rules and constraints of schedul-
ing. The users must accept these rules unless they are able to manually submit
their applications to other supercomputers. However, this alternative does not
affect the scheduling process. In Grids, there are often several independent own-
ers which have established different rules and restrictions for their resources.
Note that this assertion may not be true for so-called Enterprise Grids [26], that
belong to a single enterprise with many different locations and resource instal-
lations. But if the Grid comprises similar resources from different owners, users
expect that the machine allocation decision considers the rules and policies of the
various owners. Especially when being charged for the resource usage, users want
the allocation and schedule properties of their applications to be guaranteed in
form of so-called service level agreements (SLA) [34].

In addition to static components, like the level of security, those service level
agreements typically contain various dynamic and job-specific properties, like
the amount of available resources within a time frame, the start time of a time
frame, and the cost of the resource per occupied time unit. The actual values
of these SLA components are closely related to the actual schedule. They may
depend on the amount and the type of job requests as well as on the amount and
type of available resources. Dynamic parameters of an agreement are typically
determined with the help of a negotiation process [58]. Therefore, Grid schedul-
ing may also include a negotiation component [32]. Moreover, global scheduling
objectives, like makespan, average utilization, average throughput, or average
(weighted) response time have a different meaning and relevance in a scenario
that involves independent resources providers and independent job owners. For
instance, if the utilization of a specific machine in the Grid is low then the owner
of this machine may decide to drop the resource price in order to attract more
applications.

A Grid scheduling system that supports SLAs must include processes that
automatically generate SLAs based on possibly complex directives of owners and
users [52]. It must also be able to support complex objective functions in order to
decide between different offers for a job request. Therefore, even if we ignore the
machine allocation problem, the local machine scheduling becomes significantly



more complex than the scheduling of a single parallel processor. Assuming that
in the future, many parallel processors will also be part of a Grid, the Grid
poses new challenges even for job scheduling on parallel processors. Also if an
independent broker runs the Grid scheduler he may define additional SLAs with
resource providers and job owners.

Finally, there is always the possibility that an SLA cannot be satisfied. If such
a problem is foreseeable and there is still enough time to react then some form of
rescheduling [4] may provide some help. These considerations will again influence
the Grid scheduler. However, if the violation of the SLA is only determined
after the execution of the job, such as too few resources were provided within
the promised time frame, then either the SLA contains some clause to handle
this problem, or a mediator in the Grid is needed. In this case however, the
Grid scheduler is not affected unless we speak of an SLA that covers the actual
scheduling process.

Accounting and Billing Since traditional supercomputers typically have a single
owner, their accounting and billing is rather simple. It is sufficient to log the job
requests and the actual resource utilization of the jobs. As the rate is typically
invariable, the cost can easily be determined. Because of the monopoly of the
machine provider, a best-effort strategy usually suffices. Therefore, the user has
few options if the resources are suddenly not available or other problems occur.

However, in a Grid environment, resource providers may be willing to provide
guarantees that are marked down in an SLA. To verify whether the conditions
of the SLA have been satisfied, the entire process from job request submission
to the delivery of the results must be recorded [40]. Therefore, accounting be-
comes more complicated than for isolated parallel processors. Similarly, billing is
not equivalent with multiplying a fixed rate with the actual resource consump-
tion but requires the considerations of the SLAs including possible penalties
for violating parts of the agreement. The Grid scheduling system is part of the
above-mentioned process. Therefore, a scheduling system must be transparent
to enable validating the correct execution of an agreement.

As already mentioned, a broker [53] in a Grid system may be bound by
agreements with resource providers and job owners. This is especially true if
several brokers compete with each other in a single Grid. Then the details of the
scheduling process must be recorded to determine whether the guarantees of the
SLA covering the scheduler have been satisfied.

Security There are significant security concerns in a Grid as an application of
a user may run on a distant resource. Most resource policies require some form
of user screening before a user is admitted to a resource. In case of a local
compute center with a few carefully selected remote users, this policy can be
enforced with relatively little effort. In Grids, this policy is not feasible and
must be replaced by some form of trust delegation. This task is often handled
by so-called virtual organizations (VO) [17]. Although security has a significant
impact on the Grid infrastructure it does not affect the scheduling system to
a large extent. But security concerns may prevent schedulers from providing



information about future schedules freely, and thus reduce the efficiency of Grid
schedulers. This problem is particularly relevant for rearrangement tasks that
try to save an SLA in case of unexpected problems.

Reliability and Fault Tolerance In large systems, occasional failures are unavoid-
able. If the system is subject to a best-effort policy such a failure is a nuisance
to the users but has no other consequences. For important applications, users
can try to secure a second resource if they accept the additional cost. In Grids,
users may try to push the responsibility toward the resource providers by ne-
gotiating appropriate SLAs. In case of a failure, the resource provider typically
attempts to use rescheduling in order to avoid or at least reduce the penalty
costs. Therefore, reliability directly influences Grid scheduling as well [29].

Virtualization As already discussed user may benefit from the heterogeneity of
Grid systems. However, this heterogeneity also comes with a disadvantage: Only
few systems in a Grid may actually be able to execute a given application due to
all the constraints involving application software, system software and hardware.
This may lead to bottlenecks even in large Grids. Users can partially avoid
this problem by wvirtualization, that is, by providing an execution environment
together with their application, see Section 5. This concept receives increasing
interest on the operating system level and is recently considered in Grids as well.
As with security, virtualization has little direct influence on Grid scheduling. Tt
opens new scheduling opportunities (as discussed in Section 5), but predictions
of execution parameters become less reliable. However, virtualization directly
affects scheduling on the operating system level.

Workloads From supercomputers, we know that only few theoretical results pro-
vide benefits for job schedulers in real systems [44]. Instead, the development of
new schedulers for parallel processors and the improvement of given schedulers is
often based on discrete event simulations with recorded workloads as presented in
numerous publications of previous JSSPP workshops, for instance [25,5]. There-
fore, a lot of work in the domain of JSSPP has been devoted to workloads in
recent years. As there is only a limited number of recorded traces, this work
focuses on the characterization of these workloads and on scaling them so that
an appropriate workload can be provided for a new installation [10].

Since there are few Grids running in production mode, only few real Grid
workloads are available yet [35]. Nevertheless, there is some effort to record Grid
workloads (see http://gwa.ewi.tudelft.nl), which may lead to a comprehen-
sive archive in the future. However, it is likely that these workloads will depend to
a large extend on the community running the Grid. Generally it is very difficult
to optimize a Community Grid by using a workload from another Community
Grid. Similarly, it is unclear how to scale traces as there may be strong depen-
dencies between the machine composition in a Grid and the workload.

In general, simulation with workloads are only meaningful if the properties
of the individual jobs remain invariant. To a large extend, this is true for job
execution in a rigid and exclusive fashion on a parallel processor. If the job is



malleable or moldable a simulation requires the prediction of the processing time
for a certain degree of parallelism from the recorded processing time using the
original degree of parallelism. Theoretical studies often assume a divisible load
characteristic which holds in practice only for bag-of-tasks of embarrassingly-
parallel jobs, while jobs with extensive communication between processors show
a different behavior [42]. In Grids, similar problems occur in connection with
heterogeneity. It is difficult to predict the processing time of a job on certain
processors if only the recorded processing time on other processors is available.
The different speed model (Q,,) of scheduling theory generally does not apply
to processors, see the results of the SPEC benchmarks (http://wuw.spec.org/
benchmarks.html). Therefore, it is very difficult to optimize a Grid scheduler
even on the same system that was already used to record the applied workload.

Metrics and Evaluation Since parallel computers are expensive, they are usually
not available for extensive experiments to optimize system components. Instead,
simulations are frequently applied on models that have a sufficiently close rela-
tionship to the real system. Then only some final tuning must be performed on
the real system. As already discussed, this approach has been successfully exe-
cuted on parallel computers. It requires a given metric that can be evaluated with
the help of simulations. For parallel systems, the most common metrics are ac-
cepted utilization, average throughput, and average weighted response time [15].
All these metrics depend on the completion time of the jobs which is provided
by the simulations.

In Grids, we must consider the various (dynamic) objectives of resource
providers and application owners. Therefore, scheduling becomes a multi-objective
problem since it is very difficult to combine these objectives into a single scalar
metric [57]. Moreover, as the objectives are not static, it is not possible to sim-
ply evaluate another schedule unless the objective functions and the negotiation
process are invariant and predictable. However, this assumption will not hold
in many real situations. Hence, it is not realistic to assume that a real Grid
scheduling system can be optimized with the help of simulations even if appro-
priate workloads and sufficient computing power is available. In Grid scheduling;,
we face a problem that is similar to the optimization of the performance of a
stock broker. But while the Grid is some form of a market it is likely less volatile
than the stock market. We may therefore try to optimize single parts of this
complex scheduling system and assume that the rest remains unchanged. Once
enough workloads and sufficient data on the dependencies between the various
components are available, we may start to model and simulate a whole system.

Generalizing the Challenges

Grid scheduling is a very complex problem that uses common job schedulers for
parallel processors as subcomponents. Even if job scheduling for parallel proces-
sors has reached some degree of maturity, many subproblems in Grid scheduling
are not yet solved.



Grids typically consist of machines with different numbers of processors. As
small machines with few processors cannot efficiently execute highly parallel jobs
unless multisite scheduling with performance loss is supported, large machines
with many processors should be reserved for those highly parallel jobs. On the
other hand, load balancing may require to use those large machines also for
sequential jobs or jobs with little parallelism. The machine allocation algorithm
must find a suitable tradeoff between both objectives.

Heterogeneity transforms job scheduling problems into job shop problems.
In addition, the comparison between different schedules may become rather dif-
ficult as the prediction of execution properties on other machines is subject to a
significant amount of uncertainty.

Service level agreements introduce new dynamic objectives into the schedul-
ing problems resulting in multi-objective problems. Moreover, the objective func-
tions of the various job and resource owners may not be available for the evalua-
tion of a scheduling system. In order to satisfy SLAs even in the case of machine
failure, the scheduling system should support rescheduling which can be consid-
ered as a deterministic problem that must be solved within a rather short time
frame.

Other properties of Grid systems, like security or virtualization, pose signifi-
cant challenges to Grid infrastructures but have limited influence on the schedul-
ing system.

Finally, there are not yet enough public workloads traces on Grid systems.
It is also not clear how to use such workloads in new systems with different
sizes or on systems which belong to a different community. With respect to the
evaluation, the common metrics of parallel processors may not be applicable to
Grids. But it is not clear how to determine an objective that can be used for
evaluation and sufficiently represents the multi-objective character of the real
Grid scheduling problem.

4 Web Services

Large-scale web services are one of the fastest-growing sectors of the computer
industry since the mid 1990s. This growth is expressed not only in revenue and
market share, but also in the scale of the problems solved and the infrastructure
required to provide the solutions. Generally speaking, large-scale web services
have three usage models with strong relevance to our field:

1. Online service—this is the part that is most visible to users, where they
interact with the system through queries or requests. This aspect is latency-
sensitive, and typically relies on parallelism to provide the shortest response
time and the highest reliability. Much of the parallel logic behind these large-
scale transactional systems is devoted to resilient resource management and
load balancing, and less to computation. Using a search engine as an example,
the online service represents the user query page, where a query is received,
parsed, and distributed to query servers, and the results are aggregated,
ranked, and presented to the user in HTML form.



2. Offline processing—this is the part that gathers and processes the data that
is used in the online service. It is typically less sensitive to latency and
more sensitive to throughput, not unlike the Grids mentioned in Section 3.
Load balancing and fault tolerance play a larger role in the economics of
the service than in the online service. Additionally, the offline processing can
potentially be significantly more reliant on computing and I/O resources
than the online service. These differences translate to different scheduling
and resource-management requirements between the online and offline parts.
In the search engine example, this part represents the crawling, indexing,
reversing the search engine index as well merging, and distributing it.

3. Research and Development (R&D)-large web service companies are always
looking for ways to improve and expand their services. Developing newer ser-
vices and features often requires similar resources to those that are already
used by the production services, whether online or offline, and for large com-
panies, the scale of the resources required for R&D approximates the scale
of the production systems. Unlike the production systems though, resource
management can be more lax on the one hand (neither latency or through-
put is as critical as on production systems), and more strained on the other
(more users are competing for the same resources in a less-predictable envi-
ronment). Going back to the search engine environment, this part represents
the ongoing work on improving crawling algorithms, ranking, database/index
representations, and performance tuning to mention just a few aspects.

The following paragraphs give a breakdown of some of the main resource man-
agement challenges in large-scale web services.

Economy Because of the large scale of some web serving farms and the business
nature of the companies that run them, economical issues become a primary con-
sideration in web server resource management. For example, choices such as how
requests are distributed and balanced across a cluster, the degree of redundancy
in request execution, and which nodes to route the request to in a heterogeneous
cluster, have an effect not only on the cost per request, but also on the server’s
reliability and responsiveness, themselves being part of the company’s business
model. Thus, the algorithms used for balancing and managing these resources
can have a significant impact on the company’s bottom line. Resource managers
have to respond to temporal cycles in load, as well as peak and average load,
while aiming to minimize overall costs of hardware, power, and human mainte-
nance [7]. Complicating the economical models further are the potential large
differences between different services and the resources they need to manage,
making a generalized solution hard to develop.

Power management The rising concern about power consumption in micro-
processors (Sec. 2) has permeated virtually all systems where microprocessors
are used. Multiply the power consumption of a single microprocessor by the
thousands of microprocessors that typically comprise a large web serving farm,
and you get an expensive power bill and significant excessive heat that fur-
ther taxes the reliability and economic balance of the farm. The larger the



scale of the server, the worse the problem becomes, as is demonstrated by
Google’s move to a more efficient power supply component of their own design
(see http://services.google.com/blog_resources/PSU_white_paper.pdf).
Scheduling, however, can play a significant role in increasing the power effi-
ciency of a large-scale farm [7]. For example, outside of peak hours, jobs can be
all scheduled on a subset of nodes, while suspending the remaining load until
peak increases. Or jobs can be distributed across multi-core nodes so that some
cores remain in low-power idle mode until requested.

Resource sharing Despite the occasional peaks in request loads to web services,
most load exhibits cycles and peaks, based on diurnal cycles, weekly cycles,
external events, etc. [59]. Web server loads can be hard to predict, and there is
still plenty of room for research in characterizing and modeling their workloads.
Still, even with a complete understanding of the workloads, it is reasonable to
assume that most servers will operate below capacity some of the time. It is
desirable to manage the shared resources of the online system with the R&D
activities, so that lightly-loaded production machines can run R&D tasks, while
still being highly available if load suddenly increases.* Oversubscribing online
resources to handle R&D tasks touches many interesting and familiar topics
in parallel job scheduling such as load balancing, managing priorities, service
guarantees, predictability and modeling of load, and dynamic management of
responsiveness.

Resilience and fault tolerance If there is one working assumption that holds
true for large data stores and web servers it is “Everything Fails. Everything!”®.
Many thousands of commodity components typically comprise a large web ser-
vice, and as their number increase, so does the probability of a component failure
at any given time. Resource management algorithms therefore cannot have the
luxury of dedicated supercomputer middleware that often assumes a reasonably
reliable hardware. Redundancy, fault-tolerance, and graceful degradation under
load and failures must be built into the resource manager. One example is the
offline work distribution algorithm MapReduce [8], that can transparently and
scalably replicate tasks and re-execute them if required. Online resource man-
agement requires different scheduling for resilience, since service latencies are
more important than throughput. As servers grow even larger and the services
grow more complex, the importance of fault tolerance will similarly grow and
require novel resource management solutions.

Heterogeneity One of the distinguishing characteristics of large-scale web servers,
as opposed to most supercomputer and to a lesser extent, Grid environments,

4 We assume that offline production systems have a more predictable load and operate
at near capacity most of the time.

® Quoted Sivasubramanian and Vogels’ talk “Challenges in Building an Infinitely Scal-
able Datastore” in the 2007 Google Scalability Conference http://www.google.com/
events/scalability_seattle/.



is that server farms are rarely acquired at once to serve a predetermined capac-
ity. Instead, servers are expected to constantly grow as the required capacity
increases over time. Web servers grow by adding nodes that correspond to the
optimal balance between price and required performance at the time, and be-
cause of the dynamic nature of the industry, these nodes are likely to differ from
the previous acquisition or the next one. Consequently, a large-scale web server
consists of at least a few different types of nodes—possibly with varying degrees
of performance, memory, storage space, I/O capabilities, or all at once. Dynami-
cally allocating tasks to these servers has to take into account this heterogeneity
in order to meet the expected performance requirements. The evolving nature
of the cluster, as well as the constant changes in configuration resulting from
node failures, suggest that a very dynamic approach to resource management
is needed, as opposed to most supercomputers and Grids. Although here too
some initial studies have addressed these issues [7], there is still much room for
research in the area.

Workload characterization The workloads of the online and offline environments
are typically quite different from each other, as well as from traditional super-
computer workloads. Perhaps the most significant difference from supercom-
puter workloads is that Web-server workloads tend to be embarrassingly par-
allel: loosely-coupled, with little or no synchronization between parallel tasks.
This removes an important constraint that facilitates the development of efficient
scheduling. On the other hand, other workload characteristics make scheduling
more challenging than with supercomputer workloads. For example, both the
offline and online systems are often data-bound and require access to informa-
tion that is distributed across the compute nodes. Scheduling tasks to compute
close to the data they operate on reaps a significant performance benefit in these
cases. Other idiosyncratic workload characteristics include the dynamic nature
of offered load on the online system, which is largely determined by uncontrolled
agents outside of the system (the users). Devising better scheduling for the envi-
ronments requires that we understand and characterize workloads for the online
and offline parts of the web servers, as we do for more traditional parallel envi-
ronments.%

Generalizing the Challenges

Probably the single most challenging and representative factor in large-scale
web service scheduling is the unprecedented huge scale of most aspects involved
with it: the size of the clusters; the number of users; the rate of transactions; the
amount of data, files, and I/O required to service these requests; and the network
resources used internally and externally. Scheduling and resource management
are further complicated by the dynamic nature of the underlying infrastructure,
with heterogeneous resources being added and removed constantly. Because of

5 The workload of the R&D environment usually consists of a mix of online and offline
applications, and is probably even harder to generalize.



these factors, as well as the different workloads, scheduling for web services might
require some different approaches, compared to Grids or supercomputers. For ex-
ample, the already mentioned MapReduce algorithm introduced by Google [8]
does a good job in managing dynamic resources for the offline aspect of Google’s
search engine, but would perform poorly with the typical fine-grain, tightly cou-
pled supercomputer workload. Nevertheless, many scheduling principles, as well
as work on metrics, workloads, and methodological issues, have much in common
with other parallel environments.

5 Virtualization

Virtualization in this context refers to running multiple operating system envi-
ronments in one or more nodes concurrently. Typically, a node would have a host
OS that can run a “guest OS” as an application, often by emulating a complete
hardware environment for each guest OS. Although the commoditized virtual-
ization technology is relatively new, it is quickly becoming widespread, and new
software and hardware is quickly being developed to support more features and
provide better virtualization performance. 7

One of the lingering challenges in managing virtualized environments effi-
ciently is scheduling: since the host and guest OSs often operate with no coordi-
nation and knowledge of each other’s scheduling, mis-scheduling issues continue
to crop up. For example, an interactive application in a guest OS might be
scheduled correctly by the guest OS, but since the host OS is unaware of the ap-
plication’s requirements, the guest OS (and by extension, the application) could
be mistakenly scheduled as a noninteractive program.

The area of scheduling research for virtualization is still in its infancy, and it
may be too early to explore well-developed scheduling issues with virtualization.
Nevertheless, we identify the following topics where job scheduling research can
benefit virtualized environments:

— Scheduling inside the guest OS: Currently, a guest OS schedules its processes
oblivious of any host OS constraints, as demonstrated in the previous exam-
ple with interactive applications. Scheduling research can address this class
of problems by (1) characterizing the scheduling needs of different processes;
(2) characterizing the scheduling constraints and services that the host OS
can guarantee; and (3) communicating and matching these requirements and
constraints to create an acceptable schedule in the guest OS within the host
environment.

— Similarly, the guest OS is oblivious of any other guest OSs or processes run-
ning on the same host, creating more scheduling mismatches. The problem
can thus be generalized to creating a schedule within the host OS that takes
into account the requirements of all host processes and guest OS processes.

" Refer for example to Intel’s new hardware support for virtualization in its latest
architecture (code-named Penryn).



— Looking at a larger scale still, virtualization is often used in Grids and multi-
host environments to provide dynamic allocation of customized computing
images in the form of virtual images®. This extension creates additional
meta-scheduling issues for the virtualized environment, not unlike those dis-
cussed in Section 3, but with additional consideration for the moldable and
malleable nature of virtualized resources.

Generalizing the Challenges

Research into the implications of virtualization has only yet begun. We believe
that scheduling will play an increasingly important role in virtualized environ-
ments where performance and utilization matter. One of the keys to the success-
ful scheduling of such heterogeneous workloads and execution environments is the
ability to characterize clearly the scheduling requirements of different processes,
and scheduling them accordingly. The literature already contains examples of
process characterizations for several scheduling domains, such as multimedia
and parallel processing [2,12,24,55]. We think the time is ripe to create and gen-
eralize additional characterizations that would fit the virtualized environments
as well. Such characterizations need to take into account the entire process stack,
from the multi-threaded guest process at the one end to the host OS or meta-
scheduler at the other. Eventually, these characterizations may even help define
a standard of communication of scheduling information between host and guest
0OSs.

6 Overarching Considerations

There are several considerations from those listed above that span most or all
of the new scheduling challenges. In this section, we will briefly generalize these
considerations.

Workload Virtually all scheduling and performance evaluations start with a
workload, and all use cases described above require good workloads for research
progress. While a good workload often depends on the use case in general, useful
workloads for research contain long enough traces (or model-derived data) for
metrics to stabilize, and are detailed enough to allow multiple factor analyses.
For classical supercomputers, a handful of such workloads has been collected
and maintained by Feitelson [38]. An effort to collect Grid workloads is also
underway, but it is in its early phases (see http://gwa.ewi.tudelft.nl). For
other use cases, however, we are not aware of any centralized effort to collect
such workloads. The workload challenge does not end with collection, but merely
starts: To be useful for researchers and to enable performance evaluation, work-
loads need to be analyzed, characterized, and possibly classified and modeled. By

8 for example, Amazon’s Elastic Compute Cloud (http://www.amazon.com/gp/
browse.html?node=201590011)



understanding and generalizing data from multiple workloads, we can develop
better scheduling schemes, as well as a better understanding of the similarities
between scheduling scenarios in Grids, web servers, supercomputers, and the
like.

Heterogeneity Unlike traditional supercomputers, most contemporary parallel
architectures offer some degree of heterogeneity: from the single chip level with
parallel execution modules and simultaneous multithreading, through the single
node and its heterogeneous components such as accelerators, through the cluster
and the Grid with their heterogeneous nodes. Scheduling for all levels now needs
to take into account unequal resources to manage which complicates both the
optimization problem and the metrics themselves being optimized.

Scheduling for power Power constraints now appear in resource management
schemes at virtually all levels, from keeping the temperatures on the surface
of a multi-core chip controlled and equally distributed, to lowering the power
and cooling bills of large web servers and Grid farms. In some instances, power
consumption is the single most influential resource management constraint of a
parallel installation, and every percent saved translates to significant cost and
emission savings. Scheduling can play an important role in power saving by in-
corporating power considerations into the bigger resource management question.
Although work on this incorporation started several years ago [47,33], scheduling
for power saving is still a relatively unexplored research topic.

Security Security is a fast-growing concern in today’s computing environments.
Most of the scenarios described above involve multiple users, or at least multiple
applications. Protecting the data and resources of one user or application is vital
for the successful deployment of parallel and shared computing resources [56].
To some extent, security considerations affect scheduling. For example, some ap-
plications may request to run without sharing any memory or network resources
with other applications. Security considerations can also conflict with scheduling
considerations, such as the "black-box" approach of virtualized images, that dis-
courages shared resource-management and scheduling decisions. A large research
gap exists in the area of scheduling with /for security considerations in these new
domains.

Economy Just like security considerations, economy considerations affect, and
sometimes even govern, the shared use of compute resources. Large data bases
may not be available for free if they are useful for commercial activities, like
weather forecast and traffic data for logistics. Moreover, an increasing number of
users and user groups need information systems which will become more complex
and more expensive in the future, for instance, due to power consumption. This
may lead to a shortage of resources and result in user priorities based on the
price a user is willing to pay for the provided information service. It may not
be the task of scheduling systems to determine market prices of information
resources but scheduling systems certainly need to convert a given policy into
the distribution of resources.



Metrics Properly using meaningful metrics is an inseparable part of perfor-
mance evaluation. Although scheduler performance evaluations typically use
well-publicized metrics such as average response time and throughput, these
metrics are not always used correctly or do not describe the performance pic-
ture adequately [13,22]. Moreover, metrics will have to be somewhat adjusted
to account for some of the newer use cases described above. For example, Grid
users may care more about fairness than response time [43]. Scheduling on het-
erogeneous architectures requires different treatment of run time and resource
utilization for performance than for billing, since not all resources are equal.
There is therefore a need to extend and unify current scheduling evaluation
metrics in order to be useful and meaningful for the actual use cases.

7 Conclusion

Scheduling for traditional multiprocessors is still a hard problem that is actively
researched. The recent introduction of several architectures with different types
of parallelism and a wide spectrum of uses, workloads, requirements, and hard-
ware, poses an even harder challenge to the scheduling community. If parallel
job scheduling can be viewed as a multi-dimensional optimization problem, these
new architectures now add several more dimensions to the problem.
Nevertheless, this challenge is also a great opportunity. The scheduling com-
munity can evolve and incorporate lessons learned over many years of research
(much of which has been published in JSSPP), and advance the state of the art
in the new emerging fields. Despite the various architectures, there are many
shared issues between the different scheduling domains: workloads, requirement
characterization, resource management, meaningful metrics, power consumption,
and others. All these topics are inter-related and are studied by contributors to
JSSPP. The time is ripe now for this community to generalize these scheduling
characterizations to the emerging domains in parallel job scheduling.

References

1. Christos D. Antonopoulos, Dimitrios S. Nikolopoulos, and Theodore S. Pap-
atheodorou. Scheduling algorithms with bus bandwidth considerations for SMPs.
In 82nd International Conference on Parallel Processing (ICPP), Kaohsiung, Tai-
wan, October 2003. Available from www.cs.wm.edu/~dsn/papers/icpp03.pdf.

2. Scott A. Banachowski and Scott A. Brandt. The BEST Scheduler for Integrated
Processing of Best-Effort and Soft Real-Time Processes. In Multimedia Computing
and Networking (MMCN), San Jose, CA, January 2002. Available from www.cse.
ucsc.edu/"sbanacho/papers/banachowski-mmcn02.ps.

3. Daniel Becker, Felix Wolf, Wolfgang Frings, Markus Geimer, Brian J.N. Wylie,
and Bernd Mohr. Automatic trace-based performance analysis of metacomputing
applications. In 21st International Parallel and Distributed Processing Symposium
(IPDPS). IEEE Computer Society, March 2007.

4. Francine Berman, Henri Casanova, Andrew Chien, Keith Cooper, Holly Dail, An-
shuman Dasgupta, W. Deng, Jack Dongarra, Lennart Johnsson, Ken Kennedy,



10.

11.

12.

13.

14.

15.

Charly Koelbel, B. Liu, Xin Liu, Anirban Mandal, Gerald Marin, Mark Mazina,
John Mellor-Crummey, Celso Mendes, Alex Olugbile, Jignesh M. Patel, Daniel
Reed, Zhiao Shi, Otto Sievert, Huaxia Xia, and Asim YarKhan. New grid schedul-
ing and rescheduling methods in the grads project. International Journal of Parallel
Programming, 33(2):209-229, 2005.

A.LD. Bucur and Dick Epema. Scheduling policies for processor co-allocation in
multicluster systems. IEEE Transactions on Parallel and Distributed Systems,
18:958-972, 2007.

James R. Bulpin and Ian A. Pratt. Multiprogramming performance of the Pen-
tium 4 with hyper-threading. In Second Annual Workshop on Duplicating, Decon-
struction and Debunking (WDDD), pages 53—62, Munchen, Germany, June 2004.
Available from www.ece.wisc.edu/~wddd/2004/06_bulpin.pdf.

Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, Amin M. Vahdat, and
Ronald P. Doyle. Managing energy and server resources in hosting centers. SIGOPS
Operating Systems Review, 35(5):103-116, 2001.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. In Symposium on Operating Systems Design and Implementation
(0SDI), pages 10-10, Berkeley, CA, USA, 2004. USENIX Association.

Carsten Ernemann, Volker Hamscher, Uwe Schwiegelshohn, Achim Streit, and
Ramin Yahyapour. Enhanced algorithms for multi-site scheduling. In Proceed-
ings of the Third International Workshop on Grid Computing (Grid’02), volume
2536 of Lecture Notes in Computer Science, pages 219-231. Springer, November
2002.

Carsten Ernemann, Baiyi Song, and Ramin Yahyapour. Scaling of workload traces.
In Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn, editors, Ninth
Workshop on Job Scheduling Strategies for Parallel Processing, volume 2862 of
Lecture Notes in Computer Science, pages 166—182. Springer-Verlag, 2003. Avail-
able from www.cs.huji.ac.il/~feit/parsched/.

Carsten Ernemann and Ramin Yahyapour. Applying economic scheduling methods
to grid environments. In J. Nabrzyski, J.M. Schopf, and J Weglarz, editors, Grid
Resource Management - State of the Art and Future Trends, pages 491-506. Kluwer,
2003.

Yoav Etsion, Dan Tsafrir, and Dror G. Feitelson. Desktop scheduling: How can
we know what the user wants? In 14th ACM International Workshop on Network
and Operating Systems Support for Digital Audio and Video (NOSSDAV), pages
110-115, County Cork, Ireland, June 2004. Available from www.cs.huji.ac.il/
“feit/papers/HuCpri04NOSSDAV.pdf.

Dror G. Feitelson. Metrics for parallel job scheduling and their convergence. In
Dror G. Feitelson and Larry Rudolph, editors, Seventh Workshop on Job Schedul-
ing Strategies for Parallel Processing, volume 2221 of Lecture Notes in Computer
Science, pages 188-1205. Springer Verlag, 2001. Available from www.cs.huji.ac.
il/~feit/parsched/.

Dror G. Feitelson and Larry Rudolph. Gang scheduling performance bene-
fits for fine-grain synchronization. Journal of Parallel and Distributed Comput-
ing, 16(4):306-318, December 1992. Available from www.cs.huji.ac.il/~feit/
papers/GangPerf92JPDC.ps.gz.

Dror G. Feitelson, Larry Rudolph, and Uwe Schwigelshohn. Parallel job scheduling
— A status report. In Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn,
editors, Tenth Workshop on Job Scheduling Strategies for Parallel Processing, vol-
ume 3277 of Lecture Notes in Computer Science, pages 1-16. Springer-Verlag, 2004.
Available from www.cs.huji.ac.il/~feit/parsched/.



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Krisztian Flautner, Rich Uhlig, Steve Reinhardt, and Trevor Mudge. Thread-
level parallelism and interactive performance of desktop applications. In Ninth
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 129-138, November 2000. Available from
www.eecs.umich.edu/"tnm/papers/asplos00.pdf.

Tan T. Foster. The anatomy of the grid: Enabling scalable virtual organizations. In
Proceedings of the Seventh Euro-Par(Euro-Par’01), pages 1-4, London, UK, 2001.
Springer-Verlag.

Tan T. Foster and Carl Kesselman, editors. The GRID: Blueprint for a New Com-
puting Infrastructure. Morgan Kaufmann, 1998.

Geoffrey C. Fox and Dennis Gannon. Special issue: Workflow in grid systems:
Editorials. Concurrency and Computation: Practice and Ezperience, 18(10):1009—
1019, 2006.

Eitan Frachtenberg. Process Scheduling for the Parallel Desktop. In Proceedings of
the International Symposium on Parallel Architectures, Algorithms, and Networks
(I-SPAN’05), Las Vegas, NV, December 2005.

Eitan Frachtenberg and Yoav Etsion. Hardware parallelism: Are operating systems
ready? (case studies in mis-scheduling). In Second Workshop on the Interaction
between Operating Systems and Computer Architecture (WIOSCA’06), In conjunc-
tion with ISCA-83, Boston, MA, June 2006.

Eitan Frachtenberg and Dror G. Feitelson. Pitfalls in parallel job scheduling
evaluation. In Dror G. Feitelson, Eitan Frachtenberg, Larry Rudolph, and Uwe
Schwiegelshon, editors, 11th Workshop on Job Scheduling Strategies for Parallel
Processing, volume 3834 of Lecture Notes in Computer Science, pages 257—282.
Springer-Verlag, Boston, MA, June 2005. Available from www.cs.huji.ac.il/
“etcs/pubs/.

Eitan Frachtenberg, Dror G. Feitelson, Fabrizio Petrini, and Juan Fernandez. Flex-
ible CoScheduling: Mitigating load imbalance and improving utilization of hetero-
geneous resources. In 17th International Parallel and Distributed Processing Sym-
posium (IPDPS), Nice, France, April 2003. Available from www.cs.huji.ac.il/
“etcs/pubs/.

Eitan Frachtenberg, Dror G. Feitelson, Fabrizio Petrini, and Juan Fernandez.
Adaptive parallel job scheduling with flexible coscheduling. IEEE Transactions
on Parallel and Distributed Systems, 16(11):1066-1077, November 2005. Available
from www.cs.huji.ac.il/"etcs/pubs/.

Carsten Franke, Joachim Lepping, and Uwe Schwiegelshohn. On advantages of
scheduling using genetic fuzzy systems. In 12th Workshop on Job Scheduling Strate-
gies for Parallel Processing, volume 4376 of Lecture Notes in Computer Science,
pages 68-93. Springer, June 2006.

Brajesh Goyal and Shilpa Lawande. Grid Revolution: An Introduction to Enterprise
Grid Computing. The McGraw-Hill Companies, 2006.

H. Peter Hofstee. Power efficient processor architecture and the Cell processor. In
11th International Symposium on High-Performance Computer Architecture, San
Francisco, CA, February 2005. Available from www.hpcaconf.org/hpcall/papers/
25_hofstee-cellprocessor_final.pdf.

Steven Hotovy. Workload evolution on the cornell theory center IBM SP2. In
Dror G. Feitelson and Larry Rudolph, editors, First Workshop on Job Schedul-
ing Strategies for Parallel Processing, number 1162 in Lecture Notes in Computer
Science, pages 27-40, 1996.



29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Eduardo Huedo, Rubén S. Montero, and Ignacio Martin Llorente. Evaluating the
reliability of computational grids from the end user’s point of view. Journal of
Systems Architecture, 52(12):727-736, 2006.

Terry Jones, William Tuel, Larry Brenner, Jeff Fier, Patrick Caffrey, Shawn Daw-
son, Rob Neely, Robert Blackmore, Brian Maskell, Paul Tomlinson, and Mark
Roberts. Improving the scalability of parallel jobs by adding parallel aware-
ness to the operating system. In 15th IEEE/ACM Supercomputing, Phoenix, AZ,
November 2003. ACM Press and IEEE Computer Society Press. Available from
www.sc-conference.org/sc2003/paperpdfs/pap136.pdf.

Michael Kanellos. Designer puts 96 cores on single chip. news. com.com/2100-1006_
3-5399128.html, October 2004.

Jiadao Li and Ramin Yahyapour. Learning-based negotiation strategies for grid
scheduling. In IEEFE International Symposium on Cluster Computing and the Grid
(CCGrid 2006), Singapore, pages 567-583. IEEE Press, 2006.

Yung-Hsiang Lu, Luca Benini, and Giovanni De Micheli. Low-power task schedul-
ing for multiple devices. In Proceedings of the Eighth International Workshop on
Hardware/software codesign (CODES’00), pages 39-43, New York, NY, USA, 2000.
ACM.

Jon MacLaren, Rizos Sakellariou, Jon Garibaldi, Djamila Ouelhadj, and Krish T.
Krishnakumar. Towards service level agreement based scheduling on the grid.
In Proceedings of the Workshop on Planning and Scheduling for Web and Grid
Services, pages 100-102, Whistler, BC, Canada, July 2004.

Emmanuel Medernach. Workload analysis of a cluster in a grid environment. In
Dror G. Feitelson, Eitan Frachtenberg, Larry Rudolph, and Uwe Schwiegelshon,
editors, 11th Workshop on Job Scheduling Strategies for Parallel Processing, volume
3834 of Lecture Notes in Computer Science, pages 36—61. Springer-Verlag, Boston,
MA, June 2005. Available from www.cs.huji.ac.il/~feit/parsched/.

Jason Nieh, James G. Hanko, J. Duane Northcutt, and Gerard A. Wall. SVR4
UNIX scheduler unacceptable for multimedia applications. In Fourth ACM Inter-
national Workshop on Network and Operating Systems Support for Digital Audio
and Video (NOSSDAV), November 1993. Available from citeseer.ist.psu.edu/
443381 .html.

John. K. Ousterhout. Scheduling techniques for concurrent systems. In Third
International Conference on Distributed Computing Systems, pages 22—-30, Miami,
FL, October 1982.

Parallel workload archive. www.cs.huji.ac.il/labs/parallel/workload.
Michael Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, New
Jersey, second edition, 2002.

Rosario M. Piro, Andrea Guarise, and Albert Werbrouck. An economy-based ac-
counting infrastructure for the datagrid. In Proceedings of the Fourth International
Workshop on Grid Computing (GRID’03), page 202, Washington, DC, USA, 2003.
IEEE Computer Society.

James Reinders. Intel Threading Building Blocks. O’Reilly and Associates, July
2007.

Thomas G. Robertazzi and Dantong Yu. Multi-Source Grid Scheduling for Divisi-
ble Loads. In Proceedings of the 40th Annual Conference on Information Sciences
and Systems, pages 188-191, March 2006.

Gerald Sabin and P. Sadayappan. Unfairness metrics for space-sharing parallel job
schedulers. In Dror G. Feitelson, Eitan Frachtenberg, Larry Rudolph, and Uwe
Schwiegelshon, editors, 11th Workshop on Job Scheduling Strategies for Parallel



44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Processing, volume 3834 of Lecture Notes in Computer Science, pages 238-256.
Springer-Verlag, Boston, MA, June 2005. Available from www.cs.huji.ac.il/
“feit/parsched/.

Uwe Schwiegelshohn and Ramin Yahyapour. Fairness in parallel job scheduling.
Journal of Scheduling, 3(5):297-320, 2000.

Uwe Schwiegelshohn and Ramin Yahyapour. Attributes for communication be-
tween grid scheduling instances. In J. Nabrzyski, J.M. Schopf, and J. Weglarz,
editors, Grid Resource Management — State of the Art and Future Trends, pages
41-52. Kluwer Academic, 2003.

Stephen Shankland. Azul’s first-generation Java servers go on sale. news. com. com/
2100-1010_3-5673193 . html?tag=nl, April 2005.

Youngsoo Shin and Kiyoung Choi. Power conscious fixed priority scheduling for
hard real-time systems. In Proceedings of the 36th ACM/IEEE conference on
Design automation (DAC’99), pages 134-139, New York, NY, USA, 1999. ACM.
Mumtaz Siddiqui, Alex Villazén, and Thomas Fahringer. Grid capacity planning
with negotiation-based advance reservation for optimized qos. In Proceedings of
the 2006 ACM/IEEE conference on Supercomputing (SC’06), page 103, 2006.
Allan Snavely and Dean M. Tullsen. Symbiotic jobscheduling for a simultaneous
multithreading processor. In Ninth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), pages 234—
244, Cambridge, MA, November 2000. Available from citeseer.ist.psu.edu/
338334.html.

Angela C. Sodan and Lei Lan. LOMARC—Lookahead matchmaking for
multi-resource coscheduling. In Dror G. Feitelson, Larry Rudolph, and Uwe
Schwiegelshohn, editors, Tenth Workshop on Job Scheduling Strategies for Parallel
Processing, volume 3277 of Lecture Notes in Computer Science, pages 288-315.
Springer-Verlag, 2004. Available from www.cs.huji.ac.il/"feit/parsched/.
Andrei Tchernykh, Juna Manuel Ramirez, Arutyun Avetisyan, Nicolai Kuzjurin,
Dimitri Grushin, and Sergey Zhuk. Two level job-scheduling strategies for a compu-
tational grid. In Proceedings of the Second Grid Resource Management Workshop
(GRMW’05) in conjunction with the Sizth International Conference on Parallel
Processing and Applied Mathematics (PPAM’05)", EDITOR = "R. Wyrzykowski
and J. Dongarra and N. Meyer and J. Wasniewsk:, number 3911 in Lecture Notes
in Computer Science, pages 774-781, September 2005.

Gabor Terstyanszky, Tamas Kiss, Thierry Delaitre, Stephen Winter, and Peter
Kacsuk. Service-oriented production grids and user support. In D. Gannon and
R. M. Badia, editors, Proceedings of the Seventh IEEE/ACM international confer-
ence on Grid computing. Barcelona, 2006., pages 323-324, 2006.

Srikumar Venugopal, Rajkumar Buyya, and Lyle Winton. A grid service broker for
scheduling distributed data-oriented applications on global grids. In Proceedings of
the Second Workshop on Middleware for grid computing (MGC’04), pages 75-80,
New York, NY, USA, 2004. ACM.

Samuel Williams, John Shalf, Leonid Oliker, Shoaib Kamil, Parry Husbands, and
Katherine Yelick. The potential of the cell processor for scientific computing. In
Proceedings of the Third Conference on Computing frontiers (CF’06), pages 920,
New York, NY, USA, 2006. ACM.

Yair Wiseman and Dror G. Feitelson. Paired gang scheduling. IEEE Transactions
on Parallel and Distributed Systems, 14(6):581-592, June 2003.

Tao Xie and Xiao Qin. Enhancing security of real-time applications on grids
through dynamic scheduling. In Dror G. Feitelson, Eitan Frachtenberg, Larry



57.

58.

59.

Rudolph, and Uwe Schwiegelshon, editors, 11th Workshop on Job Scheduling
Strategies for Parallel Processing, volume 3834 of Lecture Notes in Computer Sci-
ence, pages 219-237. Springer-Verlag, Boston, MA, June 2005. Available from
www.cs.huji.ac.il/"feit/parsched/.

Guangchang Ye, Ruonan Rao, and Minglu Li. A multiobjective resources schedul-
ing approach based on genetic algorithms in grid environment. In Proceedings
of the Fifth International Conference on Grid and Cooperative Computing Work-
shops (GCCW’06), pages 504-509, Washington, DC, USA, 2006. IEEE Computer
Society.

Kenneth Yoshimoto, Patricia Kovatch, and Phil Andrews. Co-scheduling with user-
settable reservations. In Dror G. Feitelson, Eitan Frachtenberg, Larry Rudolph,
and Uwe Schwiegelshon, editors, 11th Workshop on Job Scheduling Strategies for
Parallel Processing, volume 3834 of Lecture Notes in Computer Science, pages 146—
156. Springer-Verlag, Boston, MA, June 2005. Available from www.cs.huji.ac.il/
“feit/parsched/.

Dayi Zhou and Virginia Lo. Wave scheduler: Scheduling for faster turnaround time
in peer-based desktop grid systems. In Dror G. Feitelson, Eitan Frachtenberg,
Larry Rudolph, and Uwe Schwiegelshon, editors, 11th Workshop on Job Schedul-
ing Strategies for Parallel Processing, volume 3834 of Lecture Notes in Computer
Science, pages 194-218. Springer-Verlag, Boston, MA, June 2005. Available from
www.cs.huji.ac.il/"feit/parsched/.



