
 1

Adaptive Job Scheduling via Predictive Job Resource
Allocation

Lawrence Barsanti and Angela C. Sodan

University of Windsor, Canada, {barsant,acsodan}@uwindsor.ca
http://davinci.newcs.uwindsor.ca/~acsodan

Abstract. Standard job scheduling uses static job sizes which lacks flexibility
regarding changing load in the system and fragmentation handling. Adaptive
resource allocation is known to provide the flexibility needed to obtain better
response times under such conditions. We present a scheduling approach
(SCOJO-P) which decides resource allocation, i.e. the number of processors, at
job start time and then keeps the allocation fixed throughout the execution (i.e.
molds the jobs). SCOJO-P uses a heuristic to predict the average load on the
system over the runtime of a job and then uses that information to determine the
number of processors to allocate to the job. When determining how many
processors to allocate to a job, our algorithm attempts to balance the interests of
the job with the interests of jobs that are currently waiting in the system and
jobs that are expected to arrive in the near future. We compare our approach
with traditional fixed-size scheduling and with the Cirne-Berman approach
which decides job sizes at job submission time by simulating the scheduling of
the jobs currently running or waiting. Our results show that SCOJO-P improves
mean response times by approximately 70% vs. traditional fixed-size
scheduling while the Cirne-Berman approach only improves it 30% (which
means SCOJO-P improves mean response time by 59% vs. Cirne-Berman).

1 Introduction

Most job-scheduling approaches for parallel machines apply space sharing which
means allocating CPUs/nodes to jobs in a dedicated manner and sharing the machine
among multiple jobs by allocation on different subsets of nodes. Some approaches
apply time sharing (or better to say a combination of time and space sharing), i.e. use
multiple time slices per CPU/node [23]. This is typically done via so-called gang
scheduling which explicitly synchronizes the time slices over all nodes. Such time
sharing creates multiple virtual machines which offers more flexibility for scheduling.
Consequently, gang scheduling is shown in several studies to provide better response
times and higher machine utilization (see, e.g., [9][10]). On the downside, gang
scheduling involves process-switching overhead and increases the memory pressure.

A different option of flexible scheduling that avoids additional memory pressure is
adaptive CPU/node-resource allocation. The standard resource-allocation approach in
job schedulers uses static job sizes: jobs request a certain number of CPUs/nodes to
run (therefore, called rigid). Adaptive resource allocation means that the number of
resources can be decided dynamically by the system. The precondition is that the jobs

 2

can deal with this dynamic resource allocation: either being moldable, i.e. able to
adjust to the resource allocation at job start time, or being malleable, i.e. able to adjust
to changes in the resource allocation during the job’s execution. Then, adaptation may
be used 1) to reduce fragmentation by adjusting the jobs’ sizes to better fit into the
available space, and 2) to adapt to varying system loads by reducing sizes if the
system load is high and increasing sizes if the system load is low.

Malleability requires a special formulation of the program because the work to be
performed per node changes dynamically—thus, we cannot expect every job to be
malleable (though, in separate work, we address making applications malleable [22]).
Moldability is easier to accomplish because often programs anyway initialize
themselves according to the size with which they are invoked: a survey conducted
among supercomputing-center users [5] found that most jobs (98%) were moldable,
i.e. able to configure themselves as needed at start time. Based on the exploitation of
moldability, Cirne-Berman [5] present a scheduler that employs an egoistic model and
lets each job, after schedule simulation with different sizes, select the size which
provides the best response time for the job. Indeed, results in [3][16] suggest that
molding provides sufficiently good results though our results with SCOJO [21]
suggest that adaptation with runtime changes of job sizes performs clearly better.

Our SCOJO scheduler presented in [21] supports both start time adaptation for
moldable and runtime adaptation for malleable jobs, while avoiding molding and only
applying runtime adaptation if the jobs are long. In this paper, we present SCOJO-P,
an extension of SCOJO that supports simpler workloads with only rigid and moldable
jobs and also molds long jobs. To solve the problem of determining proper sizes,
which is especially critical for long jobs, we employ a heuristic system-load
prediction model.

In summary, SCOJO-P provides the following innovative contributions:
• employment of adaptation for both reduction of fragmentation and

adjustment to differently high system load
• provision of heuristics for choosing job sizes under molding that are based

on knowledge about the overall system load
• a solution with low time complexity
• consideration of the system load (including estimated future arrivals of jobs)

over the whole runtime of the job
We compare SCOJO-P to a traditional non-adaptive scheduler and to the Cirne-

Berman approach by evaluating all approaches in a simulation study. For both, the
workload modeling and the prediction, we employ the Lublin-Feitelson model [13].
Our results show that SCOJO-P outperforms the other approaches.

2 Related Work

Almost all existing work on adaptive scheduling is done in the context of space
sharing. A number of such approaches aim at minimizing the makespan, i.e. the
overall runtime, for a static set of jobs, while focusing on the provision of tight worst-
case bounds [8][26]. These approaches apply a two-phase scheduling: they first
determine the size for the jobs and then schedule the jobs. Realistic approaches need

 3

to consider dynamic job submission and they aim at a reduction of average response
times and average slowdowns (response times in relation to runtimes). Furthermore,
most adaptive approaches apply molding only. Mere molding of jobs bears the
problem that a job might run earlier with fewer CPUs but get a better response time if
started later with more CPUs/nodes. Thus, the prediction quality regarding what the
best solution for the job is becomes critical. The approach of Cirne and Berman [5]
molds jobs at the time of job submission without using any central control:
predictions are based on simulating the schedule for different job sizes and then
selecting the size for which the best response time is obtained. We discuss this
approach in more detail below. A few approaches are based on runtime adaptation for
malleable jobs [6][15][17]. Most of these approaches exploit adaptation with the goal
to adapt to varying system load. The approach by Naik et al. [15] adapts resource
allocation only for medium- and long-running jobs. Short jobs are molded. The
approach attempts to schedule all jobs from the queue but sets a limit for medium and
long jobs to prevent starvation of short jobs. Dynamic adaptation for malleable jobs
may keep jobs scheduled while adjusting the resource allocation [6][15] or
checkpoint/preempt jobs and re-decide the job allocation [17].

The two basic approaches to decide about the job sizes are resource-based
partitioning and efficiency-based partitioning [9]. Resource-based partitioning
typically comes in the form of EQUI partitioning which means assigning the same
number of resources to each job. This approach yields suboptimal performance in the
general case as it does not consider how well the jobs use the resources [3][14].
However, resource-based allocation can be improved by defining different job-size
classes like small, medium, large [15][2] and applying EQUI per job-size class—
which comes close to efficiency-based partitioning. Efficiency-based partitioning
exploits the efficiency characteristics of the applications and allocates more resources
to jobs that make better use of them, which typically leads to the overall best results
[3][14]. Similar to resource-based partitioning, efficiency-based partitioning may be
applied in the form of providing equal efficiency to all jobs in the system (EQUI-
EFF). In [12], the ratio of runtime to efficiency is used for efficiency-based
partitioning. Job sizes may also be chosen to keep some CPUs/Nodes idle in
anticipation of future job arrivals. The work of Rosti et al. [18] combined this idea
with EQUI partitioning and limiting the job sizes to a certain percentage of the
machine size, either statically or in dependence of the waiting-queue length. In the
approach of Parsons and Sevcik [17], first the minimum size is allocated and, then,
any leftover resources are assigned to reduce fragmentation.

If exploiting the jobs’ efficiency characteristics, speedup/efficiency functions are
needed. Secvik’s model presented in [19] addresses dynamically changing parallelism
but the ideas are related to changing job sizes to obtain better efficiency: the model
uses phase-wise linearly approximation for CPU/node allocations between minimum,
average, and maximum parallelism. Downey [7] presents a more sophisticated model
which also originally was meant to describe variations in parallelism and is adopted
by the Cirne-Berman scheduler for speedup-curve modeling. It is briefly discussed in
Section 4.6.

Furthermore, all partitioning approaches should consider minimum allocations
(potentially defined by memory constraints), maximum allocations (beyond which
speedup drops), and potential other job-size constraints like power-of-two [5][13][15].

 4

3 The Cirne-Berman Scheduler

The scheduler presented by Cirne and Berman in [5] decides the best job size at
job-submission time. The scheduler takes a list of different possible job sizes and
corresponding runtimes. The number of different sizes is determined randomly as
well as the probability that the sizes are power-of-two. The scheduler then simulates
the scheduling of the job for each possible size separately, taking into account current
system load, i.e. the jobs currently in the waiting queue or running. After performing
all simulations for all possible sizes, the size is chosen which provides the best
response time for the job, and the job is submitted to the waiting queue with this size.
This means that the approach can be set on top of an existing scheduler, provided that
a simulator is available with the same scheduling algorithm as employed in the actual
job scheduler. For the simulation, it is assumed that the job’s actual runtime is equal
to the estimated runtime. The scheduler uses conservative backfilling with best-fit
selection. The scheme used for priority assignment and aging is not specified. The
approach was evaluated with traces from supercomputer centers (considering all jobs
to be moldable), combined with Downey’s speedup model which we briefly discuss in
Section 4.6.

4 The SCOJO-P Space Sharing Scheduler

4.1 The Original SCOJO Scheduler

SCOJO [20][21] incorporates standard job-scheduling approaches like priority
handling (classifying jobs into short, medium, and long and assigning higher priorities
to shorter jobs), aging (to prevent starvation), and EASY backfilling. EASY
backfilling means to permit jobs to be scheduled ahead of their normal priority order
if not delaying the start time of the first job in the waiting queue.

The original SCOJO scheduler applies either standard space sharing or gang
scheduling and can combine both with adaptive resource allocation. SCOJO can
handle mixtures of rigid, moldable, and malleable jobs. SCOJO supports

• Adaptation to varying system load (jobs running and jobs in the waiting
queue)

• Fragmentation reduction
The former exploits the fact that speedup curves are typically approximately

concave (due to increasing relative overhead), i.e. if job sizes are reduced, the jobs
run at higher levels of efficiency which improves the effective utilization of the
system towards the progress of the jobs’ execution. Then, running more jobs while
reducing their sizes utilizes the resources better if the system load is high. Though the
jobs run longer, in the end, all jobs (on average) benefit by shorter wait and shorter
response times. If the system load is low, the jobs can use more resources to reduce
their runtime up to their maximum size (Nmax) beyond which the runtime would
decline. Furthermore, SCOJO adjusts job sizes in certain situations to fit jobs into the
machine that otherwise could not run, while leaving resources unused.

 5

To implement system-load adaptation and fragmentation reduction, SCOJO divides
into the following major steps (details can be found in [21]):

• Determine the job target sizes in dependence on the system load
• Shrinkage or expansion of running malleable jobs to their target sizes;

allocation of all new malleable/moldable jobs with their target sizes
• During backfilling, potentially further shrinkage of new short or medium

adaptable (moldable or malleable) jobs to fit them into the machine
• Potentially expansion of new moldable or malleable jobs to exploit any

unused resources
The system load is estimated by calculating the needed number of nodes Nneeded =

Σi Nopt,i which represents the sum of the optimum size requirements of all currently
running and waiting jobs. We then classify the current resource needs into a) low, b)
normal, and c) high according to whether all jobs in running and waiting queue with
their optimum sizes Nopt: a) fit into the machine with a multiprogramming level of 1
while still leaving some space, b) fit with a potentially higher multiprogramming
level, or c) do not fit with even the maximum multiprogramming level. This means
we have either unused space, utilize the machine well, or have more jobs than fit
without adaptation. If the system load is normal, optimum sizes are used. A high
system load suggests to shrink sizes; and a low system load suggests to expand sizes.
The exact factors for expanding and shrinking are calculated by trying to fit all jobs
into the machine (high load) or utilize all resources (low load). This is done by
decreasing or increasing all adaptable jobs’ sizes relative to their optimum size, i.e. by
the same percentage vs. their optimum size. This makes sure that long jobs are not
given any advantage if having high efficiency. To avoid configuration thrashing and
adaptation with minor benefits, we consider reconfiguration only in certain time
intervals and only if the change in the resource needs is relevant. Note that the system
load is likely to change with day-night cycle as otherwise the machine would be
overcommitted/saturated.

SCOJO does not apply any special measures to address power-of-two jobs as
studies found that the power-of-sizes appear in most cases to be superficial, i.e. to
stem more from standard practice rather than inherent properties of the applications
[4].

Jobs are classified according to runtime. The original SCOJO takes long jobs as
either rigid or malleable but does not mold them because the system load is likely to
change over the runtime of long jobs. Then with a lack of prediction and
consideration of details in the schedule, the initial size may prove to be
disadvantageous to the job (if chosen smaller than desirable during a high-load phase)
or disadvantageous to other jobs (if chosen too large during a low-load phase).
Similarly, size reduction or size expansion to reduce fragmentation may especially be
harmful regarding long jobs. Short jobs are not worth runtime adaptation and are
treated as either rigid or moldable. Medium jobs can be rigid, moldable, or malleable.

The adaptive resource allocation of SCOJO was shown to improve response times
and bounded slowdowns by up to 50% and to also tolerate reservations for local or
grid jobs well [20][24]. These results were obtained with artificial workloads and the
Lublin-Feitelson workload model, and combination with either space sharing or gang
scheduling. Thus, for space sharing with the Lublin-Feitelson workload model and

 6

60% moldable / 40% malleable jobs, we obtain 43% improvement in average
response times and even 60.5% improvement in slowdowns [24].

4.2 The New SCOJO-P Scheduler

SCOJO-P [1] extends SCOJO in various ways, while restricting it regarding
application characteristics. SCOJO-P is strictly space sharing and only handles rigid
and moldable jobs. This makes SCOJO-P suitable for jobs which are not especially
designed for adaptation and matches standard job mixes in supercomputer centers as
found by Cirne and Berman [5]. It also makes the results comparable to the
Cirne/Berman approach.

The most important extensions of SCOJO-P are to consider the average load on the
system over the runtime of a job when choosing a size for the job and to include the
prediction of future job submissions.

The overall algorithm includes the following steps:
• Adaptive target-size determination: selects a size (Ntarget) for the

candidate job under concern for being scheduled (JS) that will help the
system maintain a consistent workload.

• Try to start Js: if the target size of JS is greater than the number of
currently available processors (i.e. Navail < Ntarget), then JS can start with
less than Ntarget processors if doing so provides a benefit (shorter response
time) to JS vs. being scheduled at a later time (when Ntarget ≤ Navail).

• Adaptive backfilling: adaptation is considered during backfilling in a
simplified form.

Note that whereas SCOJO applies adaptation both at start time and, for malleable
jobs, during their runtime, SCOJO-P only applies adaptation at start time as it
exclusively supports molding. Fragmentation reduction is, however, considered when
trying to fit a job into the system by shrinking its size below Ntarget.

Below we describe the different steps in detail.

4.2 Adaptive target-size determination

When determining the target size (Ntarget) of a job (Js), all jobs that are currently
running, that are in the waiting queue, or that are expected to arrive during the
execution of Js, are considered (the latter considers the corresponding statistical
distribution of runtimes/sizes and the jobs’ interarrival times). The target size of Js is
calculated using the following heuristic. The Work (average load per processor) is
estimated over the runtime of Js, assuming that Js, the waiting jobs, and future jobs
will all run with their optimal size, whereas, for running jobs, their allocated size is
taken, i.e. initially

Load(Js) = Σi work (jobi) / (MN * Js) with

 work (jobi) = Σi in Js, waiting, future Nopt,i * min(runtimei(Nopt,i),Js) +

 Σi in running Nallocated,i * min(runtimeremaining,i, Js)

 7

with MN being the number of nodes in the machine. Since the load is calculated over
the runtime of Js, for all jobs, only the overlapped runtime is considered. For future
jobs, average optimum sizes and corresponding optimum runtimes are used.

If Load is lower or higher than the ideal Load per processor, a modifying factor
(determined by the fail ratio of the ideal load vs. the resulting load) is calculated and
used to resize all jobs proportionally, and the load is recalculated. This recalculation
of modifying factor and load is done iteratively until a load close to the ideal load (or
as close as possible) is obtained. Note that the load calculation has to be redone as the
runtime of Js and the overlaps change. The ideal load cannot always be obtained
because moldable jobs cannot expand/shrink beyond a maximum/minimum value and
rigid jobs cannot be resized at all. If the ideal Load is set < 1, it means that all
waiting and future jobs should ideally be scheduled immediately (rather than being
queued) by reducing their size. The load then corresponds to utilization. Since the
algorithm does not consider packing but only the load, it may be the case that neither
the currently considered job nor any of the waiting or future jobs can actually fit into
the machine at the current point in time; even with ideal Load. If set near the expected
utilization the ideal Load can take average fragmentation loss from packing problems
into considerations. The algorithm For the details of the algorithm, see Fig 1.

curr_target_runtime = Js.runtime (Js.optSize); isOk_load = false; sMod = 1.0;
curr_target_size = Js.optSize; best_avg_load = Max_Integer;

do {
relevant_work = curr_target_runtime_Js * sMod * Js.optSize;

// sum up work of running jobs as far as execution would overlap with Js
for (all j in running_jobs) {
 relevant_runtime = min (j.remaining_runtime, curr_target_runtime_Js);
 relevant_work += relevant_runtime * j.size;
}

// sum up work of waiting jobs as far as execution would overlap with Js
for (all j in waiting_jobs) {
 relevant_runtime = min (j.runtime (sMod * j.optSize), curr_target_runtime_Js);
 relevant_work += relevant_runtime * sMod * j.optSize;
}

// sum up work for future jobs as far as execution would overlap with Js
// consider different job arrivals in different time intervals during the day-night cycle
future_short = future_med = future_long = 0;
for (all time_intervals that current_target_runtime_Js spans) {
 future_short += expected_short_jobs (time_interval);
 future_med += expected_medium_jobs (time_interval);
 future_long += expected_long_jobs (time_interval);
}
relevant_work +=
 future_short * (avg_short_size*sMod) *

 8

 min(runtime(sMod*avg_short_runtime), curr_target_runtime_Js) +
 future_med * (avg_med_size * sMod) *
 min (runtime(sMod*avg_med_runtime), curr_target_runtime_Js) +
 future_long * (avg_long_size * sMod) *
 min (runtime(sMod*avg_long_runtime),, curr_target_runtime_Js);

// calculate the average system load
available_workProcessing = n_machine * curr_target_runtime_Js;
avg_load = relevant_work / available_workProcessing;

if ((avg_load ≥ ideal_avg_load – deltaS) && (avg_load ≤ ideal_avg_load + deltaS))
 isOk_load = true;
else { // determine size modifier
 prev_sMod = sMod;
 sMod = sMod * (ideal_avg_load / avg_load);
 if (prev_sMod*Js.optSize == sMod*Js.optSize) break; // no change in size
 curr_target_size_Js = sMod * Js.optSize
 curr_target_runtime_Js = Js.runtime(curr_target_size_Js);
}

if (| avg_load - ideal_avg_load | < | best_avg_load - ideal_avg_load|) {
 best_avg_load = avg_load;
 best_sMod = prev_sMod; counter=0;
} else {
 counter++; if (counter == maxBadModifiers) break;
 }
} while (! isOk_load); // loop terminates if load o.k. or if almost no change anymore

Fig. 1. Algorithm applied when calculating target size Ntarget for job Js.

Note that, though the calculation changes all sizes of the job considered for
scheduling, waiting jobs, and future jobs proportionally, the target size is only
determined for Js. The other sizes are not recorded but are determined when the jobs
are up for scheduling. Nevertheless the algorithm considers the global picture of the
overall load.

Furthermore, by calculating the average load over the entire runtime of the job, the
job gets a size which is appropriate for both potential high load and low load phases.
This is important when scheduling long running moldable jobs because it prevents the
jobs from starving the system in order to help themselves and from starving
themselves to help the system.

The complexity of this algorithm depends on how quickly it converges to the ideal
load. In a worst case, every size of the job being scheduled will be tested. Because
the runtime changes with every iteration step, the load incurred by running, waiting,
and future jobs also changes. Thus, using the modifier does not always provide better
results and could even cause the algorithm to thrash. We prevent this from happening
by comparing the load produced by each modifier to the best load obtained so far (i.e.
the load that came closest to the ideal load). If after a couple iterations no new

 9

modifier has produced a load that is better than the current best load the algorithm
terminates and uses the modifier that provided the current best load. In practice, we
found only very few iterations to be needed.

Fig. 2. Visualization of the load-estimation heuristic. The graphic shows a situation where not
all jobs would fit into the machine with current size and corresponding runtime during the
runtime of Js. If relating the workload to the runtime of Js, Load > 1. Whether the resulting
load is considered ideal or not, depends on the setting of the parameters. However, with our
settings, we would normally modify the job size to obtain a Load < 1.

4.3 Trying to schedule the job with adaptive target size

After determining the target size of the job, the scheduler tries to allocate the job to
the machine. It is possible that, however, not enough nodes are currently available to
schedule the job. Rather than considering the attempt of scheduling the job as failed,
the scheduler decides whether to start the job right away with smaller than the target
size (i.e. allocate fewer resources) or whether to start the job at a later point of time
with more processors (up to the calculated target size).

To make this decision, the scheduling of all currently running jobs is simulated to
determine the different times at which the job can be started with larger sizes. The
latest possible start time would be when it can run with the calculated target size.
Then, it is decided whether the current or any later start time with increased size
(Navail < size ≤ Ntarget) provides a better response time for the job. If the current time
provides the best response time, the job is started with that size. Otherwise, the size
with the calculated best response time is memorized and guaranteed as the jobs’ later
minimum size (worst-case scenario) with which it will be run. If the job is started
with a size < Ntarget, this can be considered fragmentation reduction.

curr_target_runtime_Js

curr_target_size_Js

work of
running jobs

work of waiting jobs work of
future jobs

MN

 10

bestStartTime = currentTime;
bestResponseTime = Js.runtime (freeProcs);
bestSize=Js.target_size;

while (freeProcs < Js.target_size) {
 startTime = sim.time (sim.nextJob_finished);
 size = min(target_size_Js,sim.freeProcs);
 responseTime = startTime–currentTime+Js.runtime (size);
 if (responseTime < bestResponseTime)
 {bestResponseTime=responseTime; bestStartTime=startTime; bestSize=size;}
}
if (bestStartTime == currentTime) schedule (Js, freeProcs);
else fixJobSize (bestSize);

Fig. 3. Finding the start time that delivers the best response time.

4.4 Adaptive backfilling

SCOJO-P also considers size adaptation during backfilling, using a simplified
calculation for the target size. The algorithm considers all potential backfill jobs
together. All jobs which would fit up to the top job become candidate jobs (note that
this is not the full backfill condition) and their summed-up work (with optimum size)
related to the available work up to the start time of the top job. Then, the jobs are
uniformly resized by the same factor, aiming at fitting them all into the backfill hole.
For each job, then an attempt is made to schedule it (with full backfill condition).

// determine the max. possible runtime for a job not to delay the top waiting job Jtop
max_runtime = Jtop.startTime – currentTime;

// determine size modifier (uniform for all backfilled jobs at current time)
available_workProcessing = max_runtime * freeProcs;
backfillWork = 0;
for (all jobs j in waitingQueue)
 if ((j.optSize < freeProcs && j.runtime(j.optSize) < max_time)
 backfillWork += j.runtime (j.optSize) * j.optSize;

sMod = backfillWork / available_workProcessing;

// resize all backfillable jobs by same factor
for (all jobs j in waitingQueue) {
 target_size = round (j.optSize * sMod);
 if ((target_size ≤ freeProcs && j.runtime (target_size) ≤ max_runtime) ||
 (target_size < freeProces – Jtop.optSize))
 { schedule (j, target_size); freeProcs -= target_size; }

Fig. 4. Adaptation during backfilling.

 11

4.5 Discussion of Expected Behavior and Benefits

The main benefits of the SCOJO-P algorithm as presented above are that the
workload is estimated over the whole runtime of the job that is the candidate for
scheduling. This estimation provides a good global picture, though it is heuristic.
Sizes for long jobs are determined to provide an average reasonable size if both low
and high load phases occur during the jobs’ runtime. This reduces the risk that sizes
are chosen too high which would benefit the candidate job or too small which would
benefit the other jobs. Rather optimal efficiencies are targeted.

If comparing SCOJO-P to the Cirne-Berman approach, Cirne-Berman makes
decisions per job at job submission time based on simulation of the schedule.
However, new jobs with higher priorities can change the picture though the Cirne-
Berman scheduler may still work well as long as only short jobs can get ahead. If
priorities would be assigned with a different scheme such as giving long jobs higher
priority, the Cirne-Berman approach is likely not to work well anymore whereas
SCOJO-P considers them as part of the statistically based estimate. Furthermore, in
SCOJO-P, prediction and runtime overestimates are easier to integrate. As shown
above, predication only adds a term in the estimation of the load. Regarding
overestimates, for future jobs, anyway statistics based on actual runtimes are used.
For running and waiting jobs, the workload estimation from above can be refined by
taking the runtimes as user-estimated runtimes and adding a statistical over-estimate
model such as [25]. This may not correctly estimate the runtime per job but, at least
with a large number of jobs in the system, provide a reasonable statistical
approximation of the overall load in which we are interested only. Alternatively
performance databases may be employed to obtain estimates of the actual runtimes
[11] which would work well for Cirne-Berman, too.

4.6 The Speedup Model Used

The implementation of the function rutime(size) requires a speedup model. The
Cirne-Berman [4] statistical model could have been used to generate random min/max
sizes and a random speedup curve for each job. The Cirne-Berman model is based on
the Downey speedup model [7], originally meant to model parallelism behavior like
[19]. With adoption to speedup-up curves, this model defines the curve by the average
parallelism (the maximum speedup a job can achieve) and a coefficient of the job’s
variance in parallelism (which determines how fast the job reaches its maximum
speedup). Cirne-Berman obtained distribution functions for these two parameters and
coefficients’ values fitting the observed data from their study and, based on the
resulting statistical model, randomly generate speedup curves for the jobs. The
moldability model is combined with the general workload by randomly generating the
maximum speedup (independently from the runtime generated by the workload
model) and mapping the generated runtime onto this curve. We implemented this
model and found that the created speedup curves are not correlated with the
runtimes/sizes produced by the Lublin-Feitelson model. Thus, the combined workload
model often produces jobs with a maximum size far beyond the machine size.
Furthermore, it can produce, for example, a job that runs in 20 seconds on 4

 12

processors, while the Cirne-Berman speedup model could produce a speedup curve
where the optimum job size is 32 processors yielding a runtime of 2 seconds. This
would be similar to generating job runtimes and job sizes independently (though
indeed they are correlated). This lack of correlation does not affect the Cirne-Berman
scheduler as it simply chooses the size/runtime combination that produces the best
simulation results. However, this approach does not work well with SCOJO-P
because it tries to run all jobs using their optimum size and only shrinks and expands
when appropriate.

Thus, for our main tests, we have reverted back to a simpler model as used in [21],
assuming that the sizes produced by the workload model (or given by the user)
represent a size for which a good cost/efficiency ratio is obtained. Though not
required by the scheduler, this size is ideally the processor working set (PWS), i.e.,
the number of processors for which the ratio of runtime to efficiency is optimal [12]:

 NPWS = {N | with TN / EN = T1 / N * 1 / EN
2) is minimal}

with TN being the runtime and EN the efficiency for a corresponding job size N. No
larger size should be chosen unless otherwise resources are idle.

Then, we calculate the speedup curve in the following way:
• We take the size created for the job by the statistical workload model as

its optimum size Nopt. The assumption is that the user approximately
knows which is the most meaningful size for the job. If the job is rigid,
this will remain its size, if the job is moldable, this is the base size of the
job. Though it is not necessarily NPWS, we can perceive it as the size
which makes sense under normal load conditions. Then, consequently,
Runtime(Nopt) is the time generated by the workload model. In the
specific test setting which we use, Nopt=NPWS.

• We define Nmax and Nmin relative to Nopt with always the same
proportional factor, and interpolate the speedup curve between these
points linearly (which is similar to [19]. Nmax represents the size beyond
which the speedup curve declines and Nmin the minimum size needed by
the job, e.g. because of memory constraints, or the size below which no
further significant efficiency benefits can be obtained. Note, that
typically Nmin > 1.

The SCOJO-P algorithm always considers Nmax and Nmin as bounds when
determining sizes (which is omitted above in the pseudo code to keep it readable).

We also show results for using the Cirne-Berman adoption of Downey’s model.
To have a proper comparison to their implementation, we follow their approach in not
correlating the generated speedup curve to the generated sizes/runtime though we
agree with Downey’s comment that user submissions are likely to be proportional to
the maximum speedup [7]. (The latter means that a user is likely to choose a larger
size—even if the machine is very busy—if the maximum speedup is very high. Then,
we calculate Nopt by finding NPWS from the speedup formula. For predictions of
speedup for future jobs, we use median maximum speedups and median variances.

 13

5 Experimental Evaluation

5.1 Test Environment and Measured Metrics

We evaluate utilization, wait times, response times (elapsed runtimes plus waiting
times), and bounded slowdowns (response times in relation to runtimes with
adjustment to a minimum runtime bound). The bounded slowdown (BSl), however,
needs to be redefined for moldable jobs. We relate the slowdown to runtime(Nopt)
which represents the standard size as it would be used without molding:

runtime(Nopt) < bound BSl =max (Tresponse / max (runtime(Nopt), bound), 1)
runtime(Nopt) ≥ bound BSl = Tresponse / runtime(Nopt)

We have set the bound to 30 seconds. Rather than using the geometric mean like
Cirne-Berman [5] to avoid too much influence from long jobs, we not only calculate
the overall arithmetic mean, but also perform separate evaluations for short jobs,
medium jobs, and long jobs.

5.2 Workload Model

We evaluate SCOJO-P via simulation. As already mentioned above, we apply the
Lublin/Feitelson statistical model for the workload generation [13], including
runtimes, sizes, and interarrival times. This model is derived from existing workload
traces and incorporates correlations between job runtimes and job sizes and daytime
cycles in job-interarrival times. We cut off the head and the tail of the created
schedule (the first and last 10% of the jobs in the schedule) to avoid that the fill and
drain phase influence the results. We test 2 different variations of the Lublin-Feitelson
workload: the basic one and a higher workload (one with shortened interarrival
times).

Since there is no information yet about speedup curves from real application traces,
we apply the model as described in Section 4.6. Regarding moldability, the study in
[5] suggests that 98% of the jobs are moldable. The figure, however, sounds a bit too
optimistic—if users say that they can submit jobs as moldable, it does not necessarily
mean that, in practice, they would do so and that applications are moldable in such a
high percentage of cases. Furthermore, these are so far results from a single study
only. Thus, we test different percentages of moldable jobs, including 100%. If less
than 100% jobs are moldable, moldability is distributed over the different job classes
short, medium, long with equal probability.

We assume all generated runtimes to represent correct runtimes (i.e. we do not
consider over-estimates as would be possible if adding the model presented in [25])
which is sufficient for our evaluation. For SCOJO-P, wrong estimates would actually
be relatively easy to incorporate: only the average percentage of the overestimate
would be needed to model the predictions for running, waiting, and future jobs as we
consider averages of runtimes only. The Cirne-Berman approach is more heavily
depending on estimates as the approach determines sizes by simulating the actual
schedule. Since we apply the same workload model to all approaches, comparing to

 14

the Cirne-Berman approach on the bases of correct runtimes is a conservative
comparison regarding SCOJO-P. In other words, if including wrong estimates into the
model, we expect SCOJO-P to perform relatively even better.

For details of the workload parameters, see Table 1. Note that in addition, we
model the Cirne-Berman-Downey speedup model as described above.

Table 1. Workload parameters used for basic evaluation.

Machine size MN 128
Number of jobs in workload 10,000
Cut off for each fill and drain phase 5% of overall jobs each

 ά parameter of Lublin/Feitelson model
 with impact on system load

ά =10.23 (basic workload W1) and
ά = 9.83 (heavier workload W2)

Classification short jobs runtime (Nopt) < 60 sec
Classification medium jobs 60 sec ≤ runtime (Nopt) < 1 hour
Classification long jobs 1 hour ≤ runtime (Nopt)
% moldable jobs 80%, 90%, 100%
Nopt as created by Lublin/Feitelson model
Nmin max {½ * Nopt, 1}
Nmax min {2 * Nopt, MN}
E(Nopt) 0.65
E(Nmin) 0.8
E(Nmax) 0.4
runtime(Nopt) as created by Lublin/Feitelson model
runtime(Nmin) runtime(Nopt) * E(Nopt) * ½ / E(Nmin)
runtime(Nmax) runtime(Nopt) * E(Nopt) * 2 / E(Nmax)

We have set the efficiency values E =speedup/MN such that, in our test cases, Nopt

= NPWS.
Future job submissions in different time intervals are determined by using 30-

minute intervals as in the Lublin-Feitelson model and evaluating actual workload
simulations to extract the numbers of short, medium, and long jobs submitted on
average in each of 48 time intervals per day.

5.2 Approaches Tested

As mentioned above, SCOJO-P employs EASY backfilling and priority assignment
according to runtime, giving highest priority to short jobs. Long and medium jobs are
aged to prevent starvation; that is, their priority is increased after they have waited 5
times as long as their optimum runtime. We use the same basic approaches, including
the priority handling and EASY backfilling, for all approaches used in our
comparison to have a fair comparison. (Note that the original Cirne-Berman approach
applied conservative backfilling.) We also do not impose any size constraints in
neither of the approaches though the original Cirne-Berman approach generates only a

 15

certain number of sizes and imposes a certain probability that the jobs’s sizes have
power-of-two constraints. We compare the following approaches:

• Basic scheduler without any adaptation (traditional)
• SCOJO-P with adaptation with prediction (predictive) or without

prediction (non-predictive)
• Cirne-Berman approach for adaptation

The non-predictive of SCOJO is introduced to investigate how much the prediction
contributes to the final results. For SCOJO-P, we additionally tested different load
values for the target utilization. The one that performed best is 90% utilization. This is
not surprising as this value corresponds to the maximum utilization which typically
can be achieved on a machine, considering that there is always some fragmentation.

5.3 Experimental Results

We ran all tests four times with different random seeds and use the average for our
results. We first test the scheduling approaches using our simple speedup model. The
results for Workload W1 and 100% moldable jobs are shown in Figure 5 to Figure 8.

2:09:36
4:33:36
6:57:36
9:21:36

11:45:36
14:09:36
16:33:36
18:57:36
21:21:36
23:45:36

Avg Short Medium Long

Predictive

Non-Predictive

Cirne-Berman

Traditional

Fig. 5. Mean response times with basic Workload W1 (in hours), 100% moldable

From Fig. 5. , it can be seen that mean response times for jobs scheduled with
SCOJO-P vs. Cirne-Berman are better for all job classes. Short and medium jobs are
reduced to about 1/3 of their response times and long jobs to about 1/2. Regarding
wait times, short and medium job again are cut to 1/3 but long jobs to 1/4, see Fig. 6.
This suggests that SCOJO-P typically starts long jobs earlier, but with fewer
processors than the Cirne-Berman approach does. Thus, runtime is increased but
response time is actually decreased because of the earlier start time. Furthermore,
using fewer processors for long jobs also leaves more room for short and medium
jobs to squeeze through which explains their marginal improvement. To get a better
insight into the behavior than the averages can provide for the highly varying result
values and skewed distributions, we have calculated histograms. The response-time

 16

graph is shown in Fig. 9 (the other graphs are similar in their trend). We can see that
SCOJO-P schedules more jobs with shorter response times (except for the initial
classes of long jobs) and fewer jobs with excessively long response times. This
applies to all job classes short, medium, and long, and supports that SCOJO-P
produces better overall results.

0:00:00

2:24:00

4:48:00

7:12:00

9:36:00

12:00:00

14:24:00

16:48:00

19:12:00

21:36:00

Avg Short Medium Long

Predictive

Non-Predictive

Cirne-Berman

Traditional

Fig. 6. Mean wait times for basic Workload W1 (in hours), 100% moldable.

0
100
200
300
400
500
600
700
800
900

1000

Avg Short Medium Long

Predictive

Non-Predictive

Cirne-Berman

Traditional

Fig. 7. Mean bounded slowdowns for basic Workload W1, 100% moldable.

Fig. 8. shows the number of adaptations that took place with each approach.
Because it is considering the system as a whole, the SCOJO-P scheduler tends to
shrink jobs rather than expand them; conversely, because the Cirne-Berman approach
is trying to optimize each job individually it tends to expand jobs. The Cirne-Berman

 17

approach actually produced higher system utilization than SCOJO-P (89.69% vs
78.6%). The reason is most likely that SCOJO-P shrinks more jobs during phases with
high load and may leave processors empty so they can service jobs in the near future.
However, SCOJO-P still obtains better mean response times which makes sense if
shrinking jobs to run with higher efficiency.

Looking at the results for the non-predictive SCOJO, we find them to be only a
little worse. This means that the prediction—at least, in its current version—does not
provide as much benefit as we had originally expected.

Similar results were achieved with a workload where only 80% of the jobs were
moldable. However, SCOJO-P actually performed slightly better (4%) with 80%
moldable jobs, while Cirne-Berman performed a bit worse (-5%). This indicates that
job shrinking in SCOJO-P might be a little too aggressive.

0

1000

2000

3000

4000

5000

6000

7000

Total SS ES SM EM SL EL

Predictive

Non-Predictive

Cirne-Berman

Fig. 8. Number of adaptations (W1, 100% moldable) that shrink (S*) or expand (E*) the job
size vs. Nopt, calculated for short jobs (*S), medium jobs (*M), and long jobs (*L).

 18

0

500

1000

1500

2000

2m
in

5m
in

10
min

30
min 1h 2h 3h 4h 8h >8h

Predictive
Non-Predictive
Cirne-Berman
Traditional

0
200
400
600
800

1000
1200

10
min 1h 2h 3h 5h 12

h
24

h
36

h
48

h
> 48

h

Predictive
Non-Predictive
Cirne-Berman
Traditional

0
200
400
600
800

1000
1200

2h 3h 5h 12h 24h 36h 48h 72h >
72h

Predictive
Non-Predictive
Cirne-Berman
Traditional

Fig. 9. Histograms for response times and short (top), medium (middle), and long (bottom)
jobs. Note that the histogram categories are not equidistant to accommodate the skewed
distributions. The labels mean: label value of the preceding category < result values ≤ label
value of the current category. The histogram shows the number of job results falling into each
category.

Fig. 10. to Fig. 13. show results for the higher Workload W2. As with the lower
workload, SCOJO-P produces much better (67%) mean wait times for long jobs than
the Cirne-Berman approach. This translates into a 48% improvement in the mean
response time of long jobs which now benefit most. Looking at the adaptation
statistics in Fig. 13. , we see that even when there is a heavy workload on the system,

 19

the Cirne-Berman approach still tends to expand jobs. On the other hand, SCOJO-P
is shrinking a greater number of jobs, thus allowing a greater number of jobs to run
simultaneously. SCOJO-P is also benefiting from the increased processor
effectiveness obtained from smaller job sizes.

0:00:00

12:00:00

24:00:00

36:00:00

48:00:00

60:00:00

Avg Short Medium Long

Predictive

Non-Predictive

Cirne-Berman

Traditional

Fig. 10. Mean response times for Workload W2 (in hours), 100% moldable jobs.

0:00:00

12:00:00

24:00:00

36:00:00

48:00:00

60:00:00

Avg Short Medium Long

Predictive

Non-Predictive

Cirne-Berman

Traditional

Fig. 11. Mean wait times for Workload W2 (in hours), 100% moldable jobs.

We also checked the results from the original SCOJO. Since our test environment
and the generated random workloads are not exactly the same, a direct comparison is
not possible. However, SCOJO reduces average response times by 50% if 80% of the
long jobs are malleable (while 80% of the short and medium jobs are moldable).
Adaptation with all classes being 80% moldable improves response times by approx.

 20

35% vs. scheduling without adaptation. This means that the approx. 50%
improvement which we get with SCOJO-P can in SCOJO only be accomplished with
dynamic adaptation for malleable jobs.

0
200
400
600
800

1000
1200
1400
1600
1800

Avg Short Medium Long

Predictive

Non-Predictive

Cirne-Berman

Traditional

Fig. 12. Mean bounded slowdowns for Workload W2, 100% moldable jobs.

0

1000

2000

3000

4000

5000

6000

7000

8000

Total SS ES SM EM SL EL

Predictive

Non-Predictive

Cirne-Berman

Fig. 13. Number of adaptations (W2, 100% moldable jobs) that shrink (S*) or expand (E*) the
job size vs. Nopt, calculated for short jobs (*S), medium jobs (*M), and long jobs (*L).

Finally, we ran the tests (using two test runs) for W1 and 100% moldable again

with the Cirne-Berman-Downey speedup model. The results for response times and
bounded slowdowns are shown in Fig. 14. SCOJO-P still performs better, though only
slightly. We found that Nmax and therefore Nopt are created very high. Thus, with our
speedup model, the average Nopt is 12 (8 for short, 9 for medium, and 20 for long
jobs) and with the Cirne-Berman-Downey model it is 69. There is not much

 21

difference for the different job classes with the latter (61 for short, 89 for medium,
and 65 for long jobs). Note that the classification into short, medium, and long is
based on the Nopt runtimes which changes the overall distribution of the jobs. The high
values of Nopt greatly reduce the benefit of shrinking job sizes. However, as discussed
above, we consider the created sizes as too large and as not properly correlated to the
submitted sizes. Using this model, the non-predictive variant of SCOJO now performs
better than the predictive variant. The reason is that the overly high Nopt values (which
are far beyond the sizes with which the jobs are finally scheduled) negatively affect
the predictions.

0:00:00

4:48:00

9:36:00

14:24:00
19:12:00

24:00:00

28:48:00

33:36:00

38:24:00

Avg Short Medium Long

Predictive

Non-Predictive

Cirne-Berman

Traditional

0:00:00

4:48:00

9:36:00

14:24:00
19:12:00

24:00:00

28:48:00

33:36:00

38:24:00

Avg Short Medium Long

Predictive

Non-Predictive

Cirne-Berman

Traditional

Fig. 14. Response times (top) and slowdowns (bottom) for W1 and 100% moldable jobs, using
the Cirne-Berman-Downey speedup model.

6 Summary and Conclusion

We have presented the SCOJO-P scheduler for adaptive resource allocation at job
start time. SCOJO-P considers the estimated load of the machine over the whole

 22

runtime of the job to determine its ideal size. The load estimation includes an estimate
about future job submissions. The Cirne-Berman approach for molding jobs, tries to
maximize the benefits per jobs, which still converges to a situation where each job (on
average) benefits. SCOJO-P directly considers the whole picture to balance the
interests of the scheduled jobs with the interests of the other jobs. In the experimental
study, SCOJO-P improves response times by 70% vs. traditional scheduling and by
about 59% vs. the Cirne-Berman approach (which improves traditional scheduling by
about 30%) if using a simple speedup model which takes the submission size as the
optimal one. Investigating the effect of prediction, we found it contribute less to the
good results than originally expected (though improvements are possible) and the
main benefit stemming from considering the whole set of jobs on the system together.
With the Cirne-Berman-Downey speedup model, optimal sizes for the generated
curves are much higher, leading to less efficiency gain if shrinking jobs and therefore
to SCOJO-P only being slightly better than the Cirne-Berman scheduler.

Acknowledgements

This research was in part supported by NSERC and by CFI (Grant No. 6191) with
contributions from OIT and IBM.

References

[1] L. Barsanti, “An Alternative Approach to Adaptive Space Sharing”, Honors Thesis,
University of Windsor, Computer Science, September 2005.

[2] S.-H. Chiang, R.K. Mansharamani, and M.K. Vernon, “Use of Application
Characteristics and Limited Preemption for Run-to-Completion Parallel Processor
Scheduling Policies”, Proc. ACM SIGMETRICS Conf. on Measurement and Modeling of
Computer Systems, 1994.

[3] S.-H. Chiang and M.K. Vernon, “Dynamic vs. Static Quantum-Based Parallel Processor
Allocation”, Proc. Workshop on Job Scheduling Strategies for Parallel Processing
(JSSPP), May 1996, D. G. Feitelson and L. Rudolph (eds.), Springer Verlag, Lecture
Notes in Computer Science Vol. 1162, pp. 200-223.

[4] W. Cirne and F. Berman, “A Model for Moldable Supercomputer Jobs”, Proc. Int’l
Parallel and Distributed Computing Symposium (IPDPS), April 2001.

[5] W. Cirne and F. Berman, “When the Herd is Smart: Aggregate Behavior in the Selection
of Job Request”, IEEE Trans. on Par. and Distr. Systems, 14(2), Feb. 2003.

[6] J. Corbalan, X. Mortarell, and J. Labarta, “Improving Gang Scheduling through Job
Performance Analysis and Malleability”, Proc. ICS, June 2001.

[7] A. Downey, “A Model for Speedup of Parallel Programs”, Technical Report CSD-97-
933, Univ. of California Berkeley, Jan. 1997.

[8] P.-F. Dutot and D. Trystram, “Scheduling on Hierarchical Clusters Using Malleable
Tasks”, Proc. Symp. on Parallel Algorithms and Architectures (SPAA), July 2001.

[9] D.G. Feitelson, L. Rudolph, U. Schwiegelsohn, K.C.Sevcik, and W. Parsons, “Theory
and Practice in Parallel Job Scheduling”, Proc. Workshop on Job Scheduling Strategies
for Parallel Processing (JSSPP), 1997, Springer Verlag, Lecture Notes in Computer
Science, Vol. 1291.

 23

[10] H. Franke, J. Jann, J.E. Moreira, P. Pattnik, and M.A. Jette, “An Evaluation of Parallel
Job Scheduling for ASCI Blue-Pacific”, Proc. IEEE/ACM Supercomputing Conf. (SC),
1999.

[11] R.A. Gibbons Historical Application Profiler for Use by Parallel Schedulers. Proc. IPPS
Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP), April 1997,
Lecture Notes in Computer Science 1291, Springer Verlag.

[12] D. Ghosal, G. Serazzi, and S. K. Tripathi. The Processor Working Set and Its Use in
Scheduling Multiprocessor Systems. IEEE Trans. Software Engineering, Vol. 17, No. 5,
May 1991, pp. 443-453.

[13] U. Lublin and D.G. Feitelson, “The Workload on Parallel Supercomputers: Modeling the
Characteristics of Rigid Jobs”, J. of Parallel and Distributed Computing, Nov. 2003,
63(11), pp. 1105-1122.

[14] C. McCann and J. Zahorjan, “Processor Allocation Policies for Message Passing Parallel
Computers”, Proc. SIGMETRICS Conf. Measurement & Modeling of Comput. Syst., May
1994, pp. 208-219.

[15] V. K. Naik, S. K. Setia, and M. S. Squillante, “Processor Allocation in Multiprogrammed
Distributed-Memory Parallel Computer Systems”, J. of Parallel and Distributed
Computing, 46(1), 1997, pp. 28-47.

[16] J.D. Padhye and L. Dowdy, “Dynamic Versus Adaptive Processor Allocation Policies for
Message Passing Parallel Computers: An Empirical Comparison”, Proc. Workshop on
Job Scheduling Strategies for Parallel Processing (JSSPP), 1996, Springer Verlag,
Lecture Notes in Computer Science Vol. 1162, pp. 224-243.

[17] E. W. Parsons and K. C. Sevcik, “Implementing Multiprocessor Scheduling Disciplines”,
Proc. Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP), 1997,
Springer Verlag, Lecture Notes in Computer Science.

[18] E. Rosti, E.Smirni, G. Serazzi, and L.W. Dowdy. “Analysis of Non-Work-Conserving
Processor Partitioning Policies”,. Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP), 1995.

[19] K.C. Sevcik. “Characterization of Parallelism in Applications and Their Use in
Scheduling”, Performance Evaluation Review 17, 1989, pp. 171-180.

[20] A.C. Sodan and X. Huang. SCOJO—Share-Based Job Coscheduling with Integrated
Dynamic Resource Directory in Support of Grid Scheduling. Proc. Ann. Int. Symposium
on High Performance Computing Systems (HPCS), Sherbrooke, Canada, May 2003, pp.
213-221.

[21] A.C. Sodan and X. Huang, “Adaptive Time/Space Scheduling with SCOJO”, Proc.
HPCS,Winnipeg,May 2004.

[22] A.C. Sodan and L. Han, “ATOP—Space and Time Adaptation for Parallel and Grid
Applications via Flexible Data Partitioning”, Proc. 3rd ACM/IFIP/USENIX Workshop on
Reflective and Adaptive Middleware, Toronto, Oct. 2004.

[23] A.C. Sodan, “Loosely Coordinated Coscheduling in the Context of Other Dynamic
Approaches for Job Scheduling—A Survey”, Concurrency & Computation: Practice &
Experience, 17(15), Dec. 2005, pp. 1725-1781.

[24] A.C. Sodan, C. Doshi, L. Barsanti, and D. Taylor, “Gang Scheduling and Adaptive
Resource Allocation to Mitigate Advance Reservation Impact”, IEEE CCGrid,
Singapore, May 2006.

[25] D. Tsafrir, Y. Etsion, and D.G. Feitelson, ``Modeling User Runtime Estimates''. 11th
Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP), June 2005.
Lecture Notes in Computer Science Vol. 3834, pp. 1-35.

[26] J. Turek, J.L Wolf, K.L. Pattipati, and P.S. Yu, “Scheduling Parallelizable Tasks: Putting
it All on the Shelf”, SIGMETRICS Performance Evaluation Review: Proc. SIGMETRICS
Conf. on Measurement and Modeling of Computer Systems, 20(1), June 1982.

