Volunteer Computing on Clusters

Deepti Vyas:? and Jaspal Subhlok

1 University of Houstof
2 Halliburton Digital Consulting Solutions

Abstract. Clusters typically represent a homogeneous, well maiathpool of
high-end computation resources. This makes them parntigwtractive for vol-
unteer computing, where unused compute cycles are utifarestientific guest
applications. Cluster nodes are not idle as often as pul@i, But they are fre-
guently underutilized while actively executing parallpp#ications. Hence, fully
exploiting clusters for volunteer computing requires théity to efficiently and
invisibly steal the unused cycles at a fine grain from theestly running host
applications, without slowing them down. In this paper wesgnt measurements
on a production compute cluster that show long periods of @RtJmemory un-
derutilization patterns that could be used to execute @psications. Our exper-
iments with NAS benchmarks show that, under the best corafiigur of Linux,
cycles can be stolen with only a 3.6% average slowdown of ¢tisé dpplication.
This was accompanied by an overall improvement in the systeaughput of
38%, when progress of the guest applications was includedintkbduce sim-
ple guidelines on using clusters for volunteer computing. Méo argue for the
support of zero priority processes in OS schedulers whicideartually elimi-
nate the impact of volunteer computing on host applications

1 Introduction

Volunteer computing, also referred to as public-resouareputing or global comput-
ing, is based on exploiting unused cycles on ordinary dgsktanputers. The concept
was pioneered by SETI@home [1], and is increasingly beingl@yed to solve impor-
tant real life problems. BOINC [2, 3], a framework to suppestunteer computing,
is being used by a variety of scientific simulation projectshsas protein folding, cli-
mate prediction, and biomedical computing. Condor [4] piered the employment of
idle periods on organizational desktop systems for usefulputing. We use the term
volunteer computing for all scenarios where a low prioridegt application can run on
unused resources without significantly impacting high fitsichost applications. Ex-
amples of other projects with similar goals include Enteoji], OpenMosix [6], and
GridMP [7].

A growing source of computation power today is compute elisstonsisting of
10s to 1000s of processors. In addition to the high perfoo@@oemputing centers, it
is becoming increasingly common for individual computasibscientists and research
groups to maintain their own clusters. In our estimate thmltioed compute power

* email contact: dvyas@cs.uh.edu , jaspal@uh.edu

of all clusters on our campus (University of Houston) is cangble to the combined
compute power of all desktops on campus, and we believesimstiuncommon.

Computation clusters are particularly attractive for viteer computing for a num-
ber of reasons.

— Clusters are typically built from high end computing and coamication compo-
nents.

— Clusters typically offer a homogeneous and well maintajpeal of processors.

— While many supercomputing centers are heavily used, marsars are also fre-
quently idle, although the usage of a typical cluster nodeitainly higher than a
typical home PC. A recent study [8] of one group of clustersfientific research
found that their average usage varied between 7% and 22%.

In this paper we empirically demonstrate the following diddial properties of clus-
ter behavior that are relevant to volunteer computing.

1. CPU usage on clusters is frequently not close to the maximhile they are exe-
cuting parallel scientific applications. The reason is flyaichronization delays are
fundamental to parallel processing, and increase as a fizegoblem is scaled up
to a larger number of processors. For illustration, our exrpents with NAS class
B parallel benchmarks on 4 nodes show that their average GiRthtion varied
from 53% to 100% as listed in Table 1. Further, the averagedygefrom 4 nodes
(8 threads) to 8 nodes (16 threads) was 1.51 implying thaadded 4 nodes were
used only half as efficiently as the first 4 nodes. Other ctasapplications, such
as sparse matrix computations, are fundamentally moreepimsynchronization
delays due to load imbalance. We report on measured usagprotiaction clus-
ter at the University of Houston that shows average CPUzatilbn of 64% even
though applications are running on the nodes almost theeditie.

2. Usage of cluster nodes shows significant predictabiléy, computation behavior
in the recent past is a good predictor of the usage in the nearef The reason
is that clusters are typically employed for long runningestiffic applications, and
node usage for a single application is usually similar okierdourse of execution.

Benchmark BT|CGI|EP |FT|LU|MG|SP
CPU utilization (%)90 |65 {10053|94 |73 |81

Table 1. Average CPU utilization of Class B NAS benchmarks on 4 clusteles

Techniques like backfilling [9,10] and interstitial comimgt [11] are used to in-
crease the cluster utilization by scheduling small jobsdba hodes. Since free cycles
are available on many clusters only at a fine grain, a clusfar more attractive for vol-
unteer computing if guest applications can execute when @RlUmemory are being
underutilized, not just when the nodes are idle. Schedslipgort for such fine-grained
cycle stealing has been studied in [12-14].

This paper focuses on fine-grained cycle stealing on Lindrickvis the operating
system of choice for cluster computing. We demonstratedkatution of low prior-
ity guest applications only have a small impact on regulest lapplications. We also
discuss how various system and application factors affecstowdown of host appli-
cations. This information, along with the fact that clusisage shows significant pre-
dictability, helped us develop guidelines for employinduiwvdgeer computing on clusters
that can minimize the impact on host applications while mmzing the benefit to guest
applications. We argue that fine-grain cycle stealing ostehs with negligible impact
on host applications is possible, but would require simpknges to the Linux sched-
uler.

The paper is organized as follows. Section 2 presents sesnliCPU and mem-
ory utilization of a production cluster. Section 3 presepults on cycle-stealing on a
Linux cluster and its dependence on system and applicadittors. Section 4 outlines
our approach to volunteer computing on clusters and recordmieneficial changes
to OS schedulers, and section 5 contains conclusions.

2 Utilization of clusters

The study presented in this section empirically measuee€#U and memory utiliza-
tion on cluster nodes when they are busy executing scieapfitications. Performance
data was collected from a Beowulf cluster at the High Perforoe Computing Center
at University of Houston, one of the most busy clusters onm#anThe cluster con-
sisted of 30 Intel Xeon dual processor nodes, running Lir2.21 SMP kernel) with
2Gb RAM. The nodes were interconnected with a Gigabit etitaratwork.

The data was collected over a period of 1 month and measutemwene made at
5 minute intervals. The information was gathered from vasifiles under /proc file
system of each node. CPU and memory utilization of represeatnodes is plotted
in Figure 1. Several small groups of nodes had very similagagatterns. The nodes
plotted in Figure 1 were not selected randomly, but choseepoesent different pat-
terns. Figure 2 shows a zoomed in CPU utilization represgntie first 12 hours of the
periods covered in Figure 1 for two of the nodes. The graph#adescending order of
average CPU utilization within each figure.

Following are the main observations from this study of dusitilization:

— The CPU utilization often shows fluctuation from point topipas seen in Figure 2
which zooms in on the beginning part of the first two graphsigufe 1. However,
CPU utilization shows remarkable stability when it is calesed over windows of
several points. The average CPU utilization typically staya very narrow band
from hours to days, and even weeks, in some cases, as segnia Ei We presume
this is a result of the same or similar applications runningtee same group of
nodes for extended periods of time.

— While nodes show long periods where CPU utilization is htgky also show long
periods when CPU utilization is moderate or low. The avei@B& utilization of
a node varied between 25% to 85% with a mean around 64% andmarbund
65%.

90 90
80 80
70 70
E 60 § 60
:E 50 Ss0
2 40 S: 40
Y T30
20 20
10 10
0 Time : 1 month period l 0 Time : 1 month period
(Compute Node C1-2) (Compute Node CO0-1)
100 100
o0 PN [[
80 80
70 70
860 860
is is
g 40 g 40
30 30
20 20
10 10
0 Time : 1 month period 0 Time : 1 month period
(Compute Node C0-2) (Compute Node C1-0)
100 100
90 4 W 90
80 4 80
70 70
E 60 4 éeo
é 50 1 E 50
S0 §4O
30 4 30
20 4 20
10 4 \—-I 10
0 Time : 1 month period = 0 Time : 1 month plsriod !

(Compute Node C1-11)

(Compute Node C1-1)

= CPU Utilization === Memory Utilization

Fig. 1. CPU and Memory utilization of sample nodes of a busy cluskeftgrd every 5 minutes
over a period of 1 month (14 Jun 2005 to 16 Jul 2005)

100 100
90 90
80 80
g0 570
E 60) E 60
g 50 g 50
g0 240
® 30 =30
20 20
10 10
0 Time: 12 hours 0 Time: 12 hours
(Compute Node C1-2) (Compute Node C0-1)

Fig. 2. CPU utilization for selected nodes plotted every 5 minute @ period of 12 hours

— The memory utilization either stays steady or slowly inse=alinearly and then
drops, over extended periods of time. The memory usage dadexhibit the short
term fluctuations of CPU usage. However, we should point loat the reported
memory utilization does not necessarily reflect the actatea$ pages and may
include memory that has been released by the applicatiois pending release at
the system level.

— The average memory utilization can be close to 100% for a riodextended
periods of time, but it is frequently around or well below 5@86extended periods
of time. The average memory utilization of the nodes varievieen 30% and 90%
with a mean utilization around 52% and median utilizatioousrd 44%.

The main conclusion from this study, that is relevant to wtder computing, is that
cluster nodes show long and predictable periods of low CRiUna@mory utilization.
The implication is that a substantial fraction of resourass available for volunteer
computing, and when a scenario with good resource avaflaisilidentified, it is likely
to continue for hours to days. The reason for such behavtbaisclusters are typically
employed for long running scientific applications. Henagrethough this study was
limited, we expect the conclusions to be valid for other @tsemployed for parallel
scientific computing.

As pointed out earlier, the particular cluster that was rwoed is known to be
used heavily. The purpose was to investigate availableirese while applications are
running. Of course, if a cluster node is idle, it is an even enattractive option for
volunteer computing (although perhaps not as predictabled usage of clusters is
likely to be higher than the average desktop, and indeedmeajmercomputing centers
are known to be very busy. However, our observation is thatlsemclusters often have
considerable idle periods. A recent study of a 5 clusterare$eenvironment observed
that the average time a system was busy ranged from 7.3% ta#% large fraction
of jobs had a very small memory requirement [8].

We summarize this discussion as follows:

1. Many clusters nodes are idle and not running any appdieath substantial fraction
of the time. Of course, these can be directly exploited fduntzer computing.

2. When cluster nodes are busy running applications, a awiiest fraction of the
memory and CPU resources are often not utilized for extepéeids of time.
These idle resources can be exploited with fine-grain cytelaliag making clus-
ters even more attractive for volunteer computing.

3 Exploiting fine grain parallelism on clusters

A critical consideration in making a cluster available falunteer computing is how
a high priority host application will be affected when a lowopity guest application

is stealing unused cycles for execution. Ideally, theraukhbe no impact at all; the
guest process should be scheduled only when the host pied#ssked, and the guest
process should be evicted as soon as the host process istoeaxcute again. How-
ever, this is difficult to achieve for fine-grained cycle $itggwhen a host and guest

application are executing concurrently because one ofdlaés@f commercial operat-
ing system schedulers is to prevent starvation of low gsiggiocesses. Research has
shown that it is possible to construct schedulers wherentipact on the host applica-
tion is negligible [12, 14]. However, we are most interesteeblunteer computing with
mainstream operating systems since installing a new stééradunot likely to be accept-
able. All our experimentation is on Linux since that is therdeant cluster operating
system.

The goal of the experiments was to see how to best run guekitaigns on Linux
with minimum impact on host applications. Dependence otesys$actors such as pri-
ority mechanism and scheduler versions, as well as depeadencharacteristics of
host and guest applications, are also analyzed.

3.1 Experimental setup

Our experimental environment consists of a ten-node aluSch node has 1GB of
main memory and dual Pentium Xeon processors running at H8 Ghe nodes are
connected through a 1 Gbps ethernet switch. The cluster uvasmg Rocks 4.0 Beta
and a MPICH 1.2.6 version of MPI. This configuration is repreative of small and
midsize clusters employed for scientific computing.

To achieve fine-grained cycle stealing, the guest apptinativere run simultane-
ously with host applications, but at a lower priority usitg tUNIX nice mechanism.
The execution times of the host and guest applications weesared when run individ-
ually (dedicated mode), and when run simultaneously (shaw@de). Percentagow-
down, defined as the percentage increase in execution time whesutixg in shared
mode as compared to dedicated mode, is used to quantify andace the effect of
sharing in different scenarios.

NAS Class B parallel benchmarks were used as host applisatind guest appli-
cations. Unless otherwise noted, the experiments weremdin(dual processor) nodes,
and each node ran 2 threads of the host application at nomeaity (nice = 0) and
1 thread of the guest application at lowest priority (nice9}. INAS benchmark EP
(Embarrassingly Parallel) was used as the default guedicappn. The EP program
has virtually no communication, and hence it representsjaeggial compute intensive
application.

3.2 Slowdown on Linux

We study the slowdown of host applications when running witfuest application on
Linux, and examine how the slowdown can be minimized. Therdtovn for the NAS
benchmarks running as host applications, with the commi¢asive EP benchmark as
the guest application, is shown in Figure 3. Results are sHowLinux 2.4 and 2.6
kernels, as well as “2.6(tuned)”, that will be explaineetah this section.

The slowdown of the host application on Linux 2.4 kernel walatively high when
running concurrently with a minimum priority guest apptioa, averaging 25% for the
benchmark suite. This validates similar observations i) [#]. As seen from Figure
3, the 2.6 kernel performs significantly better than the Z¢h&l in this regard. The
average slowdown is reduced from approximately 25% to 1G%bisbstill simply too

02.4 kernel m 2.6 kernel @ 2.6 kernel (tuned)

45.00 + —
40.00

35.00

30.00]

25.00 -+ —

20.00 —

15.00 +

10.00 +

5.00

0.00 + L

BT CG EP FT LU MG SP Avg

% Slowdown of Host Application

Host Application

Fig. 3. Comparison of percent slowdown of the host application arett mode when executing
on different Linux kernels

large to be acceptable. This was surprising since the new €2fieduler in the 2.6
kernel was designed to respect tiiee priorities more strictly.

Detailed investigation revealed the following. Unlike thd kernel, the 2.6 kernel
has separate run queues for each of the two processors ogla sode. In our sce-
nario, one queue will have two processes, and the other quidlugave one process,
since there are 3 active processes (two host processes amgiest process). In some
situations, both the host processes would get assigned athe processor queue, with
the one guest process assigned to the other processor’sieue.cClearly, this would
lead to a nominal 50% slowdown of the host processes. Thatisituwill eventually
get corrected as the queues are periodically “load baldnkesvever, the default load
balancing frequency is 200 milliseconds, implying that agghof 50% slowdown could
last for a significant amount of computing time. In order tdigaite this effect, we de-
creased the period between the invocation of the kerneldakmhcer to 10 milliseconds.
Linux kernel 2.6 with this setting is referred to as “kerned 2uned” in Figure 3. We
observe a dramatically reduced slowdown of the host agpita down from an aver-
age of 16% to 3.6%. We believe that these are the lowest egpsldwdowns for host
applications when sharing the processors with a guestegtiolh on a widely deployed
cluster operating system.

We would like to point out that “tuning” the Linux 2.6 kernes aiscussed above
technically contradicts our goal that an unmodified mae@sir operating system should
be employed. However, the tuning we have done is to mitigegerhpact of an unde-
sirable and unexpected side-effect of a new Linux featuesdd we consider it to be a
“performance bug fix” and expect that it will not be neededwibntinued development
of Linux.

In the results discussed above, the host was assigned npriodty (nice
while the guest was assigned the lowest priority availabléhe system (nice

0)
19).

The lowest priority for the guest is expected to yield thestedowdown for the host,
and this was validated. However, it would appear logicaltirahost application should
be assigned the highest priority (nice = -20), rather thamiadb priority (nice = 0), to
minimize the slowdown. The measured slowdown with normdllaighest priority for
the host is shown in Figure 4.

‘EI Host app at nice = 0 g Host app at nice = -20

10.00 +
9.00
8.00
7.00
6.00
5.00
4.00
3.00

2.00 -
0.00 - T T ——

BT CG EP FT LU MG SP Avg

% Slowdown of Host Application

Host Application

Fig. 4. Comparison of percent slowdown of the host application wineming at normal priority
(nice = 0) vs. when running at the highest priority (nice =)-@20shared mode

The slowdown was reduced dramatically with a higher pryjorihen EP was the
host application, the only application in the suite with ramenunication. Surpris-
ingly the slowdownincreased significantly for some of the communicating applica-
tions, in particular, CG (Conjugate Gradients) and MG (Nguitl). The average slow-
down across the benchmark suite was virtually the same. @asons for the higher
slowdown for some applicatons are not understood and neeel itovestigated further.
Related work has shown an increase in slowdown for some caonmating applica-
tions when a larger time slice is given to all applicationS][However, an increase in
prioirty should result in a larger time slice only for the hagplication, so there is no
apparent reason for its slowdown. Overall, there seems littleebenefit in raising the
priority of the host applications.

Linux also supports aealtime priority level which appears attractive for host jobs
for volunteer computing. However, this priority level bkscinterrupts that are nec-
essary for execution of parallel programs. Most applicetion our benchmark were
unable to complete execution with realtime priority.

3.3 Impact on cluster throughput

The goal in volunteer computing is for a guest applicatiomtake progress without
any significant negative impact on the host application.ilUdw we have focused

on analyzing the impact on the host application. We now sthdyprogress of guest
applications. However, instead of directly reporting oa grerformance of guest ap-
plications, we report on the increase in system throughyphich is a measure of the
overall benefit of fine-grained cycle stealing, as a consecpief a guest application
executing in addition to the host application. Any increasthroughput is due to the
work that is accomplished by the guest application, aftgr reegative impact on the
host application has been accounted for.

We definenormalized throughput as the number of units of work completed per
unit time on the cluster. The normalized throughput wheruatel is executing a sin-
gle application is always considered to be 1. In shared motiethe host application
and the guest application run simultaneously. Dependintpemate at which the host
and guest applications proceed while sharing nodes, theal@ed throughput can be
greater than or less than 1. The normalized throughput ofltister in shared mode is
represented as follows:

Thp Typ

Normalized throughput = Ths + Tos

where
Thp: Execution time of the host application in dedicated mode
Tgp: Execution time of the guest application in dedicated mode
Ths: Execution time of the host application in shared mode

T gs: Execution time of the guest application in shared mode

Figure 5 shows the percentage increase in the normalizedghput of the system
when each host application is run in shared mode with EP aguést application, as
compared to dedicated execution of the host application.

70.00 -

60.00

50.00

40.00
30.00 -
20.00 -
10.00 +
0.00 +

BT & CG & EP & FT & LU & MG & SP & Avg
Guest Guest Guest Guest Guest Guest Guest

Percent Increase in the Normalized System
Throughput in Shared mode

Fig. 5. Percent increase in the normalized system throughput iffgreht benchmarks as host
applications

We observe that there is a significant system throughputdagmnent that averages
38% for the benchmark suite. This comes at the cost of avelgtiiow 3.6% slowdown
of the host applications. This demonstrates that a signifinamber of unused CPU
cycles are available when the host application is executimpdicated mode, and the
guest application was able to utilize them successfullhared mode.

The throughput improvement is the lowest for EP, LU (LU Maffactorization),
and FT (Fast Fourier Transforms) benchmarks. We recall frabte 1 that these are the
benchmarks that show the highest CPU utilization in deditaxecution, all of them
over 90%. Hence fewer CPU cycles were available for the gaggslication in these
cases. If these applications were removed from the sugeg\wlrage increase in system
throughput would be 52%. This is relevant, since executiote guest applications
can be managed to avoid periods of high CPU usage or othensysttivity.

3.4 Parallel guest applications

Volunteer computing with communicating parallel guestlaggbions is an important

challenge [16] that can be met more effectively with clustér order to investigate this
possibility, we performed a set of experiments with the C@dbenark, which is the

most communication intensive application in the NAS benatiosuite, as the guest
application. This is in contrast to EP which has negligibdencnunication. “Tuned”

Linux 2.6 kernel, as discussed earlier, was employed iretleeperiments. Figure 6
presents a comparison of the slowdown of the host applicatith CG and EP as guest
applications.

O Slowdown with only Cpu bound guest app (EP benchmark) on 4 nodes
m Slowdown with Cpu and Network bound guest app (CG benchmark) on 4 nodes

18.00 +
16.00

14.00

12.00

10.00

8.00

6.00 -
4.00 -
2.00 +

% Slowdown of Host Application

0.00 -
BT CG EP FT LU MG SP Avg

Host Application

Fig. 6. Comparison of percent slowdown of the host application whaming with the guest
application EP vs. when running with the guest applicati@ C

We observe that the slowdown for all host applications, whth exception of EP,
is considerably higher when CG is the guest application.eensn Figure 6, the av-
erage percentage slowdown of the host application whernimgmwith CG as guest, as
compared to EP as guest, increases from 3.6% to 9%. One @eason is that EP
being completely CPU bound just competes for CPU with the &pplication, while
CG being communication intensive competes for CPU and r&twasources. How-
ever, a possibly more significant factor is the impact of $hechronization structure of
the host and guest applications. CG being a communicatiensive guest application
is frequently blocked for communication, and hence cansetthe free CPU cycles
when the host application itself is blocked for communmmatiAs a result, the dynamic
priority of the guest application rises and it is more likihforce an eviction of the host
application later. We note that host application EP slowsrdéess with CG as guest
versus EP as guest. This is not surprising as they do not denfipecommunication
resources. Further, unlike the case of EP as guest, CG asiglissmetimes not claim
a proportional share of the CPU time since it can be blockecbommunication.

The conclusion is that high communication parallel appi@e are not suitable for
execution as guests on the current Linux operating systeaweler, parallel applica-
tions with moderate or low communication may be appropfiateolunteer comput-

ing.

3.5 Scalability

One of the factors that exacerbates the slowdown of a hosicappn in shared exe-
cution is synchronization. When one node is slowed down dwghéaring, it can have
a cascading slowdown effect on the others. This effect &lliko be larger when the
number of executing threads is higher. In order to investighis, we compared the
slowdown associated with execution on 4 nodes (8 threadsBarodes (16 threads).
The results are plotted in Figure 7.

The primary observation is that the the slowdown is sligtmiigher for a larger
number of threads; the average slowdown was 3.6% for 8 thraad 4.5% for 16
threads. While this is encouraging, more experiments azdetbto establish the impact
of guest applications on large clusters.

4 Discussion

The following is a list of observations that are relevant Yotunteer computing on
clusters, based on the results in this paper and relatedrodse

— Clusters show diverse usage patterns - many clusters apeefnéy idle.

— When a cluster is actively executing an application, a suttitl fraction of the
CPU and memory resources are often not used.

— The usage pattern of a cluster node can be similar for houtays.

— If a host application uses most of the available CPU resauthere is little benefit
from running a guest application simultaneously.

— Only guest applications that are sequential or have low conication require-
ments can generally execute with minimal effect on the hpglieations.

04 Nodes (8 CPUs) m 8 Nodes (16 CPUs)

8.00

7.00

6.00
5.00
4.00

3.00

2.00 -
1.00 +
0.00 -

BT CG EP FT LU MG SP Avg

% Slowdown of Host Application

Host Application

Fig. 7. Comparison of percent slowdown of the host application witeming on 4 nodes vs. 8
nodes

— We have shown in related work [15] that memory usage has liglation to per-
formance with sharing, but when the combined memory reqére of all execut-
ing threads approaches the total system memory, the peafarencan deteriorate
sharply. While these results were collected for applicetivith equal priority, it
is reasonable to conclude that both host and guest applisatiill not be able to
execute effectively when their combined memory requirenesiceeds available
memory.

Based on these observations we present a set of guidelinesifmteer computing
on clusters. Note that the above observations are basedegemitiLinux release. Oper-
ating system support for zero priority processes that da@aotpete for resources can
considerably ease the task of volunteer computing on ckistad is discussed later in
this section.

4.1 Guidelines for volunteer computing on clusters

In the scenarios in which we performed our experiments, linvedown of host appli-
cations with a sequential guest application averages dr81f% and the improvement
in throughput (indicating the progress of the guest appiboa averages around 38%.
However, in individual cases, the slowdown can be higheiigpdovement in through-
put significantly lower. With the following basic considécas, we can limit the use of
volunteer computing to scenarios where the cost is minichaed the benefit is maxi-
mized:

1. Only consider sequential applications and paralleliappbns with a low commu-
nication bandwidth as guest applications. While this ctodicannot be enforced
by a system, such applications will get very poor servicelzmte the procedure

should be self correcting. Note that current volunteer cating frameworks are
generally applicable only to “embarrassingly parallel™bag of tasks” applica-
tions.

2. Monitor the CPU, memory, and network usage on volunteeltesdder nodes. Con-
sider invoking a guest application only when a stable usatteim emerges.

3. If the usage pattern shows CPU or network or memory usageegireset thresh-
olds (say 85% for CPU) then do not invoke the guest applinatio

4. Before invocation, verify that the available memory eed®the memory require-
ment of the guest application by a significant threshold.

5. If the resource usage pattern of the machine shows a sigmifchange, suspend
the guest application and restart after examining theraitisted above.

Employing these guidelines will reduce the scenarios whaanteer computing
can be applied on a cluster node, but also reduce the costharehse the benefits
when it is applied. Typically the resources available fdunteer computing exceed the
demand, and the challenge is to exploit those resourcedgieéily. Hence, eliminating
potentially unattractive nodes is not a major concern.

4.2 Case for zero priority processes

Ideally a guest application should only use idle resourcestave no impact on the
host applications. Our experiments demonstrate that testlaersion of the Linux op-
erating system allows the guest applications to executeanstnall impact on executing
host applications, but it is not negligible. Volunteer cartipg on clusters will be con-
siderably simplified with support fazero priority processes that would not consume
any resources that other processes can potentially uske.@&tero priority process will
never be scheduled so long as a higher priority process éstatéxecute, and would
immediately relinquish the CPU when a higher priority prsgis ready to execute. De-
veloping such schedulers is technically feasible and pyp&s have been demonstrated
in other research [12, 14]. However, widely deployed opegatystems have a concept
of fairness that implies that even the lowest priority pssmust get a certain share of
resources and should not starve. Support for zero prior@iggsses, that never compete
for resources, can be done without compromising other degigls of an operating
system, although a detailed discussion is beyond the sdapés@aper. Fairness and
starvation are not issues if a process is explicitly des@phas zero priority, except to
ensure freedom from deadlocks and any other unintende&guoaaces.

There will always be some performance impact due to guestjamme factors,
e.g., the overhead of warming the cache after a contextlswiamnot be eliminated.
However, with a well designed implementation of zero ptiodgrocesses and a good
model for volunteer computing, we believe that the slowdofiost jobs can be made
negligible, possibly well below 1%, which increases theegdpf volunteer computing
dramatically.

5 Conclusions

Computation clusters present a vast and attractive resafranused compute cycles
that can be used for volunteer computing. Based on a studypafduction cluster, we

show that long periods of significant CPU and memory undération are common.
However, utilizing these free cycles for guest applicagiomhile other applications are
executing, is a challenge. Based on our experiments on teerement version of Linux,
we show that these cycles can be exploited with only a smaldbwn of host appli-
cations. The contribution of this paper is to present evigehat clusters are attractive
for volunteer computing and can be used efficiently for thappse. The paper also of-
fers guidelines on how slowdown of the host applicationshmminimized and cluster
throughput maximized for volunteer computing. Additiodacussion emphasizes that
simple support for zero priority processes will make thesoafsclusters for volunteer
computing more compelling.

6 Acknowledgments

The staff at the High Performance Computing Center at Usityeof Houston provided
us with access to the computation clusters that made thjegtrpossible. We would
like to thank all members of our research group, in particdlsung-I Huang and Qiang
Xu, for their contributions to this work. We would also like thank the Linux kernel
developers and Rocks developers for their support. Inquaati, we want to thank Con
Kolivas for providing and improving the smp nice patch. Hiyahe anonymous refer-
ees made several suggestions that helped improve this paper

This material is based upon work supported by the Nationarf8e Foundation
under Grant No. ACI-0234328 and Grant No. CNS-0410797. Aminions, findings,
and conclusions or recommendations expressed in this ialagisz those of the authors
and do not necessarily reflect the views of the National Seidroundation. Support
was also provided by University of Houston’s Texas Lear@ng Computation Center.

References

1. Anderson, D., Cobb, J., Korpela, E., Lebofsky, M., Werthi, D.: Seti@home: An experi-
ment in public-resource computing. In: CommunicationshefACM, 45. (2002)

. : BOINC. (http://boinc.berkeley.edu/)

3. Anderson, D.P.: BOINC: A system for public-resource cating and storage. In: GRID
'04: Proceedings of the Fifth IEEE/ACM International Wolkg on Grid Computing. (2004)
4-10

4. Litzkow, M., Livny, M., Mutka, M.: Condor - a hunter of idrorkstations. In: Proceedings
of the 8th International Conference of Distributed CompgitBystems. (1988) 104-111

5. Chien, A., Calder, B., Elbert, S., Bhatia, K.: Entropiechatecture and performance of an

enterprise desktop grid system. Journal of Parallel anttibiged Computind3(5) (2003)
597-610

. . Openmosix. (http://openmosix.sourceforge.net/)

. 1 Grid MP. (http://ud.com/solutions/deploy/ngmterprise.htm)

8. Li, H., Groep, D., Wolters, L.: Workload characteristimfsa multi-cluster supercomputer.
In: Job Scheduling Strategies for Parallel Processingin§er Verlag (2004) 176-193

9. Zhang, Y., Franke, H., Moreira, J., Sivasubramaniam.,Ifproving parallel job schedul-
ing by combining gang scheduling and backfilling techniquies Proceedings of the 14th
International Parallel and Distributed Systems Sympos{2®03)

N

~N O

10.

11.

12.

13.

14.

15.

16.

Feitelson, D.G., Weil, A.M.: Utilization and predicthty in scheduling the IBM SP2 with
backfilling. In: 12th International Parallel Processingrpsium. (1998) 542-546

Kleban, S.D., Clearwater, S.H.: Interstitial compgtibltilizing spare cycles on supercom-
puters. In: IEEE International Conference on Cluster Caingu(2003)

Ryu, K.D., Hollingsworth, J.K.: Linger longer: fine-gmacycle stealing for networks of
workstations. In: Supercomputing '98: Proceedings of ta@8LACM/IEEE conference on
Supercomputing, IEEE Computer Society (1998) 1-12

Ryu, K.D., Hollingsworth, J.K.: Resource policing tgport fine-grain cycle stealing in
networks of workstations. In: IEEE Transactions on Paralié Distributed Systems. (2004)
Stiehr, G.: Using fine-grained cycle stealing to imprweughput, efficiency and response
time on a dedicated cluster while maintaining quality of/gas. Master’s thesis, Washington
University (2004)

Ghanesh, M., Kumar, S., Subhlok, J.: Empirical evatumatif shared parallel execution on
independently scheduled clusters. In: 1st Internationadkdhop on Grid Performability at
CCGRID. (2005)

Acharya, A., Edjlali, G., Saltz, J.: The Utility of Explimg Idle Workstations for Parallel
Computation. In: Proceedings of 1997 ACM Sigmetrics Inddional Conference on Mea-
surement and Modeling of Computer Systems. (1997)

