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Abstract. We present a contribution on dynamic load balancing for distributed
and parallel object-oriented applications. We specially target peer-to-peer sys-
tems and their capability to distribute parallel computation. Using an algorithm
for active-object load balancing, we simulate the balance of a parallel application
over a peer-to-peer infrastructure. We tune the algorithm parameters in order to
obtain the best performance, concluding that ourIFL algorithm behaves very well
and scales to large peer-to-peer networks (around 8,000 nodes).

1 Introduction

One of the most useful features of current distributed systems in the context of a desktop
Grid, is the ability to redistribute tasks among its processors. This requires a redistribu-
tion policy to gain in efficiency by dispatching the tasks in such a way that the resources
are used efficiently, i.e. minimising the average idle time of the processors and improv-
ing application performance. This technique is known asload balancing[1]. Moreover,
when the redistribution decisions are taken at runtime, it is calleddynamic load bal-
ancing. With the objective of scaling up to very large scale Grid systems, we placed
ourselves in the context of using peer-to-peer (P2P) principles and frameworks. In this
work we use the definition ofPure peer-to-peer (P2P)[2]: each peer can be removed
from the network without any loss of network service.

In a previous work [3], we presented a P2P infrastructure developed within ProAc-
tive [4]. ProActive is an open-source Java middleware which aims to achieve seamless
programming for concurrent, parallel, distributed, and mobile computing, implement-
ing the active-object programming model (see Section 2). In its P2P infrastructure, all
peers have to maintain a list of “known nodes” (also known asacquaintances). Initially,
when a fresh peer joins the network, it only knows peers from a list of potential net-
work members. A peer inside the network will receive a fresh-peer request and it has
a certain probability of accepting the fresh peer as an acquaintance. If the fresh peer
was accepted by the one inside the network, the latter forwards the fresh-peer request
to its own acquaintances. We exploited the P2P nature of this network in a randomised



load-balancing algorithm and demonstrate that this approach performs better than a
server-oriented scheme in a proprietary network [3].

Dynamic load balancing is a well-studied issue for distributed systems [5]. For in-
stance, well-known load-balancing algorithms have been studied in the heterogeneous
network context by Shivaratri, Krueger and Singhal [6] and in the P2P context by Rous-
sopoulos and Baker [7]. However, these studies focus on balancing tasks (units of pro-
cessing), while load-balancing of active objects is achieved by redistribution of queues.

Randomised load-balancing algorithms were popularised by work-stealing algo-
rithms [8, 9], where idle processors randomly choose another processor from which
to “steal” work. A work-stealing algorithm aims to maintain all processors working,
but its random nature causes the algorithm to respond slowly to overloading. Therefore,
due to the fact that processors connected to a P2P network share their resources not
only with the network but also with the processor owner, new constraints like reaction
time against overloading and bandwidth usage become relevant [10].

Most of the research in load-balancing for P2P networks is based on a structured
approach using adistributed hash table(DHT) [11], where each machine can be rep-
resented by several keys, and parallel applications are mapped into this DHT. As a
consequence, load balancing becomes now a search problem on key/data spaces [12].
Our P2P infrastructure is unstructured and shared resource are computational nodes
(JVMs). Therefore it is not necessary to identify resources uniquely as would be the
case for P2P data. Another approach for load balancing on P2P environments is the
use ofagentswhich traverse the network equalising the load among them. The agents
follow a model of an ant colony [13, 14],carrying load among computers, and eventu-
ally making the system stable. Such a scheme focuses on load equalisation instead of
the search of an optimal distribution. Our load balancing algorithm follows the same
principles than MOSIX Distributed Operating System [15], but oriented to active ob-
jects, which are portable by definition and have no access to kernel calls. Moreover,
information dissemination procedures are different: while MOSIX uses periodical ran-
domised information sharing, we use on-demand information sharing because in [10]
we demonstrate that no periodical information sharing provides scalability and updated
load information [16] together.

In this paper we test this algorithm in a new setting: a simulated peer-to-peer net-
work, trying to find its limits and analysing its behaviour. We show that the algorithm
behaves very well but that some parameters need to be tuned for this kind of large
networks.

This article is organised as follows. Section 2 presents ProActive as an imple-
mentation ofactive-object programming model. Section 3 explains the fundamentals
of the randomised active-object load-balancing algorithm for P2P networks. Section 4
presents the simulated environment of our tests, the fine tuning of algorithm parameters,
and the scalability tests. Finally, conclusions and future work are presented.

2 ProActive

The ProActive middleware is a Java library which aims to achieve seamless program-
ming for concurrent, parallel, distributed and mobile computing. As it is built on top of



the standard Java API, it does not require any modification of the standard Java execu-
tion environment, nor does it make use of a special compiler, pre-processor, or modified
virtual machine.

The base model is a uniformactive-objectprogramming model. Each active object
has its own control thread and can independently decide in which order to serve incom-
ing method calls. Incoming method calls are automatically stored in a queue of pending
requests (called aservice queue). When the queue is empty, active objects wait for the
arrival of a new request; this state is known aswait-for-request.

Active objects are accessible remotely via method invocation. Method calls with ac-
tive objects are asynchronous with automatic synchronisation. This is provided by auto-
maticfuture objectsas a result of remote methods calls, and synchronisation is handled
by a mechanism known aswait-by-necessity[17]. Another communication mechanism
is thegroup communicationmodel. Group communication allows triggering method
calls on a distributed group of active objects with compatible type, dynamically gener-
ating a group of results [18].

ProActive provides a way to move any active object from any Java Virtual Ma-
chine (JVM) to another, called amigrationmechanism [19]. An active object with its
pending requests (method calls), futures, and passive (mandatory non-shared) objects
may migrate from JVM to JVM through themigrateTo(. . . )primitive. The migration
can be initiated from outside the active object through any public method, but it is the
responsibility of the active object to execute the migration, this is known asweak mi-
gration. Automatic and transparent forwarding of requests and replies provide location
transparency, as remote references toward active mobile objects remain valid.

3 IFL: a randomised load-balancing of active-objects on P2P
networks

AssumeloadA is the usage percentage of processorA. Defining two thresholds,OT
andUT (OT > UT ), we say that a processorA is overloaded(resp.underloaded) if
loadA > OT (resp.loadA < UT ). Additionally, aiming to minimise the number of
migrations until a stable state in load-balancing, we use arank value which gives the
processing capacity of a node. Ranks and loads are stored locally by each node. The idea
of using arank to generate a total order relation among processors was popularised by
the Matchmaking scheme [20] ofCondor[21]. While Condor uses its rank to measure
the desirability of a match, we used it to discard slow nodes at runtime.

We exploited the results of Litzkow, Livny and Mutka, who reported that desktop
processors are idle 80% of the time [21] (this value is reported up to 90% in 2005
[22, 23]). Also, we followed the recomendations of [10] about minimization of load-
balancing messages to make our randomized scheme of load-balancing. In fact, letp
be the probability of having a computer in an idle (or underloaded) state, and letn be
the size of a subset of acquaintances. Then, for each node, the probability to havek
underloaded nodes in its acquaintances subset is

n∑
i=k

(n
k )pi(1− p)n−i



3.1 First version of the IFL algorithm

We have developed a new load-balancing algorithm [3], which we will callIFL. The
IFL algorithm works as follows:

1. If a node (also known ascomputation entityor processor) is overloaded, it ran-
domly chooses a minimal subset of (three, four or five of) its acquaintances. In
Figure 1 (a) and (b), grey nodes represent the subset of acquaintances.

2. Only underloaded nodes who satisfy the rank criteriarequester rank < RB ∗
my rank (whereRB ∈ [0, 1] constant) will be able to reply the request. In Figure
1 (c), two nodes are discarded using this criteria (those marked by X).

3. Nodes that satisfy the criteria reply to the request. Then, the overloaded node will
send an active object to the owner of the first received reply (Figure 1 (d)). We use
this scheme because we want to maintain the active objects close to each other to
avoid communication latency at runtime.

(a) (b) (c) (d)

Fig. 1.Load-balancing algorithm for active-objects over Peer-to-Peer networks.

This algorithm performs load balancing until a stable state, reaching a local opti-
mum of balance. If there are no overloaded nodes, no active object has incentive to
migrate.

3.2 Second version of the IFL algorithm

Considering that the communication scheme of ProActive is based in RMI that has a
high-cost in bandwidth-usage and latency [24, 25], we aimed to optimise the application
performance by clustering active objects on the best qualified processors. Therefore, in
our second version of load balancing algorithm (theIFL algorithm), we add a work-
stealing [1] step:

1. If a node is underloaded, it randomly chooses one of its acquaintances to which it
sends a work-stealing request.

2. If the receiver satisfies the rank criteriaRS∗requester rank > my rank, it sends
an active object to the caller.



Note that if we consider that each node made its first contact with a “near” peer
(usually in the same physical network), it is more probable that stealing occurs between
close nodes than remote ones.

3.3 Experimental verification

To verify our theoretical reasoning, we experimented with a small-scale real laboratory
environment. We tested the two versions of our algorithm (with and without work-
stealing), we used Jacobi matrix calculus to solve a 3,600x3,600 matrix with 36 workers
implemented as active objects (implementation details available in [3]). We run the test
on a set of 25 of INRIA desktop computers, having 10 Pentium III 0.5 - 1.0 GHz, 9
Pentium IV 3.4GHz and 6 Pentium XEON 2.0GHz, all of them with a Linux operating
system and connected by a 100 Mbps Ethernet switched network. Starting from random
initial distributions, we measured the execution time of 1000 sequential calculus of
Jacobi matrices.

For both versions we used as load index the CPU load and as rank the CPU speed.
Also, using our knowledge of the lab networks, we experimentally defined the algo-
rithm parameters asOT = 0.8 (to avoid swapping on migration time), andUT = 0.5.
We experimentally discovered that value ofRB between0.5 and0.9 has any “opti-
mal” behaviour. We explain this by the existence of a correlation between processing
capacity and load state: it is highly probable to find a low capacity node overloaded
than underloaded. Therefore, we fixedRB = 0.7. Also, we experimentally defined
RS = 0.9.

Figure 2 shows the mean execution time of the Jacobi application and the num-
ber of migrations. A low number of migrations corresponds to an initial distribution of
active-objects near to an optimal state (local or global), and a high number of migra-
tions corresponds to an initial distribution far from an optimal state. Also, the mean time
performed by the Jacobi application without load balancing is represented by the hori-
zontal line marked by (*), this value was obtained using a subset of the10 best-ranked
nodes, having the nodes full availability for Jacobi application. Note that this value is a
good approximation of the global optimal distribution.

Figure 2 shows that, for the first version of our algorithm, the presence of a local op-
timum attempts against a good performance of the application. For the second version,
a performance near the global optimal state is reached for all migration counts.

In the next section we experimentIFL in the context of Desktop Grids to see if it
can reach a near optimal state for a large number of nodes (around 8,000).

4 Simulating the algorithm on a large scale P2P network

In the study of Load-Balancing algorithms, one of the most important characteristics of
nodes are theirprocessing capacity. A function using this capacity and the amount of
work that a node has to perform determine if a node is on an overloaded or underloaded
state. To have a reliable model of processing capacity, we made a statistical study of
desktop computers registered at the Seti@home project [26]. This project aims to anal-
yse the data obtained from the Arecibo Radio telescope, distributing units of data among
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Fig. 2.Mean execution time for different number of migrations of the Jacobi Parallel Application,
using the load balancing algorithm with and without work-stealing.

personal computers and exploiting the processing capacity of up to200, 000 processors
distributed around the world to analyse the data. Using the measuredMflopsby BOINC
[27] benchmarks. We considerMflopsas a good metric to determine the processing ca-
pacity for parallel scientific calculus, because we are interested in processing balance,
not data balance.

We grouped all desktop computersMflops(dr) in 30 clusters (Ct) using the follow-
ing formula:

dr ∈ Ct iif b r

106
c = t

The resultant frequency histogram is shown in Figure 3.
Defining a normal distributionnor(x) (equation (1)), we compared the real dis-

tribution against ournor(x) model function using Kolmogorov-Smirnov test statistics
(KST ), giving us a value ofKST = 0.0605. Therefore, we can deduce that using a
level of significance0.01, the capacity of processors in a Large-Scale network can be
modelled by a normal distribution.

nor(x) = 16000× e
(−(x−1300)2

2×4002 (1)

We implemented in C a network simulator, using ann×n matrix for the nodes and
ann2 × n2 matrix for the edges. We assign the nodes processing capacities (calledµ)
using a normal distributionN(1, 1

9 ). Even thought this simple model seems to be naı̈ve,
it permits us to control the topology generated by the P2P Infrastructure of ProActive
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Fig. 3.Frequency distribution of Mflops for 200,000 processors registered at Seti@home and the
normal distribution which model it

[3]. Simple models could be very powerfully as Kleinberg shows in his work about
Small-world network algorithms [28].

In our simulations, we assume that all active objects are parts of a parallel appli-
cation; therefore, we assume all service queues to have equal incoming message ratios
λ. Clearly, real Grids run different parallel applications from different sources, hav-
ing different service queue ratios and workloads. Nevertheless, from the point of view
of a given parallel application, we consider other applications only as a reduction of
processing capacity of network nodes.

Denoting byj the number of active objects in the nodei at a given time, we say that
the nodei is overloaded ifjλ ≥ µi and underloaded ifjλ < Tµi, whereT is a given
threshold between [0.5, 0.9]. The processor capacityµi is also used as the node rank.
For consistency with the previous section, we useUT = T × µi andOT = µi.

We randomly placedm active objects in(0 + x, 0 + y) (x andy defined on run-
time) and tested the load-balancing algorithm, measuring the total number of migra-
tions and the kind of processors used by the algorithm on each time-step. Each ex-
perimental sample is the mean number of100 repetitions, fixing the parameter set
{n, m, λ, T, RB,RS} (see Table 1) and recalculatingµ for all nodes in each repeti-
tion.

Our goals are to perform a fine-tuning of the constantRS and second to determine
whether our algorithm can reach a stable state near to the optimal on large-scale P2P
networks using a minimal subset of acquaintances. Even though migration cost seems
to be a key issue for load balancing algorithm, it is possible that processors use the
blocking or idle time of the parallel application to perform migrations having a low
overcost in application total time.



Table 1.Parameters and variables used in the simulation

Simulation parameters Model parameters Algorithm parameters
n Number of nodes µ processor’s capacity

and ranking
UT threshold to determine

an underloaded state
m Number of active ob-

jects
λ incoming ratio of an

active object service
queue

OT threshold to determine
an overload state

x, y Initial subset length and
hight

T factor used to determine
UT

RB Load-balancing similar-
ity factor

RS Work-stealing similar-
ity factor

4.1 Fine-Tuning

We placedm = 50 active-objects in a simulated P2P network of100 nodes, measuring
the total number of migrations performed by the algorithms until a given time-step
(Figure 4a) and the number of overloaded nodes per time-step (Figure 4b), because
it is imperative for all load-balancing algorithms to avoid increasing the number of
overloaded nodes. As we expected, a lower value forRS generates a greater number of
migrations. It is easy to see that a low value of this factor will produce bad decisions of
balance, migrating active objects to underloaded nodes with low processing capacity.
Then, those active objects could cause overload in subsequent nodes, or an infinite
migration among underloaded nodes.

Figure 5a presents the mean number of active-objects in nodes with capacity higher
than one per total number of active objects during100 repetitions, and Figure 5b presents
the mean number of active objects in nodes with capacity higher than1 1

3 by total num-
ber of active objects during 100 repetitions. Because we are using a normal distribution
for the processor capacityµ, 50% of nodes will haveµ ≥ 1 and 25% of nodes will have
µ ≥ 1 1

3 .
Two behaviours are present in Figure 5 (a) and (b). First, because our algorithm

aims to cluster active-objects on the best processors, for high values ofRS, the number
of active objects int the best quadrant of the processors increase. Second, for low values
of RS, some active objects are stolen by worse processors. We can see from the plots
thatRS ≥ 0.9 behaves very well, placing all of active objects in nodes with processing
capacity greater than one.

4.2 Scaling

As seen in the previous section, we aimed to optimise the application performance
clustering active-objects on the best qualified processors. Therefore, using the values
of µ, we sorted the nodes from higher to lower processing capacity and we defined the
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b) mean number of overloaded nodes in each time-step. UsingRB = 0.7, acquaintances subset
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optimal subsetas the firstOPT nodes that satisfy the condition:

OPT∑
i=1

µi > m× λ

Simulating and application ofm = 100 active objects, we haveOPTn=10 = 13,
OPTn=20,30 = 11, OPTn=40 = 10 andOPTn∈[50,90] = 9.

In order to measure the performance of theIFL algorithm for large-scale networks,
we define a ratio:

ALOP =
Number of nodes used by IFL

OPT

And, at the same time, we calculate the mean number of migrations performed by all
active objects from time step0 until time stept. An increase in the acquaintances subset
size results in an increase in the probability to find a node to migrate, and hence an
increase in the probability to reach the optimal state. Therefore, we only show the results
for subset size = 3.

We measured scaling of theIFL algorithm in terms ofALOP and the number of
migrations, for networks of100 (Figures 6 (a) and (b)) and400 nodes(Figures 6 (c)
and (d)). Even though in Section 4.1, a value ofRS = 0.9 was promising, these plots
show that the total number of migrations generated by this value makes the algorithm
not scalable. Scalability in terms of migrations is presented in Figures 6 (b) and (c) only
for values ofRS ≥ 1.0. The optimal scalability, in terms ofALOP , is presented in
Figures 6 (a) and (c) for a value ofRS = 1.0.

Taking into account that a20x20 network can be still considered as a small network,
we test the scalability in terms ofALOP and number of migrations overn × n P2P
networks usingn = [10, 90], fixing the parameterRS in 1.0 andRB in 0.7. The results
are shown in Figure 7.

Note that in the beginning theIFL algorithm increases the number of nodes used,
because active objects are first placed in a small subset of the network generating a high
overload in this subset. Then, the algorithm quickly performs migrations to reduce the
overload. Then, only thework-stealingstep ofIFL algorithm works, clustering active-
objects on the best nodes and thus, reducing the number of nodes used by the algorithm.
Experiments report no overloaded nodes over30 time-steps.

Figure 7 (a) presents theALOP ratio for severaln×n P2P networks. For networks
of until 40× 40 nodes, theIFL algorithm uses less than two times the optimal number
of nodes. In other words,IFL algorithm uses less than20 nodes from all the network
until 100 time-steps. For networks of50 × 50 to 70 × 70 nodes, the algorithm uses
less than three times the number of optimal nodes (i.e:27). For larger networks, the
algorithm uses more than three times the optimal number of nodes at time step1000,
but the curves seem to decrease before that value. Because the distribution of processing
capacityµ follows an exponential distribution, the minimalµ in the subset of the “best
X nodes” will be higher for larger values ofn.

Figure 7 (b) presents the total number of migrations between time step0 and a given
time stept (t ∈ [1, 1000]) for m = 100 active objects over P2P networks from10× 10
to 90 × 90 nodes. The curves remain under6.5 migrations. Considering only the time
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Fig. 6.Scalability for a network usingRS = 0.9, 1.0, 1.1, RB = 0.7

step1000, we can see that the number of migrations is of orderO(log(n)). Both are
promising results in terms of scalability of theIFL algorithm.

5 Conclusions

We studied theIFL load-balancing algorithm on P2P networks, aiming at reaching a
near-optimal distribution of active objects using only local information provided by a
P2P infrastructure. Using a simulated P2P network, we showed that, using only a low
number of fixed links among nodes and a careful tuning of the algorithm parameters,
a near-optimal distribution is reachable even for large-scale networks. We suggested to
use a value near1.0 for the stealing factor, which allows using around1.7 times the
optimal number of nodes for networks until 400 nodes, using less than5.5 migrations
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per active object. Moreover, the number of migrations appears to be of orderO(log(n))
after the first optimal state (without overloaded nodes) is reached.

As seen in Section 4.1, the value ofRS is a key factor for a low cost and efficient
load balancing and we had many experimental tuning to find “optimal values” of it.RS
seems to depend of network topology and we are studying its behaviour to calculate it
automatically and dynamically.

As future work, we plan to test the algorithm using a large-scale P2P infrastructure
deployed over real desktop computers, balancing a communication-intensive parallel
application. It is the continued goal of this work to optimise this algorithm, looking for
the best performance in migration decisions and the global distribution using only local
information.
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