
Volunteer Computing on Clusters

Deepti Vyas1,2 and Jaspal Subhlok1

1 University of Houston⋆
2 Halliburton Digital Consulting Solutions

Abstract. Clusters typically represent a homogeneous, well maintained pool of
high-end computation resources. This makes them particularly attractive for vol-
unteer computing, where unused compute cycles are utilizedfor scientific guest
applications. Cluster nodes are not idle as often as public PCs, but they are fre-
quently underutilized while actively executing parallel applications. Hence, fully
exploiting clusters for volunteer computing requires the ability to efficiently and
invisibly steal the unused cycles at a fine grain from the currently running host
applications, without slowing them down. In this paper we present measurements
on a production compute cluster that show long periods of CPUand memory un-
derutilization patterns that could be used to execute guestapplications. Our exper-
iments with NAS benchmarks show that, under the best configuration of Linux,
cycles can be stolen with only a 3.6% average slowdown of the host application.
This was accompanied by an overall improvement in the systemthroughput of
38%, when progress of the guest applications was included. We introduce sim-
ple guidelines on using clusters for volunteer computing. We also argue for the
support of zero priority processes in OS schedulers which could virtually elimi-
nate the impact of volunteer computing on host applications.

1 Introduction

Volunteer computing, also referred to as public-resource computing or global comput-
ing, is based on exploiting unused cycles on ordinary desktop computers. The concept
was pioneered by SETI@home [1], and is increasingly being employed to solve impor-
tant real life problems. BOINC [2, 3], a framework to supportvolunteer computing,
is being used by a variety of scientific simulation projects such as protein folding, cli-
mate prediction, and biomedical computing. Condor [4] pioneered the employment of
idle periods on organizational desktop systems for useful computing. We use the term
volunteer computing for all scenarios where a low priority guest application can run on
unused resources without significantly impacting high priority host applications. Ex-
amples of other projects with similar goals include Entropia [5], OpenMosix [6], and
GridMP [7].

A growing source of computation power today is compute clusters consisting of
10s to 1000s of processors. In addition to the high performance computing centers, it
is becoming increasingly common for individual computational scientists and research
groups to maintain their own clusters. In our estimate the combined compute power

⋆ email contact: dvyas@cs.uh.edu , jaspal@uh.edu



of all clusters on our campus (University of Houston) is comparable to the combined
compute power of all desktops on campus, and we believe this is not uncommon.

Computation clusters are particularly attractive for volunteer computing for a num-
ber of reasons.

– Clusters are typically built from high end computing and communication compo-
nents.

– Clusters typically offer a homogeneous and well maintainedpool of processors.
– While many supercomputing centers are heavily used, many clusters are also fre-

quently idle, although the usage of a typical cluster node iscertainly higher than a
typical home PC. A recent study [8] of one group of clusters for scientific research
found that their average usage varied between 7% and 22%.

In this paper we empirically demonstrate the following additional properties of clus-
ter behavior that are relevant to volunteer computing.

1. CPU usage on clusters is frequently not close to the maximum while they are exe-
cuting parallel scientific applications. The reason is thatsynchronization delays are
fundamental to parallel processing, and increase as a fixed size problem is scaled up
to a larger number of processors. For illustration, our experiments with NAS class
B parallel benchmarks on 4 nodes show that their average CPU utilization varied
from 53% to 100% as listed in Table 1. Further, the average speedup from 4 nodes
(8 threads) to 8 nodes (16 threads) was 1.51 implying that theadded 4 nodes were
used only half as efficiently as the first 4 nodes. Other classes of applications, such
as sparse matrix computations, are fundamentally more prone to synchronization
delays due to load imbalance. We report on measured usage of aproduction clus-
ter at the University of Houston that shows average CPU utilization of 64% even
though applications are running on the nodes almost the entire time.

2. Usage of cluster nodes shows significant predictability,i.e., computation behavior
in the recent past is a good predictor of the usage in the near future. The reason
is that clusters are typically employed for long running scientific applications, and
node usage for a single application is usually similar over the course of execution.

Benchmark BT CG EP FT LU MG SP
CPU utilization (%)90 65 100 53 94 73 81

Table 1.Average CPU utilization of Class B NAS benchmarks on 4 cluster nodes

Techniques like backfilling [9, 10] and interstitial computing [11] are used to in-
crease the cluster utilization by scheduling small jobs on idle nodes. Since free cycles
are available on many clusters only at a fine grain, a cluster is far more attractive for vol-
unteer computing if guest applications can execute when CPUand memory are being
underutilized, not just when the nodes are idle. Schedulingsupport for such fine-grained
cycle stealing has been studied in [12–14].



This paper focuses on fine-grained cycle stealing on Linux, which is the operating
system of choice for cluster computing. We demonstrate thatexecution of low prior-
ity guest applications only have a small impact on regular host applications. We also
discuss how various system and application factors affect the slowdown of host appli-
cations. This information, along with the fact that clusterusage shows significant pre-
dictability, helped us develop guidelines for employing volunteer computing on clusters
that can minimize the impact on host applications while maximizing the benefit to guest
applications. We argue that fine-grain cycle stealing on clusters with negligible impact
on host applications is possible, but would require simple changes to the Linux sched-
uler.

The paper is organized as follows. Section 2 presents results on CPU and mem-
ory utilization of a production cluster. Section 3 presentsresults on cycle-stealing on a
Linux cluster and its dependence on system and application factors. Section 4 outlines
our approach to volunteer computing on clusters and recommends beneficial changes
to OS schedulers, and section 5 contains conclusions.

2 Utilization of clusters

The study presented in this section empirically measures the CPU and memory utiliza-
tion on cluster nodes when they are busy executing scientificapplications. Performance
data was collected from a Beowulf cluster at the High Performance Computing Center
at University of Houston, one of the most busy clusters on campus. The cluster con-
sisted of 30 Intel Xeon dual processor nodes, running Linux (2.4.21 SMP kernel) with
2Gb RAM. The nodes were interconnected with a Gigabit ethernet network.

The data was collected over a period of 1 month and measurements were made at
5 minute intervals. The information was gathered from various files under /proc file
system of each node. CPU and memory utilization of representative nodes is plotted
in Figure 1. Several small groups of nodes had very similar usage patterns. The nodes
plotted in Figure 1 were not selected randomly, but chosen torepresent different pat-
terns. Figure 2 shows a zoomed in CPU utilization representing the first 12 hours of the
periods covered in Figure 1 for two of the nodes. The graphs are in descending order of
average CPU utilization within each figure.

Following are the main observations from this study of cluster utilization:

– The CPU utilization often shows fluctuation from point to point, as seen in Figure 2
which zooms in on the beginning part of the first two graphs in Figure 1. However,
CPU utilization shows remarkable stability when it is considered over windows of
several points. The average CPU utilization typically stays in a very narrow band
from hours to days, and even weeks, in some cases, as seen in Figure 1. We presume
this is a result of the same or similar applications running on the same group of
nodes for extended periods of time.

– While nodes show long periods where CPU utilization is high,they also show long
periods when CPU utilization is moderate or low. The averageCPU utilization of
a node varied between 25% to 85% with a mean around 64% and median around
65%.



Fig. 1. CPU and Memory utilization of sample nodes of a busy cluster plotted every 5 minutes
over a period of 1 month (14 Jun 2005 to 16 Jul 2005)

Fig. 2. CPU utilization for selected nodes plotted every 5 minutes over a period of 12 hours



– The memory utilization either stays steady or slowly increases linearly and then
drops, over extended periods of time. The memory usage does not exhibit the short
term fluctuations of CPU usage. However, we should point out that the reported
memory utilization does not necessarily reflect the active set of pages and may
include memory that has been released by the application, but is pending release at
the system level.

– The average memory utilization can be close to 100% for a nodefor extended
periods of time, but it is frequently around or well below 50%for extended periods
of time. The average memory utilization of the nodes varied between 30% and 90%
with a mean utilization around 52% and median utilization around 44%.

The main conclusion from this study, that is relevant to volunteer computing, is that
cluster nodes show long and predictable periods of low CPU and memory utilization.
The implication is that a substantial fraction of resourcesare available for volunteer
computing, and when a scenario with good resource availability is identified, it is likely
to continue for hours to days. The reason for such behavior isthat clusters are typically
employed for long running scientific applications. Hence, even though this study was
limited, we expect the conclusions to be valid for other clusters employed for parallel
scientific computing.

As pointed out earlier, the particular cluster that was monitored is known to be
used heavily. The purpose was to investigate available resources while applications are
running. Of course, if a cluster node is idle, it is an even more attractive option for
volunteer computing (although perhaps not as predictable). The usage of clusters is
likely to be higher than the average desktop, and indeed major supercomputing centers
are known to be very busy. However, our observation is that smaller clusters often have
considerable idle periods. A recent study of a 5 cluster research environment observed
that the average time a system was busy ranged from 7.3% to 22%and a large fraction
of jobs had a very small memory requirement [8].

We summarize this discussion as follows:

1. Many clusters nodes are idle and not running any applications a substantial fraction
of the time. Of course, these can be directly exploited for volunteer computing.

2. When cluster nodes are busy running applications, a substantial fraction of the
memory and CPU resources are often not utilized for extendedperiods of time.
These idle resources can be exploited with fine-grain cycle stealing making clus-
ters even more attractive for volunteer computing.

3 Exploiting fine grain parallelism on clusters

A critical consideration in making a cluster available for volunteer computing is how
a high priority host application will be affected when a low priority guest application
is stealing unused cycles for execution. Ideally, there should be no impact at all; the
guest process should be scheduled only when the host processis blocked, and the guest
process should be evicted as soon as the host process is readyto execute again. How-
ever, this is difficult to achieve for fine-grained cycle stealing when a host and guest



application are executing concurrently because one of the goals of commercial operat-
ing system schedulers is to prevent starvation of low priority processes. Research has
shown that it is possible to construct schedulers where the impact on the host applica-
tion is negligible [12, 14]. However, we are most interestedin volunteer computing with
mainstream operating systems since installing a new scheduler is not likely to be accept-
able. All our experimentation is on Linux since that is the dominant cluster operating
system.

The goal of the experiments was to see how to best run guest applications on Linux
with minimum impact on host applications. Dependence on system factors such as pri-
ority mechanism and scheduler versions, as well as dependence on characteristics of
host and guest applications, are also analyzed.

3.1 Experimental setup

Our experimental environment consists of a ten-node cluster. Each node has 1GB of
main memory and dual Pentium Xeon processors running at 1.8 GHz. The nodes are
connected through a 1 Gbps ethernet switch. The cluster was running Rocks 4.0 Beta
and a MPICH 1.2.6 version of MPI. This configuration is representative of small and
midsize clusters employed for scientific computing.

To achieve fine-grained cycle stealing, the guest applications were run simultane-
ously with host applications, but at a lower priority using the UNIX nice mechanism.
The execution times of the host and guest applications were measured when run individ-
ually (dedicated mode), and when run simultaneously (shared mode). Percentageslow-
down, defined as the percentage increase in execution time when executing in shared
mode as compared to dedicated mode, is used to quantify and compare the effect of
sharing in different scenarios.

NAS Class B parallel benchmarks were used as host applications and guest appli-
cations. Unless otherwise noted, the experiments were run on 4 (dual processor) nodes,
and each node ran 2 threads of the host application at normal priority (nice = 0) and
1 thread of the guest application at lowest priority (nice = 19). NAS benchmark EP
(Embarrassingly Parallel) was used as the default guest application. The EP program
has virtually no communication, and hence it represents a sequential compute intensive
application.

3.2 Slowdown on Linux

We study the slowdown of host applications when running witha guest application on
Linux, and examine how the slowdown can be minimized. The slowdown for the NAS
benchmarks running as host applications, with the compute intensive EP benchmark as
the guest application, is shown in Figure 3. Results are shown for Linux 2.4 and 2.6
kernels, as well as “2.6(tuned)”, that will be explained later in this section.

The slowdown of the host application on Linux 2.4 kernel was relatively high when
running concurrently with a minimum priority guest application, averaging 25% for the
benchmark suite. This validates similar observations in [12, 14]. As seen from Figure
3, the 2.6 kernel performs significantly better than the 2.4 kernel in this regard. The
average slowdown is reduced from approximately 25% to 16%, but is still simply too



0.00


5.00


10.00


15.00


20.00


25.00


30.00


35.00


40.00


45.00


BT
 CG
 EP
 FT
 LU
 MG
 SP
 Avg


Host Application


%
 S

lo
w

d
o

w
n

 o
f 

H
o

st
 A

p
p

lic
at

io
n




2.4 kernel
 2.6 kernel
 2.6 kernel (tuned)


Fig. 3. Comparison of percent slowdown of the host application in shared mode when executing
on different Linux kernels

large to be acceptable. This was surprising since the new O(1) scheduler in the 2.6
kernel was designed to respect thenice priorities more strictly.

Detailed investigation revealed the following. Unlike the2.4 kernel, the 2.6 kernel
has separate run queues for each of the two processors on a single node. In our sce-
nario, one queue will have two processes, and the other queuewill have one process,
since there are 3 active processes (two host processes and one guest process). In some
situations, both the host processes would get assigned to the same processor queue, with
the one guest process assigned to the other processor’s run queue. Clearly, this would
lead to a nominal 50% slowdown of the host processes. The situation will eventually
get corrected as the queues are periodically “load balanced”. However, the default load
balancing frequency is 200 milliseconds, implying that a phase of 50% slowdown could
last for a significant amount of computing time. In order to mitigate this effect, we de-
creased the period between the invocation of the kernel loadbalancer to 10 milliseconds.
Linux kernel 2.6 with this setting is referred to as “kernel 2.6 tuned” in Figure 3. We
observe a dramatically reduced slowdown of the host application - down from an aver-
age of 16% to 3.6%. We believe that these are the lowest reported slowdowns for host
applications when sharing the processors with a guest application on a widely deployed
cluster operating system.

We would like to point out that “tuning” the Linux 2.6 kernel as discussed above
technically contradicts our goal that an unmodified mainstream operating system should
be employed. However, the tuning we have done is to mitigate the impact of an unde-
sirable and unexpected side-effect of a new Linux feature. Hence we consider it to be a
“performance bug fix” and expect that it will not be needed with continued development
of Linux.

In the results discussed above, the host was assigned normalpriority (nice = 0)
while the guest was assigned the lowest priority available on the system (nice = 19).



The lowest priority for the guest is expected to yield the least slowdown for the host,
and this was validated. However, it would appear logical that the host application should
be assigned the highest priority (nice = -20), rather than normal priority (nice = 0), to
minimize the slowdown. The measured slowdown with normal and highest priority for
the host is shown in Figure 4.

0.00


1.00


2.00


3.00


4.00


5.00


6.00


7.00


8.00


9.00


10.00


BT
 CG
 EP
 FT
 LU
 MG
 SP
 Avg


Host Application


%
 S

lo
w

d
o

w
n

 o
f 

H
o

st
 A

p
p

lic
at

io
n




Host app at nice = 0
 Host app at nice = -20


Fig. 4. Comparison of percent slowdown of the host application whenrunning at normal priority
(nice = 0) vs. when running at the highest priority (nice = -20) in shared mode

The slowdown was reduced dramatically with a higher priority when EP was the
host application, the only application in the suite with no communication. Surpris-
ingly the slowdownincreased significantly for some of the communicating applica-
tions, in particular, CG (Conjugate Gradients) and MG (Multigrid). The average slow-
down across the benchmark suite was virtually the same. The reasons for the higher
slowdown for some applicatons are not understood and need tobe investigated further.
Related work has shown an increase in slowdown for some communicating applica-
tions when a larger time slice is given to all applications [15]. However, an increase in
prioirty should result in a larger time slice only for the host application, so there is no
apparent reason for its slowdown. Overall, there seems to belittle benefit in raising the
priority of the host applications.

Linux also supports arealtime priority level which appears attractive for host jobs
for volunteer computing. However, this priority level blocks interrupts that are nec-
essary for execution of parallel programs. Most applications in our benchmark were
unable to complete execution with realtime priority.

3.3 Impact on cluster throughput

The goal in volunteer computing is for a guest application tomake progress without
any significant negative impact on the host application. Until now we have focused



on analyzing the impact on the host application. We now studythe progress of guest
applications. However, instead of directly reporting on the performance of guest ap-
plications, we report on the increase in system throughput,which is a measure of the
overall benefit of fine-grained cycle stealing, as a consequence of a guest application
executing in addition to the host application. Any increasein throughput is due to the
work that is accomplished by the guest application, after any negative impact on the
host application has been accounted for.

We definenormalized throughput as the number of units of work completed per
unit time on the cluster. The normalized throughput when a cluster is executing a sin-
gle application is always considered to be 1. In shared mode both the host application
and the guest application run simultaneously. Depending onthe rate at which the host
and guest applications proceed while sharing nodes, the normalized throughput can be
greater than or less than 1. The normalized throughput of thecluster in shared mode is
represented as follows:

Normalized throughput =
ThD

ThS

+
TgD

TgS

where

ThD: Execution time of the host application in dedicated mode

TgD: Execution time of the guest application in dedicated mode

ThS: Execution time of the host application in shared mode

TgS: Execution time of the guest application in shared mode

Figure 5 shows the percentage increase in the normalized throughput of the system
when each host application is run in shared mode with EP as theguest application, as
compared to dedicated execution of the host application.

0.00


10.00


20.00


30.00


40.00


50.00


60.00


70.00


BT &

Guest


CG &

Guest


EP &

Guest


FT &

Guest


LU &

Guest


MG &

Guest


SP &

Guest


Avg


P
er

ce
n

t 
In

cr
ea

se
 in

 t
h

e 
N

o
rm

al
iz

ed
 S

ys
te

m
 


T
h

ro
u

g
h

p
u

t 
in

 S
h

ar
ed

 m
o

d
e


Fig. 5. Percent increase in the normalized system throughput with different benchmarks as host
applications



We observe that there is a significant system throughput improvement that averages
38% for the benchmark suite. This comes at the cost of a relatively low 3.6% slowdown
of the host applications. This demonstrates that a significant number of unused CPU
cycles are available when the host application is executingin dedicated mode, and the
guest application was able to utilize them successfully in shared mode.

The throughput improvement is the lowest for EP, LU (LU Matrix Factorization),
and FT (Fast Fourier Transforms) benchmarks. We recall fromTable 1 that these are the
benchmarks that show the highest CPU utilization in dedicated execution, all of them
over 90%. Hence fewer CPU cycles were available for the guestapplication in these
cases. If these applications were removed from the suite, the average increase in system
throughput would be 52%. This is relevant, since execution of the guest applications
can be managed to avoid periods of high CPU usage or other system activity.

3.4 Parallel guest applications

Volunteer computing with communicating parallel guest applications is an important
challenge [16] that can be met more effectively with clusters. In order to investigate this
possibility, we performed a set of experiments with the CG benchmark, which is the
most communication intensive application in the NAS benchmark suite, as the guest
application. This is in contrast to EP which has negligible communication. “Tuned”
Linux 2.6 kernel, as discussed earlier, was employed in these experiments. Figure 6
presents a comparison of the slowdown of the host application with CG and EP as guest
applications.

0.00


2.00


4.00


6.00


8.00


10.00


12.00


14.00


16.00


18.00


BT
 CG
 EP
 FT
 LU
 MG
 SP
 Avg


Host Application


%
 S

lo
w

d
o

w
n

 o
f 

H
o

st
 A

p
p

lic
at

io
n




Slowdown with only Cpu bound guest app (EP benchmark) on 4 nodes


Slowdown with Cpu and Network bound guest app (CG benchmark) on 4 nodes


Fig. 6. Comparison of percent slowdown of the host application whenrunning with the guest
application EP vs. when running with the guest application CG



We observe that the slowdown for all host applications, withthe exception of EP,
is considerably higher when CG is the guest application. As seen in Figure 6, the av-
erage percentage slowdown of the host application when running with CG as guest, as
compared to EP as guest, increases from 3.6% to 9%. One obvious reason is that EP
being completely CPU bound just competes for CPU with the host application, while
CG being communication intensive competes for CPU and network resources. How-
ever, a possibly more significant factor is the impact of the synchronization structure of
the host and guest applications. CG being a communication intensive guest application
is frequently blocked for communication, and hence cannot use the free CPU cycles
when the host application itself is blocked for communication. As a result, the dynamic
priority of the guest application rises and it is more likelyto force an eviction of the host
application later. We note that host application EP slows down less with CG as guest
versus EP as guest. This is not surprising as they do not compete for communication
resources. Further, unlike the case of EP as guest, CG as guest will sometimes not claim
a proportional share of the CPU time since it can be blocked oncommunication.

The conclusion is that high communication parallel applications are not suitable for
execution as guests on the current Linux operating system. However, parallel applica-
tions with moderate or low communication may be appropriatefor volunteer comput-
ing.

3.5 Scalability

One of the factors that exacerbates the slowdown of a host application in shared exe-
cution is synchronization. When one node is slowed down due to sharing, it can have
a cascading slowdown effect on the others. This effect is likely to be larger when the
number of executing threads is higher. In order to investigate this, we compared the
slowdown associated with execution on 4 nodes (8 threads) and 8 nodes (16 threads).
The results are plotted in Figure 7.

The primary observation is that the the slowdown is slightlyhigher for a larger
number of threads; the average slowdown was 3.6% for 8 threads and 4.5% for 16
threads. While this is encouraging, more experiments are needed to establish the impact
of guest applications on large clusters.

4 Discussion

The following is a list of observations that are relevant forvolunteer computing on
clusters, based on the results in this paper and related research.

– Clusters show diverse usage patterns - many clusters are frequently idle.
– When a cluster is actively executing an application, a substantial fraction of the

CPU and memory resources are often not used.
– The usage pattern of a cluster node can be similar for hours todays.
– If a host application uses most of the available CPU resources, there is little benefit

from running a guest application simultaneously.
– Only guest applications that are sequential or have low communication require-

ments can generally execute with minimal effect on the host applications.



0.00


1.00


2.00


3.00


4.00


5.00


6.00


7.00


8.00


BT
 CG
 EP
 FT
 LU
 MG
 SP
 Avg


Host Application


%
 S

lo
w

d
o

w
n

 o
f 

H
o

st
 A

p
p

lic
at

io
n




4 Nodes (8 CPUs)
 8 Nodes (16 CPUs)


Fig. 7. Comparison of percent slowdown of the host application whenrunning on 4 nodes vs. 8
nodes

– We have shown in related work [15] that memory usage has little relation to per-
formance with sharing, but when the combined memory requirement of all execut-
ing threads approaches the total system memory, the performance can deteriorate
sharply. While these results were collected for applications with equal priority, it
is reasonable to conclude that both host and guest applications will not be able to
execute effectively when their combined memory requirement exceeds available
memory.

Based on these observations we present a set of guidelines for volunteer computing
on clusters. Note that the above observations are based on a recent Linux release. Oper-
ating system support for zero priority processes that do notcompete for resources can
considerably ease the task of volunteer computing on clusters, and is discussed later in
this section.

4.1 Guidelines for volunteer computing on clusters

In the scenarios in which we performed our experiments, the slowdown of host appli-
cations with a sequential guest application averages around 3.6% and the improvement
in throughput (indicating the progress of the guest application) averages around 38%.
However, in individual cases, the slowdown can be higher andimprovement in through-
put significantly lower. With the following basic considerations, we can limit the use of
volunteer computing to scenarios where the cost is minimized and the benefit is maxi-
mized:

1. Only consider sequential applications and parallel applications with a low commu-
nication bandwidth as guest applications. While this condition cannot be enforced
by a system, such applications will get very poor service andhence the procedure



should be self correcting. Note that current volunteer computing frameworks are
generally applicable only to “embarrassingly parallel” or“bag of tasks” applica-
tions.

2. Monitor the CPU, memory, and network usage on volunteeredcluster nodes. Con-
sider invoking a guest application only when a stable usage pattern emerges.

3. If the usage pattern shows CPU or network or memory usage above preset thresh-
olds (say 85% for CPU) then do not invoke the guest application.

4. Before invocation, verify that the available memory exceeds the memory require-
ment of the guest application by a significant threshold.

5. If the resource usage pattern of the machine shows a significant change, suspend
the guest application and restart after examining the criteria listed above.

Employing these guidelines will reduce the scenarios when volunteer computing
can be applied on a cluster node, but also reduce the cost and increase the benefits
when it is applied. Typically the resources available for volunteer computing exceed the
demand, and the challenge is to exploit those resources effectively. Hence, eliminating
potentially unattractive nodes is not a major concern.

4.2 Case for zero priority processes

Ideally a guest application should only use idle resources and have no impact on the
host applications. Our experiments demonstrate that the latest version of the Linux op-
erating system allows the guest applications to execute with a small impact on executing
host applications, but it is not negligible. Volunteer computing on clusters will be con-
siderably simplified with support forzero priority processes that would not consume
any resources that other processes can potentially use. Such a zero priority process will
never be scheduled so long as a higher priority process is able to execute, and would
immediately relinquish the CPU when a higher priority process is ready to execute. De-
veloping such schedulers is technically feasible and prototypes have been demonstrated
in other research [12, 14]. However, widely deployed operating systems have a concept
of fairness that implies that even the lowest priority process must get a certain share of
resources and should not starve. Support for zero priority processes, that never compete
for resources, can be done without compromising other design goals of an operating
system, although a detailed discussion is beyond the scope of this paper. Fairness and
starvation are not issues if a process is explicitly designated as zero priority, except to
ensure freedom from deadlocks and any other unintended consequences.

There will always be some performance impact due to guest jobs - some factors,
e.g., the overhead of warming the cache after a context switch, cannot be eliminated.
However, with a well designed implementation of zero priority processes and a good
model for volunteer computing, we believe that the slowdownof host jobs can be made
negligible, possibly well below 1%, which increases the appeal of volunteer computing
dramatically.

5 Conclusions

Computation clusters present a vast and attractive resource of unused compute cycles
that can be used for volunteer computing. Based on a study of aproduction cluster, we



show that long periods of significant CPU and memory underutilization are common.
However, utilizing these free cycles for guest applications, while other applications are
executing, is a challenge. Based on our experiments on the most recent version of Linux,
we show that these cycles can be exploited with only a small slowdown of host appli-
cations. The contribution of this paper is to present evidence that clusters are attractive
for volunteer computing and can be used efficiently for that purpose. The paper also of-
fers guidelines on how slowdown of the host applications canbe minimized and cluster
throughput maximized for volunteer computing. Additionaldiscussion emphasizes that
simple support for zero priority processes will make the case of clusters for volunteer
computing more compelling.

6 Acknowledgments

The staff at the High Performance Computing Center at University of Houston provided
us with access to the computation clusters that made this project possible. We would
like to thank all members of our research group, in particular, Tsung-I Huang and Qiang
Xu, for their contributions to this work. We would also like to thank the Linux kernel
developers and Rocks developers for their support. In particular, we want to thank Con
Kolivas for providing and improving the smp nice patch. Finally, the anonymous refer-
ees made several suggestions that helped improve this paper.

This material is based upon work supported by the National Science Foundation
under Grant No. ACI-0234328 and Grant No. CNS-0410797. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science Foundation. Support
was also provided by University of Houston’s Texas Learningand Computation Center.

References

1. Anderson, D., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: Seti@home: An experi-
ment in public-resource computing. In: Communications of the ACM, 45. (2002)

2. : BOINC. (http://boinc.berkeley.edu/)
3. Anderson, D.P.: BOINC: A system for public-resource computing and storage. In: GRID

’04: Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing. (2004)
4–10

4. Litzkow, M., Livny, M., Mutka, M.: Condor - a hunter of idleworkstations. In: Proceedings
of the 8th International Conference of Distributed Computing Systems. (1988) 104–111

5. Chien, A., Calder, B., Elbert, S., Bhatia, K.: Entropia: architecture and performance of an
enterprise desktop grid system. Journal of Parallel and Distributed Computing63(5) (2003)
597–610

6. : Openmosix. (http://openmosix.sourceforge.net/)
7. : Grid MP. (http://ud.com/solutions/deploy/mpenterprise.htm)
8. Li, H., Groep, D., Wolters, L.: Workload characteristicsof a multi-cluster supercomputer.

In: Job Scheduling Strategies for Parallel Processing. Springer Verlag (2004) 176–193
9. Zhang, Y., Franke, H., Moreira, J., Sivasubramaniam., A.: Improving parallel job schedul-

ing by combining gang scheduling and backfilling techniques. In: Proceedings of the 14th
International Parallel and Distributed Systems Symposium. (2003)



10. Feitelson, D.G., Weil, A.M.: Utilization and predictability in scheduling the IBM SP2 with
backfilling. In: 12th International Parallel Processing Symposium. (1998) 542–546

11. Kleban, S.D., Clearwater, S.H.: Interstitial computing: Utilizing spare cycles on supercom-
puters. In: IEEE International Conference on Cluster Computing. (2003)

12. Ryu, K.D., Hollingsworth, J.K.: Linger longer: fine-grain cycle stealing for networks of
workstations. In: Supercomputing ’98: Proceedings of the 1998 ACM/IEEE conference on
Supercomputing, IEEE Computer Society (1998) 1–12

13. Ryu, K.D., Hollingsworth, J.K.: Resource policing to support fine-grain cycle stealing in
networks of workstations. In: IEEE Transactions on Parallel and Distributed Systems. (2004)

14. Stiehr, G.: Using fine-grained cycle stealing to improvethroughput, efficiency and response
time on a dedicated cluster while maintaining quality of service. Master’s thesis, Washington
University (2004)

15. Ghanesh, M., Kumar, S., Subhlok, J.: Empirical evaluation of shared parallel execution on
independently scheduled clusters. In: 1st International Workshop on Grid Performability at
CCGRID. (2005)

16. Acharya, A., Edjlali, G., Saltz, J.: The Utility of Exploiting Idle Workstations for Parallel
Computation. In: Proceedings of 1997 ACM Sigmetrics International Conference on Mea-
surement and Modeling of Computer Systems. (1997)


