
A Data Locality Aware Online Scheduling
Approach for I/O-Intensive Jobs

with File Sharing ?

Gaurav Khanna1 , Umit Catalyurek2 ,
Tahsin Kurc2 , P. Sadayappan1 , Joel Saltz2

1 Dept. of Computer Science and Engineering
{khannag, saday}@cse.ohio-state.edu

2 Dept. of Biomedical Informatics
{umit,kurc}@bmi.osu.edu, Joel.Saltz@osumc.edu

The Ohio State University

Abstract. Many scientific investigations have to deal with large amounts
of data from simulations and experiments. Data analysis in such inves-
tigations typically involves extraction of subsets of data, followed by
computations performed on extracted data. Scheduling in this context
requires efficient utilization of the computational, storage and network
resources to optimize response time. The data-intensive nature of such
applications necessitates data-locality aware job scheduling algorithms.
This paper proposes a hypergraph based dynamic scheduling heuristic
for a stream of independent I/O intensive jobs with file sharing behavior.
The proposed heuristic is based on an event-driven, run-time hypergraph
modeling of the file sharing characteristics among jobs. Our experiments
on a coupled compute/storage cluster show it performs better compared
to previously proposed strategies, under a varying set of parameters for
workloads from the application domain of biomedical image analysis.

1 Introduction

Data-driven approaches that make use of large datasets to solve complex prob-
lems in science and engineering have become increasingly important. Data anal-
ysis is a key component in data-driven science and engineering, enabling a better
understanding of the problem under study and more efficient refinement of the
search space of solutions. Data analysis applications often involve access and
processing of many subsets of a dataset. Most scientific datasets are stored in
files. A request for the region of interest specifies a subset of data files and/or
segments in data files – either directly as input parameters or after an index
lookup that finds the files and file segments of interest. The data of interest is
retrieved from the storage system and transformed into a data product that is
more suitable for examination by the scientist.

When several data-intensive jobs are submitted to a high-performance sys-
tem, they have to be scheduled to compute nodes for execution. Unlike tradi-
tional compute intensive jobs, data analysis jobs may require access to a large
? This research was supported in part by the National Science Foundation under

Grants #CCF-0342615 and #CNS-0403342.

number of files and high data volume. When mapping such data-intensive jobs
to compute nodes, scheduling mechanisms need to take into account not only the
computation time of the jobs, but also the overheads of retrieving files requested
by those jobs. Moreover, the staging of files should be carefully coordinated to
minimize I/O overheads. Traditional job schedulers for compute-intensive jobs
running at supercomputer centers are not designed for data intensive jobs, since
they take into account CPU related metrics (e.g. user estimated job run times)
and system state (e.g. queue wait times) for making scheduling decisions, but
they do not take into account data related metrics.

This paper addresses the efficient execution of a stream of dynamically ar-
riving data-intensive jobs exhibiting file-shared I/O behavior [14]. In our model,
the files required by the jobs are initially resident on a storage cluster. When
a job is scheduled to a compute node, the files accessed by the job are staged
from remote storage nodes to the compute node before the job is executed. Since
disk space on compute nodes is limited, effective management of data on the lo-
cal disk of compute nodes is also important. Obviously, by running jobs on the
storage nodes the cost of data staging can be avoided; however, in real setups
storage nodes are designed to maximize storage space and I/O bandwidth, and
have only limited computation power3. Thus, we assume that jobs cannot be
executed directly on storage nodes.

We propose a new algorithm to schedule a stream of dynamically arriving
jobs that share input files. The algorithm is based on a hypergraph formulation
of the workload and a K-way partitioning of the hypergraph to yield a locality
aware and load-balanced allocation of jobs on the compute cluster. The pro-
posed approach formulates the sharing of files among jobs as a hypergraph. The
hypergraph representation also models the load on the compute nodes due to
currently executing jobs. It also takes into account the fact that some files might
already have been staged or are currently being staged to the compute nodes due
to previously executed or currently running jobs. The experimental results show
that when there is high degree of file sharing among jobs, our formulation results
in much better schedules compared to the JobDataPresent + DataLeastLoaded
algorithm [13] and the Minimum Execution Time, Minimum Completion Time,
Switching Algorithm heuristics [10, 2, 3], modified to handle data intensive jobs.
We have also observed that as the average job inter-arrival times decrease, the
proposed approach outperforms the other heuristics.

2 Problem Definition and Use-case Applications

We target streams of dynamically arriving jobs which consist of independent
sequential programs. Each job requests a subset of data files from a dataset
3 Even though per node storage nodes might have comparable power to compute

nodes, generally the number of storage nodes are much less than the number of
compute nodes. For example, at Ohio Supercomputer Center 0.5 Petabyte Mass
Storage System is derived from 24 storage nodes, whereas they have thousands of
compute nodes.

Fig. 1. Scheduling problem.

and can be executed on any of the nodes in the compute cluster. The data
files required by a job should be staged to the compute node where the job is
allocated for the job to execute correctly; a data file is the unit of I/O transfer
from the storage cluster to the compute cluster. The jobs may share a number
of files with previously scheduled jobs or with jobs arriving in future.

Our objective is, given a stream of dynamically arriving jobs and a set of files
required by these jobs, 1) to schedule the jobs in an efficient manner, 2) to decide
which files need to be remotely transferred and their respective destination nodes,
so as to minimize the average job response time. Figure 1 depicts an illustration
of this problem. Each job in the job stream is represented by a computation
weight, a list of input files, and their file sizes.

Formally, let S =< j1, j2, . . . , jn > be a stream of n jobs arriving dynam-
ically. Let Arrival(ji) be the arrival time of the job ji and Exec(ji) be the
total time the job ji spends in execution. Some of the jobs will not be able
start execution as soon as they have been submitted. Let Start(ji) be the time
instant when the job ji starts execution. In our case, this corresponds to the
case when the first data transfer for the job ji starts. If the job finds all its files
locally, then it is the time when the job starts its computation. The wait time
of a job Wait(ji) is the time it spends in the queue before it starts execution.

Wait(ji) = Start(ji)−Arrival(ji) (1)

The response time Response(ji) of the job is the turnaround time which refers
to the total time spent by job in the queue and in execution.

Response(ji) = Wait(ji) + Exec(ji) (2)

Completion(ji) refers to the instant when the job finishes execution.

Completion(ji) = Arrival(ji) + Response(ji) (3)

And the AverageResponseT ime is defined as the overall average of response
times of the jobs in the stream.

AverageResponseT ime =
∑i=n

i=1 Response(ji)
n

(4)

We have evaluated our approach using application scenarios from Biomedi-
cal Image Analysis application class. Biomedical imaging is a powerful method
for disease diagnosis and for monitoring therapy. State-of-the-art studies make
use of large datasets, which consist of time dependent sequences of 2D and 3D
images from multiple imaging sessions. Systematic development and assessment
of image analysis techniques requires an ability to efficiently invoke candidate
image quantification methods on large collections of image data. A researcher
may apply several different image analysis methods on image datasets containing
thousands of 2D and 3D images to assess ability to predict outcome or effective-
ness of a treatment across patient groups.

3 Related Work

Relatively little scheduling research so far has given importance to the issues of
data locality and I/O contention. Ranganathan et. al. [13] proposed a decoupled
approach to scheduling of computations and data for data-intensive applications
in a grid environment, and evaluated its effectiveness via simulation studies.
The algorithm combines a scheduling scheme, called Job Data Present with a
replication heuristic, referred to as Data Least Loaded in a decoupled fashion.
The algorithm incorporates a notion of eligible nodes for each job, which are the
set of nodes that store the file required by the job. It works by picking a job from
a FIFO queue and assigning it to the node that already has the required data. If
more than one compute nodes are eligible candidates, then it chooses the least
loaded node. The replication mechanism Data Least Loaded is decoupled from
the scheduling policy. The replication mechanism keeps track of the popularity
of files, and when the popularity of a file exceeds a threshold, then the file is
replicated to the least loaded node in the compute cluster. As the replication
threshold decreases, the number of dynamic data replications increases. This in
turn increases the possibility of increased end-point contention on the storage
cluster. Therefore, there is a tradeoff between the benefit of a low replication
threshold and the increased contention. In our case, we allow multiple files per
job which means that there may exist compute nodes which store subsets of the
files required by a job. This essentially amounts to allocating a job to a node
such that the expected data transfer time to stage in the set of files required by
a job is minimized.

Casanova et al. [3] modified the MinMin, MaxMin, and Sufferage job schedul-
ing heuristics to take into account the cost of inter-site file access, in the context
of scheduling parameter sweep applications in a Grid environment. Jain et.al. [5]
model scheduling of I/O operations (with certain assumptions) as a bipartite
graph coloring problem with two separate sets of nodes namely, disks and pro-
cessors. Our difference is that we consider grouping and mapping of jobs to

compute nodes in tandem with ordering of jobs and scheduling of remote I/O
operations for file transfers. Mohamed et al. [12] presented a Close-To-Files (CF)
job placement algorithm which tries to place jobs on clusters with enough idle
processors that are close to the storage sites where the files reside.

Multi-query workloads also arise in the context of database applications.
The work of Mehta et al. [11] is one of the first to address the problem of
scheduling queries in a parallel database by considering batches of queries. In [1],
Andrade et.al. propose a dynamic scheduling model for multi-query workloads in
data analysis applications. The goal is to maximize data and computation reuse
and concurrent execution on SMP nodes through semantic caching and ordering
of queries based on priority metric. These strategies mainly target efficient reuse
of results from previously executed queries.

Kotz et al. [8] propose a technique called disk-directed I/O to organize multi-
ple overlapping I/O operations with a view to optimize disk performance which
is the bottleneck. The work of Kavas et al. [6] focusses on loading of executa-
bles on the compute nodes and not just data. They propose reliable multicast
mechanisms to load a file to multiple nodes at once thereby reducing the storage
node overheads.

In an earlier work [7], we looked at the problem of scheduling a batch of
data-intensive jobs with batch-shared I/O behavior. We modeled the sharing
of files among jobs as a hypergraph and employed hypergraph partitioning to
obtain a partitioning of jobs onto compute nodes that computationally balanced
the workload and reduced remote I/O operations for file transfers. In this paper,
we are targeting an online scenario where a set of file-shared data-intensive jobs
arrive over time. To accomplish this, we have extended our previous work [7] in
such a way so as to dynamically model the state of the system at each scheduling
instant which includes the content of disk caches at the compute nodes, the
remaining execution time of the running jobs, and the pending jobs that are
present in the system. Our approach for the batch mode case involves a one
time hypergraph modeling and partitioning which looks at the entire set of jobs
that have arrived together as a batch and the initial system state which is cold,
to yield a load-balanced connectivity minimizing allocation of jobs. Whereas
for this work, we propose repeated partitioning and remapping of jobs at each
scheduling instant by taking into account the current state of the system at each
scheduling instant.

4 Dynamic Job Scheduling

We propose an Online Hypergraph partitioning based scheduling (Online-HPS)
heuristic, a two stage dynamic scheduling framework. In the first stage, jobs are
mapped to compute nodes, and in the second stage, the order of the jobs in each
compute node are determined. These two stages are then applied in a repeated
fashion at certain scheduling events which may correspond to job arrivals or job
completions.

For mapping jobs to compute nodes we employ a hypergraph-based formu-
lation, hence we start with a brief description of hypergraphs and hypergraph
partitioning followed by our proposed mapping technique. We will continue with
a description of job ordering stage.

4.1 Hypergraph Partitioning

A hypergraph H = (V,N) is defined as a set of vertices V and a set of nets
(hyper-edges) N among those vertices. Every net nj ∈ N is a subset of vertices,
i.e., nj ⊆V . The size of a net nj is equal to the number of vertices it has, i.e.,
sj = |nj | . Weights (wi) and costs (cj) can be assigned to the vertices (vi ∈V)
and edges (nj ∈N) of the hypergraph, respectively. P = {V1, V2, . . . , VP } is a
P-way partition of H if 1) each part is a nonempty subset of V , 2) parts are
pairwise disjoint and 3) union of P parts is equal to V .

In a partition P of H , connectivity λj of a net nj denotes the number of
parts connected by nj . A net nj is said to be cut if it connects more than one
part, i.e. λj > 1. The cost of a partition Π is computed as
χ(Π) =

∑
nj∈NE

cj(λj − 1), where NE is the set of cut nets and each cut net
nj contributes cj(λj − 1) to the cutsize. This cost metric is also known as
connectivity-1 metric. The hypergraph partitioning problem can be defined as
the job of dividing a hypergraph into two or more parts such that the cutsize is
minimized, while a given balance criterion among the part weights is maintained.
Algorithms based on the multi-level paradigm, such as PaToH [4], have been
shown to compute good partitions quickly for this NP-hard problem.

4.2 Runtime Hypergraph-based Mapping of the System State

We develop a hypergraph formulation to model the sharing of files among the jobs
present in the system. At each scheduling event, a new hypergraph is constructed
which models 1) the current state of the system that includes the pending jobs
and the files requested by them, 2) the currently executing jobs, and 3) the files
already cached on the compute nodes due to previously executed jobs. This is
followed by K-way partitioning of the hypergraph to obtain a load-balanced cut
minimizing mapping of the pending jobs onto the compute nodes. The currently
executing jobs are incorporated in the partitioner to take into account the current
value of load on each of the compute nodes and thereby facilitate load balance
as a result of the new partitioning.

Our hypergraph model consists of two sets of vertices, one set of vertices
represents the pending jobs which are present in the system and the other set
represents jobs currently in execution on the compute nodes. A particular job ji

is represented by a vertex vi in the hypergraph. Each hyper-edge nj represents
a file fj and connects to two different set of vertices, one set is the set of vertices
corresponding to pending jobs that require this file as input, and the other is
the vertices corresponding to running jobs which are running on a node already
having a cached a copy of file fj . This hypergraph is partitioned into P groups,

(a) (b)

Fig. 2. a) A snapshot of the system at t=0. Jobs 1,2,3 and 4 have arrived into the
system. Letters represent files and numbers represent the jobs. Lines connecting the jobs
to files represent the associated file requests for each job. b) Hypergraph partitioning
across two compute nodes at t=0.

where P is the number of compute nodes, and each group is mapped to a
compute node. The partitioning is done so that the compute and I/O weight of
the clusters are balanced and the cost of transferring shared files across clusters
is minimized. The partitioning should ensure that the vertices corresponding to
running jobs are allocated to the same compute node on which they are already
running. This is made sure by pinning the vertices corresponding to running jobs
onto the nodes in which they are running.

Figure 2(a) illustrates the state of the system at time t=0. It shows the
arrival of 4 jobs into the system and their associated file requests. The boxes
next to each file represent the storage locations for each file at t=0. Figure 2(b)
illustrates a partitioning of the hypergraph representation of the system state
shown in Figure 2(a). The figure shows that the hypergraph partitioning tries to
cluster jobs sharing files together. Figure 3(a) illustrates the state of the system
at time t=10. The figure shows two sets of vertices corresponding to pending
jobs and running jobs respectively. Job 1 and Job 2 have run to completion and
hence the corresponding vertices are not present. Replicas of files (i.e., multiple
copies of files on the compute nodes) have been created as files had been staged
onto the compute cluster for previous jobs. The solid lines show the file requests
by running jobs which can be served locally whereas the dotted lines represent
the file requests which may or may not be served locally based on the result of
the subsequent partitioning.

Figure 3(b) illustrates a partitioning of the hypergraph representation of
the system state shown in Figure 3(a). The solid boxes represent the running
jobs which have been mapped to the same nodes as in Figure 2(b). This is
accomplished by pinning down the running jobs onto the nodes on which they
are already running. The dotted boxes represent the pending jobs which have
been been mapped to one of the compute nodes. The partitioning in Figure 3(b)

(a) (b)

Fig. 3. a) A snapshot of the system at t=10. Jobs 5,6,7 and 8 have arrived into the
system. Jobs 1 and 2 have finished execution. Jobs 3 and 4 are currently in execution
on nodes 1 and 2 respectively. b) Hypergraph partitioning across two compute nodes
at t=10.

shows that the jobs have been mapped to nodes with which they have strong
affinity in terms of the files already cached on those nodes while maintaining
load balance. The figure shows two sets of lines. The dotted lines represent the
file requests associated with the jobs. The solid lines connect each running job to
the files that are already cached on the node on which the job is running. These
associations between a net representing a file already cached on a node with the
vertex representing the job running on that node are done to exploit the file
affinities of certain pending jobs to nodes which have copies of one or more files
requested by these jobs. Any pending job which requests a lot of files already
cached on a node will therefore have greater inter-job affinity with the running
job on that node. Therefore, in essence, we have modeled both the inter-job file
sharing affinities and the job-node affinity due to caching of files.

The weight of a vertex representing a pending job is equal to the estimated
execution time of the corresponding job. The estimated execution time of a job
is calculated as the sum of I/O overhead (the transfer time of files from storage
nodes plus the I/O time to read files from local disk) and the computation cost
of the job. The hypergraph based strategy globally partitions all the existing
jobs into groups before any order for job execution is determined for a group.
Hence it has to use a static vertex weights. The expected execution time of a
job can possibly vary depending upon the node allocated to the job. This is
because different nodes may have staged in different sets of files and therefore
the job will have different locality of reference with each node. In other words,
the execution times of jobs are not fixed but vary based on the allocation of the
nodes and in time. In order to alleviate this issue and provide a better estimate
of the execution time of a job, we compute the weight of a vertex as follows.

Let the set of files a job ji needs be Fi . The cost of transferring one byte of
file fj , Trj , for job ji is equal to

Tr(ji) =
ProbFNE

RBW
+ (1− ProbFNE)× (1− ProbFE)

RBW
. (5)

Here, RBW is the I/O bandwidth between a storage node and a compute
node, ProbFNE is the probability that job ji will be the first job to execute
in its group that requires fj , and ProbFE is the probability that ji executes
on a node, to which file fj has already been transferred. In our current im-
plementation, we assume uniform probability distribution. Hence, we have used
ProbFNE = 1

sj
and ProbFE = 1

P . Recall that sj is the size of the hyper-edge
nj that represents file fj . Hence it also denotes the number of jobs that shares
the file fj .

We assume that the computation time of a job is linear with the size of the
input files it requires. This is a reasonable assumption since we assume that
multiple instances of only a single application are being run on the system and
there is no interference effect due to multiple different applications. With this
assumption, the estimated execution time of job ji is computed as

EstimatedExec(ji) =
∑

fj∈Fi

filesize(fj)× (Trj +
1

LBW
+ C) (6)

where LBW is the I/O bandwidth from local disk on a compute node and C is
the compute cost of one byte. By assigning the files sizes as hyper-edge costs, the
proposed method reduces the job mapping problem to the P -way hypergraph
partitioning problem according to the connectivity-1 cutsize definition [4]. Each
and every file needed by the jobs in the job trace will be transfered to the
compute system at least once. More specifically, if the jobs that share the file fj

is assigned to λj compute nodes, file fj needs to transfered λj − 1 more times
after its first transfer.

The weight of a vertex representing an already running job is equal to the
remaining estimated execution time of the corresponding job. This is computed
in a similar fashion as explained above except that it models the fact that some
of the files required by a running job may already have been staged and therefore
would not contribute to its remaining execution time.

By using expected execution times as vertex weights, the algorithm aims to
balance computational load across the compute nodes. The expected execution
time as calculated in equation 6 is based on a probabilistic model for estimating
the cost of file transfer which assumes a uniform distribution. In scenarios where
the data-staging costs are high and much more significant as compared to the
computational costs, the impact of making such an assumption could affect load
balance but the overall system performance would depend more on the connec-
tivity metric. Therefore, the impact of the inaccuracy of this assumption would
be lesser in such scenarios.

4.3 Job Ordering in a Compute node and Scheduling of Remote file
transfers

Once the jobs have been mapped to a node, the local scheduling algorithm within
each compute node decides the order in which to schedule the queued jobs and
their associated file transfers. When a node becomes idle, the local scheduling
algorithm running at the node decides the next job to execute on that node
and also decides the schedule for its remote file transfers. Two jobs that are in
different compute nodes may have their input files stored on the same set of
nodes. Thus, ordering of jobs in each compute node and transfer of files should
be done in a way to minimize end-point contention on the storage cluster.

We employ a strategy in which jobs within a group are scheduled based
on their earliest completion time. Therefore, when a node becomes idle, the
algorithm computes the completion time of each of the queued jobs present on
that node and schedules the job with the earliest completion time. The earliest
completion time of a job is computed iteratively and dynamically based on the
availability of resources.

The algorithm maintains a Gantt chart for storage nodes. When a job in a
group is scheduled for execution, time slots are reserved on storage nodes for
file transfers required for this job. These time slots for a job are marked on the
Gantt chart. In calculating the duration of time slots and marking them on the
Gantt chart, we assume that multiple requests to the same storage node are
serialized and that a compute node can receive a file after it has finished storing
the previously received file on local disk.

The earliest completion time of a job ji is estimated as the sum of time to
stage its input files Fi and its execution time. The staging time is the time spent
to make the input files ready in the compute node. If all of the input files are
already in the compute node, the staging time will be zero. Otherwise, it will be
the amount of time spent to transfer the last input file from the storage node.
The transfer completion time for each file fj ∈ Fi (TCTj) is estimated as the
sum of the earliest time a transfer can start (first available slot in the Gantt chart
after the time that the compute node becomes available) and the actual transfer
time (size of fj divided by the storage bandwidth; computed as the minimum of
remote disk bandwidth and network bandwidth). The file fj with the minimum
TCTj is picked and tentatively scheduled for transfer. TCT s of the rest of the
input files are recomputed and the next file with the minimum TCT is picked
and tentatively scheduled. This process is repeated until all of the input files are
scheduled. TCT of the last file scheduled actually gives the staging time. Then
the earliest estimated completion time for ji is computed as the sum of 1) the
completion time of file transfers from storage nodes, 2) I/O time to read the files
on local disk, and 3) CPU time to process the files. The scheduling algorithm
determines the job with the least completion time in each group, and the job ji

with the lowest earliest completion time out of these is scheduled first. Once ji

is scheduled, out of the other job groups (excluding the one containing ji), the
job with the minimum earliest completion time (taking into account the current

(a) (b)

Fig. 4. a) Hypergraph representation of a queue of jobs at a certain point in execution.
The numbers next to the alphabets representing the files are the storage node ids on
which the corresponding files are resident. b) An illustration of the execution of the
ordering algorithm on the set of queued jobs.

reservations) is now picked and scheduled. When a running job completes, the
job with earliest completion time from that group is scheduled.

Let us consider a hypergraph partitioning of a stream of six jobs which were
submitted to a system of two compute nodes and 4 storage nodes. Figure 4(a) il-
lustrates the corresponding hypergraph partitioning. Figure 4(b) illustrates the
execution of the ordering algorithm on the set of mapped jobs shown in Fig-
ure 4(a) . In this figure transfer of each file takes 1 unit of time, and I/O and
processing of a file takes 0.3 and 0.2 units of time, respectively. Since job 4 de-
pends on two files, its earliest completion time is 3. Hence it has been scheduled
first and 1 unit of time on storage node 1 and 1 unit of time on storage node
3 have been reserved. Since a job has been scheduled from group 2, next the
job with the earliest completion time from group 1 is scheduled. Since all of the
job in the group depends on 3 files, and they can be scheduled to transfer all of
the files in 3 units, we pick one of them, say job 1. The algorithm continues by
reserving the transfer of files for job 1, and another job from group 2 is picked.

4.4 File Eviction Policy

If the transfer of file for a particular job violates the disk space constraint on
the compute cluster, a disk file eviction mechanism is invoked which deletes
files in the increasing order of their value metric. The value of a file V alue` , is
calculated as follows.

V alue` =
AccessFreq(f`)× filesize(f`)

Numcopies(f`)
(7)

AccessFreq(f`) represents the number of accesses to the file so far and is
representative of its frequency of access. filesize(f`) represents the size of the

file f` . Numcopies(f`) represents the number of copies of file f` in the compute
cluster. If two files have the same frequency of access up to the current time in
execution, and the same size, the file with fewer copies gets a higher popularity
value as evicting that file is more likely to result in a remote file transfer when
the file is again needed. The intuition behind including the file size in popularity
computation is that greater the size of the file is, greater the cost of getting the
file back to a node will be. The algorithm evicts smaller files, since the cost of
staging such files again in future will be less.

We have integrated this file eviction mechanism into our proposed approach
as well as MCT, MET, and SA approaches for the purpose of performance com-
parison. For the algorithm Job Data Present with Data Least Loaded, we employ
an LRU based eviction mechanism as described in [13].

5 Existing Job Mapping Techniques

In this paper, we examine the JobDataPresent + DataLeastLoaded algorithm
proposed in [13] in the context of data grids and the Minimum Execution Time
(MET), Minimum Completion Time (MCT), Switching Algorithm (SA) heuris-
tics, which were originally proposed for scheduling independent computational
jobs to compute resources [10]. As in [2, 3, 7], we modify MET, MCT and SA to
take into account 1) the time it takes to transfer input and output files to and
from compute nodes in the environment, 2) files that have already been staged
to a compute node in estimating the minimum completion time of a job and 3) in
case of MCT and SA, also the files that are being staged to a compute node due
to currently running job on that node. We also integrate the Gantt chart based
explicit scheduling of remote file transfers as explained in Section 4.3 into the
MET, MCT and SA algorithms.

JobDataPresent + DataLeastLoaded : The algorithm combines a schedul-
ing scheme, called Job Data Present with a file replication heuristic, referred to
as Data Least Loaded in a decoupled fashion. The details of the algorithm have
been explained in Section 3.

Minimum Execution Time (MET): The MET heuristic assigns each job to
a node that results in the least execution time (Execi) for that job. As a job
arrives, all the compute nodes in the cluster are examined to determine the node
that gives the best execution time for the job. When computing the expected
execution time of a job on a node, MET takes into account the files already
available on the node. If none of the files required by a job are found in any
compute node, then the first available node is chosen to run the job. In other
words, if the minimum execution time of a job an each node of the cluster is the
same, then the first available node is chosen to execute the job. Therefore, MET
heuristic inherently favors data locality since nodes which cache files required by
a particular job are the ones which will get its best execution time.

Minimum Completion Time (MCT): The MCT heuristic assigns each job
to a node that results in that job’s earliest completion time (Completioni). As a
job arrives, all the compute nodes in the cluster are examined to determine the
node that gives the earliest completion time for the job. When computing the
expected completion time of a job on a node, MCT takes into account the files
already available on the node and files which be available on the compute node
in future due to staging of data caused by the currently executing job on the
node, as well as the completion time of the currently assigned jobs to that node.
Hence, MCT may discard data locality and assign a new job to node which does
not have any of its files cached because the wait times on the nodes with which
the job have very good file locality may be high.

Switching algorithm (SA): The MET heuristic has a potential drawback
in that it can lead to load imbalance across nodes by assigning many more
jobs to some node than to others since it blindly looks at data locality without
considering possible load imbalance. The MCT heuristic assigns jobs to nodes
to achieve earliest completion time thereby ensuring load balance but does not
necessarily exploit data locality since it may not allocate a job to a node which
already has its files cached due to excess waiting times on that node. SA heuristic
is motivated by the fact that it is possible to use MET at the expense of load
imbalance until a given threshold and then use MCT to smooth the load across
the cluster. Similar to [10], let ib be the load balance index defined as ib =
loadmin/loadmax where loadmin and loadmax are the loads (completion time
of the last job on that node) of minimum and maximum loaded nodes. We
define two thresholds l and h . SA starts mapping jobs with MCT heuristic
until the load balance index reaches to h , after that point it switches to MET
and continues until load balance index decreases below l at that point it switches
to MCT again and this cycle continues. In our experiments we have used l = 0.3
and h = 0.7. The goal of SA is to have a heuristic with the desirable properties
of load balance as well as data locality optimization.

6 Experimental Results

We now present an experimental evaluation of the proposed strategies along with
the MET, MCT, SA and JobDataPresent-DataLeastLoaded (JDPDLL) strate-
gies. For evaluation, we used an application class: biomedical image analysis. We
compared the performance of the various scheduling schemes under a varying set
of scenarios covering multiple job-file sharing patterns and different distributions
of job inter-arrival times.

6.1 Application Workloads

For the image analysis application, we implemented a program to emulate studies
that involve analysis on images obtained from MRI and CT scans (captured on
multiple days as follow-up studies). An image dataset consists of a series of 2D

images obtained for a patient and is associated with meta-data describing patient
and study related information (in our case, we used patient id and study id as
the meta-data). Each image in a dataset is associated with an imaging modality
and the date of image acquisition and stored in a separate file. An image analysis
program can select a subset of images based on a set of patient ids and study
ids, image modality, and a date range.

We evaluated the scheduling schemes using job traces where several aspects
were varied: 1) job inter-arrival rate (to vary system load), 2) extent of file
sharing among jobs, 3) temporal clustering characteristics of file-sharing behavior
between jobs, and 4) burstiness of job arrivals.

We generated workloads with different degrees of file sharing among jobs:
high sharing, medium sharing, and low sharing. The different degrees of sharing
is achieved by varying the values of patient and time attributes across requests
by different jobs. We generated workloads with 85%, 40%, and 10% overlap, on
average, in terms of files requested by different jobs in the job trace for high,
medium, and low overlap cases.

The dataset generated by the emulator corresponded to a dataset of 2000
patients and images acquired over several days from MRI and CT scans. Each
job on an average accessed 6 files. The number of files accessed by a job varied
from 4 to 10. The sizes of images were 4 MB and 64 MB for MRI and CT scans,
respectively. The overall size of the dataset was around 2 Terabytes. Images
for each patient were distributed among all the storage nodes in a round robin
fashion.

The image analysis application typically involve computations equivalent of
two floating point operations per word. We, therefore, emulated it with 2 FP
operations per word and measured that this translates to a processing time of
approximately 0.001s/MB of data in our test-bed4.

6.2 Modeling the Load

In traditional compute-intensive job scheduling, the offered load on the system
is calculated as:

OfferedLoad =
∑
∀i Exec(ji)× n(ji)

P ×max∀i(Arrival(ji))
(8)

where n(ji) represents the number of nodes allocated to a job ji , P is
the number of nodes in the system. In compute-intensive job scheduling, the
OfferedLoad metric is entirely dependent on the job trace under considera-
tion and is independent of the scheduling policy being employed. However, in
the data-intensive scheduling scenario we are focusing on, the metric defined in

4 It can be expected that when computation time dominates the overall execution
time, the traditional job scheduling strategies would work well. The CPU power and
memory bandwidth are increasing very rapidly and faster than the bandwidth of I/O
devices. With such a trend, the I/O cost will become more pronounced thus entailing
the need to develop scheduling algorithms which target data intensive applications.

Equation 8 is no longer dependent only on the job trace but is also a function
of the scheduling policy. This is because in the data-intensive scenario, the job
execution times are not fixed. Instead, they vary with time due to staging of
files by previously run jobs and also vary based on the node allocated to the job
because of varying degrees of locality. Therefore, the job execution times depend
upon the scheduling policy. To address this issue, we propose the following new
characterization of load which is dependent only on the characteristics of the job
trace and is independent of the scheduling policy.

Let ArrivalRate be the job arrival rate in Jobs/sec. Let ServiceRate be the
expected Job service rate in Jobs/sec. The expected load is defined as follows.

Load =
ArrivalRate

ServiceRate
(9)

Let us consider a trace of N jobs, where each job has an associated set of file
transfers. Let the set of files needed by job ji be Fi .

Let AvgExectime denote the average of the execution times over all the
jobs.

AvgExecT ime =
1
N
×

∑
∀i

EstimatedExec(ji) (10)

The EstimatedExec time is same as calculated based on the probabilistic
model explained in Section 4.2. To achieve an overall load of 1, The time of
arrival of the last arriving job TLarrival in the system is calculated as follows.

TLarrival = AvgExectime× N

P
(11)

To summarize, we first determine the arrival time of the last job by using the
information about the files accessed by each job so as to achieve a load value of 1.
We then generate job traces with different values of load by varying the number
of jobs which arrive over a fixed period of time. The modeling of load is based on
estimated execution times which are based on a probabilistic model as shown in
equation 6. In reality, some jobs will require a lower actual execution time than
their expected execution time if some needed files are locally available since they
were staged by previously executed jobs. On the other hand, the execution time
may be higher in reality, due to contention at the storage server node for file
transfer.

6.3 Modeling the Arrival Process

We model the arrival process as a Poisson random process and evaluate it with
two distributions corresponding to different job orderings - clustered distribu-
tion and random distribution. Clustered distribution refers to the case where
jobs sharing files among themselves occur closer together in time. Random dis-
tribution refers to the case where jobs come in any random order. Here, the
arrival times of file-sharing jobs may be widely separated from each other over

(a) (b)

Fig. 5. Performance of Job Data Present coupled with Data Least Loaded under various
replication thresholds

(a) (b)

Fig. 6. Average Response time achieved by different algorithms for the (a) Clustered
Distribution and (b) Random Distribution

time. We also model the arrival times using the model proposed by Lublin [9].
The Lublin model is based on analysis of different production logs and uses sta-
tistical methods in order to achieve a good match of synthetic traces and actual
trace data. The job arrival model takes into account both the stationary arrival
process during peak hours and also the daily cycle. Since the model is based on
long-running jobs from production supercomputer installations, we scaled down
the arrival times to reduce the overall time to run our experiments.

6.4 Performance Evaluation on a Cluster

We conducted our experiments using a memory/storage cluster at the Depart-
ment of Biomedical Informatics at the Ohio State University. The cluster consists
of 64 nodes with an aggregate 0.5 TBytes of physical memory and 48TB of disk
storage. These nodes are connected to each other through Infiniband.

One of the comparison schemes - JDPDLL - uses a critical ”threshold” pa-
rameter to decide when a file should be replicated at another node. We first
ran JDPDLL with different values of the replication threshold parameter. Fig-
ure 5 shows the variation in performance. The replication threshold represents
the minimum number of references to a file by a compute node needed to trigger
a replication of that file to a least-loaded node. Three different threshold val-
ues were used: 1, 2 and 4. Figure 5 show that the choice of the threshold has

(a) (b)

Fig. 7. Number of remote file transfers in different algorithms for the (a) Clustered
Distribution and (b) Random Distribution

a significant effect on the performance of this algorithm - there is a trade off
between benefits of increased replication and the storage node end-point con-
tention caused by an increasing number of dynamic data replications. In our
experiments, we noted that a threshold value of 2 gave the best results and
therefore this threshold is used for comparing the performance of this scheme
against others.

Figure 6 shows the relative performance of the various scheduling schemes in
terms of the average response time. These experiments were conducted using 4
compute nodes and 4 storage nodes. The number of jobs in the traces used for
this experiment varied from 800 to 1600 and the time of arrival of the last job in
each trace was around 600 secs. The value of load based on our characterization
as explained in Section 6.2 varied from being around 1 for the 800 job trace to
around 2 for the 1600 job trace. Each compute node used for this experiment
had an available space of 15GB. The figures show that hypergraph-partitioning
scheme (Online-HPS) performs better than the other schemes in most of the
cases. This is because it models the inter-job affinity due to file-sharing and
clusters jobs that share files transfers transfer of the same file multiple times.
The benefit of the proposed scheme is higher as the inter-arrival times decrease
since the partitioning scheme has information about more jobs at its disposal and
it exploits this information to make more informed global decisions. The base
schemes MCT, MET, SA, and JDPDLL consider one job at a time when making
local greedy job mapping decisions and therefore do not take into account the
implicit inter-job affinities due to file sharing.

At very low loads, JDPDLL performs the best since the average inter-arrival
times are high and there are significant idle periods during which file replication
occurs without interfering with other file transfers. of storage node end-point of
both the job play a job-inter arrival time decreases, the performance of JDPDLL
deteriorates compared to Online-HPS because the file replication activity causes
contention with I/O from jobs reading input files from the storage nodes. The
effect of end-point contention becomes more and more significant as the system
load increases.

(a) (b)

Fig. 8. (a) Average Response time achieved by the various algorithms with varying
number of compute nodes for the (a) Clustered Distribution and (b) Random Distri-
bution

(a) (b)

Fig. 9. (a) Performance of the various algorithms under the Lublin arrival model and
(b) Performance of the different algorithms with variation in the degree of file sharing
across jobs

Figure 7 shows the number of remote file transfers for all the algorithms for
the same set of experiments as shown in Figure 6. As might be expected, Online-
HPS causes fewer remote transfers compared to MCT, SA and JDPDLL. This
is because it attempts to cluster together jobs that share files, thereby reducing
the need for multiple transfers of the same file. The MET heuristic results in
the least number of remote file transfers over all the schemes. This is because
it maps each job to a node with which the job has maximum affinity in terms
of the files already cached on it and required by the job. However, while doing
so, it does not model the queue wait times at each node, thereby causing severe
load imbalance across the nodes. Therefore, it gives the worst average response
time in spite of being the best in terms of minimizing the remote file transfers.

To analyze the scalability of the proposed scheme with respect to the number
of compute nodes, we ran experiments with the high overlap workload consisting
of 1600 jobs. The number of compute nodes were varied from 2 to 16. These ex-
periments were run using 4 storage nodes. Figure 8 shows the results with varying
number of compute nodes. As is seen from the figure, Online-HPS achieves the
best performance in terms of average response time in all the cases.

Figure 9(a) shows the relative performance of the various scheduling schemes
in terms of the average response time by employing the Lublin arrival model to

generate the job inter-arrival times. The results show that Online-HPS consis-
tently performs well compared to the other schemes. The relative performance
improvement under the Lublin model is higher compared to the traces modeling
a Poisson arrival process. With the bursty nature of job arrival with the Lublin
arrival process, the partitioning heuristic makes better job allocation decisions
during bursts where a large number of queued jobs are available and inter-job
file affinities can be exploited.

Figure 9(b) shows the relative performance of the various scheduling schemes
on job traces with different degrees of shared I/O among jobs. These experiments
were conducted using 4 compute nodes and 4 storage nodes. The high overlap
job had 1200 jobs with an average inter-arrival time of 0.51. The medium and
low overlap workloads had 800 and 400 jobs, respectively. These workloads were
generated to have a uniform value of expected load. However, in reality, the
medium and low overlap workloads took a longer time to execute since end-
point contention became more significant as the degree of file sharing decreased
(due to increase in the number of remote file transfers). The results in Figure 9(b)
show that the benefit of the Online-HPS scheme is greatest for the high overlap
workload and reduces as the degree of overlap decreases.

7 Conclusions

This paper proposes a novel hypergraph based dynamic scheduling heuristic
for a stream of dynamically arriving independent I/O intensive jobs. The ap-
proach is based on a run-time hypergraph based modeling of the system state,
followed by locality-aware and load balanced mapping and scheduling of jobs
onto the compute nodes. The performance results obtained on a coupled com-
pute/storage cluster show that it achieves significant performance improvement
over previously proposed heuristics - MET, MCT, SA and JobDataPresent with
Data Least Loaded - when there is a high degree of file sharing among jobs. The
previous schemes do not explicitly consider inter-job dependences arising out of
file-sharing and thus make local decisions based on greedy heuristics. The choice
of the best scheduling algorithm for a particular scenario depends upon param-
eters such as inter-arrival times and inter-job file sharing. Under very lightly
loaded conditions, when the average job inter-arrival time is high, data repli-
cation proves to be more beneficial if a good choice of replication threshold is
made. As inter-arrival times decrease, the proposed approach, which takes an
integrated view of scheduling of computation and data placement, outperforms
the other heuristics.

References

1. H. Andrade, T. Kurc, A. Sussman, and J. Saltz. Scheduling multiple data visual-
ization query workloads on a shared memory machine. In Proceedings of the 2002
IEEE International Parallel and Distributed Processing Symposium (IPDPS 2002),
Fort Lauderdale, FL, April 2002.

2. H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The AppLeS parameter
sweep template: User-level middleware for the grid. In Proceedings of the 2000
ACM/IEEE SC00 Conference, pages 75–76, 2000.

3. H. Casanova, D. Zagorodnov, F. Berman, and A. Legrand. Heuristics for schedul-
ing parameter sweep applications in grid environments. In Proceedings of the 9th
Heterogeneous Computing Workshop (HCW’00), pages 349–363, 2000.

4. U. V. Çatalyürek and C. Aykanat. Hypergraph-partitioning based decomposition
for parallel sparse-matrix vector multiplication. IEEE Transactions on Parallel
and Distributed Systems, 10(7):673–693, 1999.

5. R. Jain, K. Somalwar, J. Werth, and J. Browne. Heuristics for scheduling I/O
operations. IEEE Transactions on Parallel and Distributed Systems, 8(3):310–320,
Mar 1997.

6. A. Kavas, D. Er-El, and D. G. Feitelson. Using multicast to pre-load jobs on the
parpar cluster. Parallel Computing, 27(3):315–327, 2001.

7. G. Khanna, N. Vydyanathan, T. Kurc, U. Catalyurek, P. Wyckoff, J. Saltz, and
P. Sadayappan. A hypergraph partitioning based approach for scheduling of tasks
with batch-shared I/O. In Proceedings of the 5th IEEE/ACM International Sym-
posium on Cluster Computing and the Grid (CCGrid 2005), May 2005.

8. D. Kotz. Disk-directed i/o for mimd multiprocessors. ACM Transactions on Com-
puter Systems, 15(1):41–74, 1997.

9. U. Lublin and D. G. Feitelson. The workload on parallel supercomputers: modeling
the characteristics of rigid jobs. J. Parallel Distrib. Comput., 63(11):1105–1122,
2003.

10. M. Maheswaran, S. Ali, H. J. Siegel, D. A. Hensgen, and R. F. Freund. Dynamic
matching and scheduling of a class of independent tasks onto heterogeneous com-
puting systems. In Heterogeneous Computing Workshop (HCW’99), pages 30–44,
Apr. 1999.

11. M. Mehta, V. Soloviev, and D. J. DeWitt. Batch scheduling in parallel database
systems. In Proceedings of the 9th International Conference on Data Engineering
(ICDE 1993), Vienna, Austria, 1993.

12. H. Mohamed and D. Epema. An evaluation of the close-to-files processor and data
co-allocation policy in multiclusters. In 2004 IEEE International Conference on
Cluster Computing, pages 287–298. IEEE Society Press, 2004.

13. K. Ranganathan and I. Foster. Decoupling computation and data scheduling in dis-
tributed data-intensive applications. In Proceedings of the Eleventh IEEE Sympo-
sium on High Performance Distributed Computing (HPDC), Edinburgh, Scotland,
July 2002.

14. D. Thain, J. Bent, A. Arpaci-Dusseau, R. Arpaci-Dusseau, and M. Livny. Pipeline
and batch sharing in grid workloads. In Proceedings of High-Performance Dis-
tributed Computing (HPDC-12), pages 152–161, Seattle, Washington, June 2003.

