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Abstract. Standard job scheduling uses static job sizes which lacks flexibility 
regarding changing load in the system and fragmentation handling. Adaptive 
resource allocation is known to provide the flexibility needed to obtain better 
response times under such conditions. We present a scheduling approach 
(SCOJO-P) which decides resource allocation, i.e. the number of processors, at 
job start time and then keeps the allocation fixed throughout the execution (i.e. 
molds the jobs).  SCOJO-P uses a heuristic to predict the average load on the 
system over the runtime of a job and then uses that information to determine the 
number of processors to allocate to the job.  When determining how many 
processors to allocate to a job, our algorithm attempts to balance the interests of 
the job with the interests of jobs that are currently waiting in the system and 
jobs that are expected to arrive in the near future.  We compare our approach 
with traditional fixed-size scheduling and with the Cirne-Berman approach 
which decides job sizes at job submission time by simulating the scheduling of 
the jobs currently running or waiting. Our results show that SCOJO-P improves 
mean response times by approximately 70% vs. traditional fixed-size 
scheduling while the Cirne-Berman approach only improves it 30% (which 
means SCOJO-P improves mean response time by 59% vs. Cirne-Berman). 

1  Introduction 

Most job-scheduling approaches for parallel machines apply space sharing which 
means allocating CPUs/nodes to jobs in a dedicated manner and sharing the machine 
among multiple jobs by allocation on different subsets of nodes. Some approaches 
apply time sharing (or better to say a combination of time and space sharing), i.e. use 
multiple time slices per CPU/node [23]. This is typically done via so-called gang 
scheduling which explicitly synchronizes the time slices over all nodes. Such time 
sharing creates multiple virtual machines which offers more flexibility for scheduling. 
Consequently, gang scheduling is shown in several studies to provide better response 
times and higher machine utilization (see, e.g., [9][10]). On the downside, gang 
scheduling involves process-switching overhead and increases the memory pressure. 

A different option of flexible scheduling that avoids additional memory pressure is 
adaptive CPU/node-resource allocation. The standard resource-allocation approach in 
job schedulers uses static job sizes: jobs request a certain number of CPUs/nodes to 
run (therefore, called rigid). Adaptive resource allocation means that the number of 
resources can be decided dynamically by the system. The precondition is that the jobs 
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can deal with this dynamic resource allocation: either being moldable, i.e. able to 
adjust to the resource allocation at job start time, or being malleable, i.e. able to adjust 
to changes in the resource allocation during the job’s execution. Then, adaptation may 
be used 1) to reduce fragmentation by adjusting the jobs’ sizes to better fit into the 
available space, and 2) to adapt to varying system loads by reducing sizes if the 
system load is high and increasing sizes if the system load is low. 

Malleability requires a special formulation of the program because the work to be 
performed per node changes dynamically—thus, we cannot expect every job to be 
malleable (though, in separate work, we address making applications malleable [22]). 
Moldability is easier to accomplish because often programs anyway initialize 
themselves according to the size with which they are invoked: a survey conducted 
among supercomputing-center users [5] found that most jobs (98%) were moldable, 
i.e. able to configure themselves as needed at start time. Based on the exploitation of 
moldability, Cirne-Berman [5] present a scheduler that employs an egoistic model and 
lets each job, after schedule simulation with different sizes, select the size which 
provides the best response time for the job. Indeed, results in [3][16] suggest that 
molding provides sufficiently good results though our results with SCOJO [21] 
suggest that adaptation with runtime changes of job sizes performs clearly better. 

Our SCOJO scheduler presented in [21] supports both start time adaptation for 
moldable and runtime adaptation for malleable jobs, while avoiding molding and only 
applying runtime adaptation if the jobs are long. In this paper, we present SCOJO-P, 
an extension of SCOJO that supports simpler workloads with only rigid and moldable 
jobs and also molds long jobs. To solve the problem of determining proper sizes, 
which is especially critical for long jobs, we employ a heuristic system-load 
prediction model.  

In summary, SCOJO-P provides the following innovative contributions: 
• employment of adaptation for both reduction of fragmentation and 

adjustment to differently high system load 
• provision of heuristics for choosing job sizes under molding that are based 

on knowledge about the overall system load  
• a solution with low time complexity 
• consideration of the system load (including estimated future arrivals of jobs) 

over the whole runtime of the job 
We compare SCOJO-P to a traditional non-adaptive scheduler and to the Cirne-

Berman approach by evaluating all approaches in a simulation study. For both, the 
workload modeling and the prediction, we employ the Lublin-Feitelson model [13]. 
Our results show that SCOJO-P outperforms the other approaches. 

2   Related Work 

Almost all existing work on adaptive scheduling is done in the context of space 
sharing. A number of such approaches aim at minimizing the makespan, i.e. the 
overall runtime, for a static set of jobs, while focusing on the provision of tight worst-
case bounds [8][26]. These approaches apply a two-phase scheduling: they first 
determine the size for the jobs and then schedule the jobs. Realistic approaches need 
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to consider dynamic job submission and they aim at a reduction of average response 
times and average slowdowns (response times in relation to runtimes). Furthermore, 
most adaptive approaches apply molding only. Mere molding of jobs bears the 
problem that a job might run earlier with fewer CPUs but get a better response time if 
started later with more CPUs/nodes. Thus, the prediction quality regarding what the 
best solution for the job is becomes critical. The approach of Cirne and Berman [5] 
molds jobs at the time of job submission without using any central control: 
predictions are based on simulating the schedule for different job sizes and then 
selecting the size for which the best response time is obtained. We discuss this 
approach in more detail below. A few approaches are based on runtime adaptation for 
malleable jobs [6][15][17]. Most of these approaches exploit adaptation with the goal 
to adapt to varying system load. The approach by Naik et al. [15] adapts resource 
allocation only for medium- and long-running jobs. Short jobs are molded. The 
approach attempts to schedule all jobs from the queue but sets a limit for medium and 
long jobs to prevent starvation of short jobs. Dynamic adaptation for malleable jobs 
may keep jobs scheduled while adjusting the resource allocation [6][15] or 
checkpoint/preempt jobs and re-decide the job allocation [17].  

The two basic approaches to decide about the job sizes are resource-based 
partitioning and efficiency-based partitioning [9]. Resource-based partitioning 
typically comes in the form of EQUI partitioning which means assigning the same 
number of resources to each job. This approach yields suboptimal performance in the 
general case as it does not consider how well the jobs use the resources [3][14]. 
However, resource-based allocation can be improved by defining different job-size 
classes like small, medium, large [15][2] and applying EQUI per job-size class—
which comes close to efficiency-based partitioning. Efficiency-based partitioning 
exploits the efficiency characteristics of the applications and allocates more resources 
to jobs that make better use of them, which typically leads to the overall best results 
[3][14]. Similar to resource-based partitioning, efficiency-based partitioning may be 
applied in the form of providing equal efficiency to all jobs in the system (EQUI-
EFF). In [12], the ratio of runtime to efficiency is used for efficiency-based 
partitioning. Job sizes may also be chosen to keep some CPUs/Nodes idle in 
anticipation of future job arrivals. The work of Rosti et al. [18] combined this idea 
with EQUI partitioning and limiting the job sizes to a certain percentage of the 
machine size, either statically or in dependence of the waiting-queue length. In the 
approach of Parsons and Sevcik [17], first the minimum size is allocated and, then, 
any leftover resources are assigned to reduce fragmentation. 

If exploiting the jobs’ efficiency characteristics, speedup/efficiency functions are 
needed. Secvik’s model presented in [19] addresses dynamically changing parallelism 
but the ideas are related to changing job sizes to obtain better efficiency: the model 
uses phase-wise linearly approximation for CPU/node allocations between minimum, 
average, and maximum parallelism. Downey [7] presents a more sophisticated model 
which also originally was meant to describe variations in parallelism and is adopted 
by the Cirne-Berman scheduler for speedup-curve modeling. It is briefly discussed in 
Section 4.6. 

Furthermore, all partitioning approaches should consider minimum allocations 
(potentially defined by memory constraints), maximum allocations (beyond which 
speedup drops), and potential other job-size constraints like power-of-two [5][13][15].  
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3  The Cirne-Berman Scheduler 

The scheduler presented by Cirne and Berman in [5] decides the best job size at 
job-submission time. The scheduler takes a list of different possible job sizes and 
corresponding runtimes. The number of different sizes is determined randomly as 
well as the probability that the sizes are power-of-two. The scheduler then simulates 
the scheduling of the job for each possible size separately, taking into account current 
system load, i.e. the jobs currently in the waiting queue or running. After performing 
all simulations for all possible sizes, the size is chosen which provides the best 
response time for the job, and the job is submitted to the waiting queue with this size. 
This means that the approach can be set on top of an existing scheduler, provided that 
a simulator is available with the same scheduling algorithm as employed in the actual 
job scheduler. For the simulation, it is assumed that the job’s actual runtime is equal 
to the estimated runtime. The scheduler uses conservative backfilling with best-fit 
selection. The scheme used for priority assignment and aging is not specified. The 
approach was evaluated with traces from supercomputer centers (considering all jobs 
to be moldable), combined with Downey’s speedup model which we briefly discuss in 
Section 4.6. 

4  The SCOJO-P Space Sharing Scheduler 

4.1 The Original SCOJO Scheduler 

SCOJO [20][21] incorporates standard job-scheduling approaches like priority 
handling (classifying jobs into short, medium, and long and assigning higher priorities 
to shorter jobs), aging (to prevent starvation), and EASY backfilling. EASY 
backfilling means to permit jobs to be scheduled ahead of their normal priority order 
if not delaying the start time of the first job in the waiting queue.  

The original SCOJO scheduler applies either standard space sharing or gang 
scheduling and can combine both with adaptive resource allocation. SCOJO can 
handle mixtures of rigid, moldable, and malleable jobs. SCOJO supports 

• Adaptation to varying system load (jobs running and jobs in the waiting 
queue) 

• Fragmentation reduction 
The former exploits the fact that speedup curves are typically approximately 

concave (due to increasing relative overhead), i.e. if job sizes are reduced, the jobs 
run at higher levels of efficiency which improves the effective utilization of the 
system towards the progress of the jobs’ execution. Then, running more jobs while 
reducing their sizes utilizes the resources better if the system load is high. Though the 
jobs run longer, in the end, all jobs (on average) benefit by shorter wait and shorter 
response times. If the system load is low, the jobs can use more resources to reduce 
their runtime up to their maximum size (Nmax) beyond which the runtime would 
decline. Furthermore, SCOJO adjusts job sizes in certain situations to fit jobs into the 
machine that otherwise could not run, while leaving resources unused.  
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To implement system-load adaptation and fragmentation reduction, SCOJO divides 
into the following major steps (details can be found in [21]): 

• Determine the job target sizes in dependence on the system load 
• Shrinkage or expansion of running malleable jobs to their target sizes; 

allocation of all new malleable/moldable jobs with their target sizes 
• During backfilling, potentially further shrinkage of new short or medium 

adaptable (moldable or malleable) jobs to fit them into the machine 
• Potentially expansion of new moldable or malleable jobs to exploit any 

unused resources 
The system load is estimated by calculating the needed number of nodes Nneeded = 

Σi Nopt,i  which represents the sum of the optimum size requirements of all currently 
running and waiting jobs. We then classify the current resource needs into a) low, b) 
normal, and c) high according to whether all jobs in running and waiting queue with 
their optimum sizes Nopt: a) fit into the machine with a multiprogramming level of 1 
while still leaving some space, b) fit with a potentially higher multiprogramming 
level, or c) do not fit with even the maximum multiprogramming level. This means 
we have either unused space, utilize the machine well, or have more jobs than fit 
without adaptation. If the system load is normal, optimum sizes are used. A high 
system load suggests to shrink sizes; and a low system load suggests to expand sizes. 
The exact factors for expanding and shrinking are calculated by trying to fit all jobs 
into the machine (high load) or utilize all resources (low load). This is done by 
decreasing or increasing all adaptable jobs’ sizes relative to their optimum size, i.e. by 
the same percentage vs. their optimum size. This makes sure that long jobs are not 
given any advantage if having high efficiency. To avoid configuration thrashing and 
adaptation with minor benefits, we consider reconfiguration only in certain time 
intervals and only if the change in the resource needs is relevant. Note that the system 
load is likely to change with day-night cycle as otherwise the machine would be 
overcommitted/saturated.  

SCOJO does not apply any special measures to address power-of-two jobs as 
studies found that the power-of-sizes appear in most cases to be superficial, i.e. to 
stem more from standard practice rather than inherent properties of the applications 
[4]. 

Jobs are classified according to runtime. The original SCOJO takes long jobs as 
either rigid or malleable but does not mold them because the system load is likely to 
change over the runtime of long jobs. Then with a lack of prediction and 
consideration of details in the schedule, the initial size may prove to be 
disadvantageous to the job (if chosen smaller than desirable during a high-load phase) 
or disadvantageous to other jobs (if chosen too large during a low-load phase). 
Similarly, size reduction or size expansion to reduce fragmentation may especially be 
harmful regarding long jobs. Short jobs are not worth runtime adaptation and are 
treated as either rigid or moldable. Medium jobs can be rigid, moldable, or malleable. 

The adaptive resource allocation of SCOJO was shown to improve response times 
and bounded slowdowns by up to 50% and to also tolerate reservations for local or 
grid jobs well [20][24]. These results were obtained with artificial workloads and the 
Lublin-Feitelson workload model, and combination with either space sharing or gang 
scheduling. Thus, for space sharing with the Lublin-Feitelson workload model and 
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60% moldable / 40% malleable jobs, we obtain 43% improvement in average 
response times and even 60.5% improvement in slowdowns [24]. 

4.2 The New SCOJO-P Scheduler 

SCOJO-P [1] extends SCOJO in various ways, while restricting it regarding 
application characteristics. SCOJO-P is strictly space sharing and only handles rigid 
and moldable jobs. This makes SCOJO-P suitable for jobs which are not especially 
designed for adaptation and matches standard job mixes in supercomputer centers as 
found by Cirne and Berman [5]. It also makes the results comparable to the 
Cirne/Berman approach. 

The most important extensions of SCOJO-P are to consider the average load on the 
system over the runtime of a job when choosing a size for the job and to include the 
prediction of future job submissions. 

The overall algorithm includes the following steps: 
• Adaptive target-size determination: selects a size (Ntarget) for the 

candidate job under concern for being scheduled (JS) that will help the 
system maintain a consistent workload. 

• Try to start Js: if the target size of JS is greater than the number of 
currently available processors (i.e. Navail < Ntarget), then JS can start with 
less than Ntarget processors if doing so provides a benefit (shorter response 
time) to JS vs. being scheduled at a later time (when Ntarget ≤ Navail). 

• Adaptive backfilling: adaptation is considered during backfilling in a 
simplified form. 

Note that whereas SCOJO applies adaptation both at start time and, for malleable 
jobs, during their runtime, SCOJO-P only applies adaptation at start time as it 
exclusively supports molding. Fragmentation reduction is, however, considered when 
trying to fit a job into the system by shrinking its size below Ntarget. 

Below we describe the different steps in detail. 

4.2 Adaptive target-size determination 

When determining the target size (Ntarget) of a job (Js), all jobs that are currently 
running, that are in the waiting queue, or that are expected to arrive during the 
execution of Js, are considered (the latter considers the corresponding statistical 
distribution of runtimes/sizes and the jobs’ interarrival times).  The target size of Js is 
calculated using the following heuristic. The Work (average load per processor) is 
estimated over the runtime of Js, assuming that Js, the waiting jobs, and future jobs 
will all run with their optimal size, whereas, for running jobs, their allocated size is 
taken, i.e. initially 

Load(Js) = Σi work (jobi) / (MN * Js) with  

   work (jobi) = Σi in Js, waiting, future Nopt,i * min(runtimei(Nopt,i),Js) +  

                         Σi in running Nallocated,i * min(runtimeremaining,i, Js) 
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with MN  being the number of nodes in the machine. Since the load is calculated over 
the runtime of Js, for all jobs, only the overlapped runtime is considered. For future 
jobs, average optimum sizes and corresponding optimum runtimes are used. 

If Load is lower or higher than the ideal Load per processor, a modifying factor 
(determined by the fail ratio of the ideal load vs. the resulting load) is calculated and 
used to resize all jobs proportionally, and the load is recalculated. This  recalculation 
of modifying factor and load is done iteratively until a load close to the ideal load (or 
as close as possible) is obtained. Note that the load calculation has to be redone as the 
runtime of Js and the overlaps change. The ideal load cannot always be obtained 
because moldable jobs cannot expand/shrink beyond a maximum/minimum value and 
rigid jobs cannot be resized at all.   If the ideal Load is set < 1, it means that all 
waiting and future jobs should ideally be scheduled immediately (rather than being 
queued) by reducing their size. The load then corresponds to utilization. Since the 
algorithm does not consider packing but only the load, it may be the case that neither 
the currently considered job nor any of the waiting or future jobs can actually fit into 
the machine at the current point in time; even with ideal Load. If set near the expected 
utilization the ideal Load can take average fragmentation loss from packing problems 
into considerations. The algorithm For the details of the algorithm, see Fig 1.  

 
curr_target_runtime = Js.runtime (Js.optSize);  isOk_load = false;  sMod = 1.0; 
curr_target_size = Js.optSize;  best_avg_load = Max_Integer; 
 
do { 
relevant_work = curr_target_runtime_Js * sMod * Js.optSize;  
 
// sum up work of running jobs as far as execution would overlap with Js 
for (all j in running_jobs) { 
     relevant_runtime = min (j.remaining_runtime, curr_target_runtime_Js); 
     relevant_work += relevant_runtime * j.size; 
} 
 
// sum up work of waiting jobs as far as execution would overlap with Js 
for (all j in waiting_jobs) { 
     relevant_runtime = min (j.runtime (sMod * j.optSize), curr_target_runtime_Js); 
     relevant_work += relevant_runtime * sMod * j.optSize; 
} 
 
// sum up work for future jobs as far as execution would overlap with Js 
// consider different job arrivals in different time intervals during the day-night cycle 
future_short = future_med = future_long = 0; 
for (all time_intervals that current_target_runtime_Js spans) { 
    future_short += expected_short_jobs (time_interval); 
    future_med += expected_medium_jobs (time_interval); 
    future_long += expected_long_jobs (time_interval); 
} 
relevant_work +=  
   future_short * (avg_short_size*sMod) * 
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         min(runtime(sMod*avg_short_runtime), curr_target_runtime_Js) +    
         future_med * (avg_med_size * sMod) *  
               min (runtime(sMod*avg_med_runtime), curr_target_runtime_Js) +  
        future_long * (avg_long_size * sMod) *  
              min (runtime(sMod*avg_long_runtime),, curr_target_runtime_Js); 
 
// calculate the average system load 
available_workProcessing = n_machine * curr_target_runtime_Js; 
avg_load = relevant_work / available_workProcessing; 
 
if ((avg_load ≥ ideal_avg_load – deltaS) && (avg_load ≤ ideal_avg_load + deltaS))  
    isOk_load = true; 
else  {  // determine size modifier 
   prev_sMod = sMod; 
   sMod = sMod * ( ideal_avg_load / avg_load);  
   if (prev_sMod*Js.optSize == sMod*Js.optSize) break;   // no change in size 
 curr_target_size_Js = sMod * Js.optSize 
  curr_target_runtime_Js = Js.runtime(curr_target_size_Js); 
} 
 
if ( | avg_load - ideal_avg_load | < |  best_avg_load - ideal_avg_load| ) { 
 best_avg_load = avg_load; 
     best_sMod = prev_sMod;   counter=0; 
} else { 
       counter++;     if (counter == maxBadModifiers) break; 
    } 
} while (! isOk_load);  // loop terminates if load o.k. or if almost no change anymore 
 

Fig. 1. Algorithm applied when calculating target size Ntarget for job Js. 

Note that, though the calculation changes all sizes of the job considered for 
scheduling, waiting jobs, and future jobs proportionally, the target size is only 
determined for Js. The other sizes are not recorded but are determined when the jobs 
are up for scheduling. Nevertheless the algorithm considers the global picture of the 
overall load.  

Furthermore, by calculating the average load over the entire runtime of the job, the 
job gets a size which is appropriate for both potential high load and low load phases.  
This is important when scheduling long running moldable jobs because it prevents the 
jobs from starving the system in order to help themselves and from starving 
themselves to help the system.   

The complexity of this algorithm depends on how quickly it converges to the ideal 
load.  In a worst case, every size of the job being scheduled will be tested. Because 
the runtime changes with every iteration step, the load incurred by running, waiting, 
and future jobs also changes.  Thus, using the modifier does not always provide better 
results and could even cause the algorithm to thrash. We prevent this from happening 
by comparing the load produced by each modifier to the best load obtained so far (i.e. 
the load that came closest to the ideal load).  If after a couple iterations no new 
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modifier has produced a load that is better than the current best load the algorithm 
terminates and uses the modifier that provided the current best load. In practice, we 
found only very few iterations to be needed. 

Fig. 2. Visualization of the load-estimation heuristic. The graphic shows a situation where not 
all jobs would fit into the machine with current size and corresponding runtime during the 
runtime of Js.  If relating the workload to the runtime of Js, Load > 1. Whether the resulting 
load is considered ideal or not, depends on the setting of the parameters. However, with our 
settings, we would normally modify the job size to obtain a Load < 1. 

4.3 Trying to schedule the job with adaptive target size 

After determining the target size of the job, the scheduler tries to allocate the job to 
the machine. It is possible that, however, not enough nodes are currently available to 
schedule the job. Rather than considering the attempt of scheduling the job as failed, 
the scheduler decides whether to start the job right away with smaller than the target 
size (i.e. allocate fewer resources) or whether to start the job at a later point of time 
with more processors (up to the calculated target size). 

To make this decision, the scheduling of all currently running jobs is simulated to 
determine the different times at which the job can be started with larger sizes. The 
latest possible start time would be when it can run with the calculated target size. 
Then, it is decided whether the current or any later start time with increased size 
(Navail < size ≤ Ntarget) provides a better response time for the job. If the current time 
provides the best response time, the job is started with that size. Otherwise, the size 
with the calculated best response time is memorized and guaranteed as the jobs’ later 
minimum size (worst-case scenario) with which it will be run. If the job is started 
with a size < Ntarget, this can be considered fragmentation reduction.  

 
 
 
 

curr_target_runtime_Js 

curr_target_size_Js 

work of  
running jobs

work of waiting jobs work of  
future jobs

MN 
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bestStartTime = currentTime; 
bestResponseTime = Js.runtime (freeProcs); 
bestSize=Js.target_size; 
 
while (freeProcs < Js.target_size) { 
     startTime = sim.time (sim.nextJob_finished); 
     size = min(target_size_Js,sim.freeProcs); 
     responseTime = startTime–currentTime+Js.runtime (size); 
     if (responseTime < bestResponseTime)  
         {bestResponseTime=responseTime; bestStartTime=startTime;    bestSize=size;} 
} 
if (bestStartTime == currentTime) schedule (Js, freeProcs); 
else fixJobSize (bestSize); 

 
Fig. 3. Finding the start time that delivers the best response time. 

4.4 Adaptive backfilling 

SCOJO-P also considers size adaptation during backfilling, using a simplified 
calculation for the target size. The algorithm considers all potential backfill jobs 
together. All jobs which would fit up to the top job become candidate jobs (note that 
this is not the full backfill condition) and their summed-up work (with optimum size) 
related to the available work up to the start time of the top job. Then, the jobs are 
uniformly resized by the same factor, aiming at fitting them all into the backfill hole. 
For each job, then an attempt is made to schedule it (with full backfill condition). 
 
// determine the max.  possible runtime for a job not to delay the top waiting job Jtop 
max_runtime = Jtop.startTime – currentTime; 
 
// determine size modifier (uniform for all backfilled jobs at current time) 
available_workProcessing = max_runtime * freeProcs; 
backfillWork = 0; 
for (all jobs j in waitingQueue) 
   if ((j.optSize < freeProcs && j.runtime(j.optSize) < max_time) 
            backfillWork += j.runtime (j.optSize) * j.optSize; 
 
sMod = backfillWork / available_workProcessing;  
 

// resize all backfillable jobs by same factor 
for (all jobs j in waitingQueue) { 
     target_size = round (j.optSize * sMod); 
     if ((target_size ≤ freeProcs && j.runtime (target_size) ≤ max_runtime) ||  
         (target_size < freeProces – Jtop.optSize)) 
          { schedule (j, target_size);  freeProcs -= target_size; } 
 

Fig. 4. Adaptation during backfilling.    
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4.5 Discussion of Expected Behavior and Benefits 

The main benefits of the SCOJO-P algorithm as presented above are that the 
workload is estimated over the whole runtime of the job that is the candidate for 
scheduling. This estimation provides a good global picture, though it is heuristic. 
Sizes for long jobs are determined to provide an average reasonable size if both low 
and high load phases occur during the jobs’ runtime. This reduces the risk that sizes 
are chosen too high which would benefit the candidate job or too small which would 
benefit the other jobs. Rather optimal efficiencies are targeted. 

If comparing SCOJO-P to the Cirne-Berman approach, Cirne-Berman makes 
decisions per job at job submission time based on simulation of the schedule. 
However, new jobs with higher priorities can change the picture though the Cirne-
Berman scheduler may still work well as long as only short jobs can get ahead. If 
priorities would be assigned with a different scheme such as giving long jobs higher 
priority, the Cirne-Berman approach is likely not to work well anymore whereas 
SCOJO-P considers them as part of the statistically based estimate. Furthermore, in 
SCOJO-P, prediction and runtime overestimates are easier to integrate. As shown 
above, predication only adds a term in the estimation of the load. Regarding 
overestimates, for future jobs, anyway statistics based on actual runtimes are used. 
For running and waiting jobs, the workload estimation from above can be refined by 
taking the runtimes as user-estimated runtimes and adding a statistical over-estimate 
model such as [25].  This may not correctly estimate the runtime per job but, at least 
with a large number of jobs in the system, provide a reasonable statistical 
approximation of the overall load in which we are interested only. Alternatively 
performance databases may be employed to obtain estimates of the actual runtimes 
[11] which would work well for Cirne-Berman, too. 

4.6 The Speedup Model Used 

The implementation of the function rutime(size) requires a speedup model. The 
Cirne-Berman [4] statistical model could have been used to generate random min/max 
sizes and a random speedup curve for each job. The Cirne-Berman model is based on 
the Downey speedup model [7], originally meant to model parallelism behavior like 
[19]. With adoption to speedup-up curves, this model defines the curve by the average 
parallelism (the maximum speedup a job can achieve) and a coefficient of the job’s 
variance in parallelism (which determines how fast the job reaches its maximum 
speedup). Cirne-Berman obtained distribution functions for these two parameters and 
coefficients’ values fitting the observed data from their study and, based on the 
resulting statistical model, randomly generate speedup curves for the jobs. The 
moldability model is combined with the general workload by randomly generating the 
maximum speedup (independently from the runtime generated by the workload 
model) and mapping the generated runtime onto this curve. We implemented this 
model and found that the created speedup curves are not correlated with the 
runtimes/sizes produced by the Lublin-Feitelson model. Thus, the combined workload 
model often produces jobs with a maximum size far beyond the machine size. 
Furthermore, it can produce, for example, a job that runs in 20 seconds on 4 
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processors, while the Cirne-Berman speedup model could produce a speedup curve 
where the optimum job size is 32 processors yielding a runtime of 2 seconds. This 
would be similar to generating job runtimes and job sizes independently (though 
indeed they are correlated). This lack of correlation does not affect the Cirne-Berman 
scheduler as it simply chooses the size/runtime combination that produces the best 
simulation results. However, this approach does not work well with SCOJO-P 
because it tries to run all jobs using their optimum size and only shrinks and expands 
when appropriate.  

Thus, for our main tests, we have reverted back to a simpler model as used in [21], 
assuming that the sizes produced by the workload model (or given by the user) 
represent a size for which a good cost/efficiency ratio is obtained.  Though not 
required by the scheduler, this size is ideally the processor working set (PWS), i.e., 
the number of processors for which the ratio of runtime to efficiency is optimal [12]: 

 NPWS = {N | with TN / EN = T1  / N * 1 / EN
2) is minimal}  

with TN being the runtime and EN the efficiency for a corresponding job size N.  No 
larger size should be chosen unless otherwise resources are idle.  

Then, we calculate the speedup curve in the following way: 
• We take the size created for the job by the statistical workload model as 

its optimum size Nopt. The assumption is that the user approximately 
knows which is the most meaningful size for the job. If the job is rigid, 
this will remain its size, if the job is moldable, this is the base size of the 
job. Though it is not necessarily NPWS, we can perceive it as the size 
which makes sense under normal load conditions. Then, consequently, 
Runtime(Nopt) is the time generated by the workload model. In the 
specific test setting which we use, Nopt=NPWS. 

• We define Nmax and Nmin relative to Nopt with always the same 
proportional factor, and interpolate the speedup curve between these 
points linearly (which is similar to [19]. Nmax represents the size beyond 
which the speedup curve declines and Nmin the minimum size needed by 
the job, e.g. because of memory constraints, or the size below which no 
further significant efficiency benefits can be obtained. Note, that 
typically Nmin > 1. 

The SCOJO-P algorithm always considers Nmax and Nmin as bounds when 
determining sizes (which is omitted above in the pseudo code to keep it readable). 

We also show results for using the Cirne-Berman adoption of  Downey’s model. 
To have a proper comparison to their implementation, we follow their approach in not 
correlating the generated speedup curve to the generated sizes/runtime though we 
agree with Downey’s comment that user submissions are likely to be proportional to 
the maximum speedup [7]. (The latter means that a user is likely to choose a larger 
size—even if the machine is very busy—if the maximum speedup is very high. Then, 
we calculate Nopt by finding NPWS from the speedup formula. For predictions of 
speedup for future jobs, we use median maximum speedups and median variances. 
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5  Experimental Evaluation  

5.1 Test Environment and Measured Metrics 

We evaluate utilization, wait times, response times (elapsed runtimes plus waiting 
times), and bounded slowdowns (response times in relation to runtimes with 
adjustment to a minimum runtime bound). The bounded slowdown (BSl), however, 
needs to be redefined for moldable jobs. We relate the slowdown to runtime(Nopt) 
which represents the standard size as it would be used without molding: 

runtime(Nopt) < bound  BSl =max (Tresponse / max (runtime(Nopt), bound), 1) 
runtime(Nopt) ≥ bound  BSl = Tresponse / runtime(Nopt) 

We have set the bound to 30 seconds. Rather than using the geometric mean like 
Cirne-Berman [5] to avoid too much influence from long jobs, we not only calculate 
the overall arithmetic mean, but also perform separate evaluations for short jobs, 
medium jobs, and long jobs. 

5.2 Workload Model 

We evaluate SCOJO-P via simulation. As already mentioned above, we apply the 
Lublin/Feitelson statistical model for the workload generation [13], including 
runtimes, sizes, and interarrival times. This model is derived from existing workload 
traces and incorporates correlations between job runtimes and job sizes and daytime 
cycles in job-interarrival times. We cut off the head and the tail of the created 
schedule (the first and last 10% of the jobs in the schedule) to avoid that the fill and 
drain phase influence the results. We test 2 different variations of the Lublin-Feitelson 
workload: the basic one and a higher workload (one with shortened interarrival 
times). 

Since there is no information yet about speedup curves from real application traces, 
we apply the model as described in Section 4.6. Regarding moldability, the study in 
[5] suggests that 98% of the jobs are moldable. The figure, however, sounds a bit too 
optimistic—if users say that they can submit jobs as moldable, it does not necessarily 
mean that, in practice, they would do so and that applications are moldable in such a 
high percentage of cases. Furthermore, these are so far results from a single study 
only. Thus, we test different percentages of moldable jobs, including 100%. If less 
than 100% jobs are moldable, moldability is distributed over the different job classes 
short, medium, long with equal probability. 

We assume all generated runtimes to represent correct runtimes (i.e. we do not 
consider over-estimates as would be possible if adding the model presented in [25]) 
which is sufficient for our evaluation. For SCOJO-P, wrong estimates would actually 
be relatively easy to incorporate: only the average percentage of the overestimate 
would be needed to model the predictions for running, waiting, and future jobs as we 
consider averages of runtimes only. The Cirne-Berman approach is more heavily 
depending on estimates as the approach determines sizes by simulating the actual 
schedule. Since we apply the same workload model to all approaches, comparing to 
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the Cirne-Berman approach on the bases of correct runtimes is a conservative 
comparison regarding SCOJO-P. In other words, if including wrong estimates into the 
model, we expect SCOJO-P to perform relatively even better. 

For details of the workload parameters, see Table 1. Note that in addition, we 
model the Cirne-Berman-Downey speedup model as described above. 
 

Table 1. Workload parameters used for basic evaluation. 

Machine size MN 128 
Number of jobs in workload 10,000 
Cut off for each fill and drain phase 5% of overall jobs each 

    ά parameter of Lublin/Feitelson model  
    with impact on system load 

ά =10.23 (basic workload W1) and 
ά =  9.83 (heavier workload W2) 

Classification short jobs runtime (Nopt) < 60 sec 
Classification medium jobs 60 sec ≤ runtime (Nopt) < 1 hour 
Classification long jobs 1 hour ≤ runtime (Nopt)  
% moldable jobs 80%, 90%, 100% 
Nopt as created by Lublin/Feitelson model 
Nmin max {½ * Nopt, 1} 
Nmax min {2 * Nopt, MN} 
E(Nopt) 0.65 
E(Nmin) 0.8 
E(Nmax) 0.4 
runtime(Nopt) as created by Lublin/Feitelson model 
runtime(Nmin) runtime(Nopt) * E(Nopt) * ½ /  E(Nmin) 
runtime(Nmax) runtime(Nopt) * E(Nopt) * 2 / E(Nmax) 
 
We have set the efficiency values  E =speedup/MN such that, in our test cases, Nopt 

= NPWS. 
Future job submissions in different time intervals are determined by using 30-

minute intervals as in the Lublin-Feitelson model and evaluating actual workload 
simulations to extract the numbers of short, medium, and long jobs submitted on 
average in each of 48 time intervals per day. 

5.2 Approaches Tested 

As mentioned above, SCOJO-P employs EASY backfilling and priority assignment 
according to runtime, giving highest priority to short jobs. Long and medium jobs are 
aged to prevent starvation; that is, their priority is increased after they have waited 5 
times as long as their optimum runtime.  We use the same basic approaches, including 
the priority handling and EASY backfilling, for all approaches used in our 
comparison to have a fair comparison. (Note that the original Cirne-Berman approach 
applied conservative backfilling.) We also do not impose any size constraints in 
neither of the approaches though the original Cirne-Berman approach generates only a 
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certain number of sizes and imposes a certain probability that the jobs’s sizes have 
power-of-two constraints. We compare the following approaches: 

• Basic scheduler without any adaptation (traditional) 
• SCOJO-P with adaptation with prediction (predictive) or without 

prediction (non-predictive) 
• Cirne-Berman approach for adaptation 

The non-predictive of SCOJO is introduced to investigate how much the prediction 
contributes to the final results. For SCOJO-P, we additionally tested different load 
values for the target utilization. The one that performed best is 90% utilization. This is 
not surprising as this value corresponds to the maximum utilization which typically 
can be achieved on a machine, considering that there is always some fragmentation.  

5.3 Experimental Results 

We ran all tests four times with different random seeds and use the average for our 
results. We first test the scheduling approaches using our simple speedup model. The 
results for Workload W1 and 100% moldable jobs are shown in Figure 5 to Figure 8.  
 

2:09:36
4:33:36
6:57:36
9:21:36

11:45:36
14:09:36
16:33:36
18:57:36
21:21:36
23:45:36

Avg Short Medium Long

Predictive

Non-Predictive

Cirne-Berman

Traditional

 
 

Fig. 5.  Mean response times with basic Workload W1 (in hours), 100% moldable 

From Fig. 5. , it can be seen that mean response times for jobs scheduled with 
SCOJO-P vs. Cirne-Berman are better for all job classes. Short and medium jobs are 
reduced to about 1/3 of their response times and long jobs to about 1/2.  Regarding 
wait times, short and medium job again are cut to 1/3 but long jobs to 1/4, see Fig. 6.  
This suggests that SCOJO-P typically starts long jobs earlier, but with fewer 
processors than the Cirne-Berman approach does.  Thus, runtime is increased but 
response time is actually decreased because of the earlier start time.  Furthermore, 
using fewer processors for long jobs also leaves more room for short and medium 
jobs to squeeze through which explains their marginal improvement. To get a better 
insight into the behavior than the averages can provide for the highly varying result 
values and skewed distributions, we have calculated histograms. The response-time 
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graph is shown in Fig. 9 (the other graphs are similar in their trend). We can see that 
SCOJO-P schedules more jobs with shorter response times (except for the initial 
classes of long jobs) and fewer jobs with excessively long response times. This 
applies to all job classes short, medium, and long, and supports that SCOJO-P 
produces better overall results. 
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Fig. 6.  Mean wait times for basic Workload W1 (in hours), 100% moldable. 
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Fig. 7.  Mean bounded slowdowns for basic Workload W1, 100% moldable. 

Fig. 8.  shows the number of adaptations that took place with each approach.  
Because it is considering the system as a whole, the SCOJO-P scheduler tends to 
shrink jobs rather than expand them; conversely, because the Cirne-Berman approach 
is trying to optimize each job individually it tends to expand jobs.  The Cirne-Berman 
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approach actually produced higher system utilization than SCOJO-P (89.69% vs 
78.6%). The reason is most likely that SCOJO-P shrinks more jobs during phases with 
high load and may leave processors empty so they can service jobs in the near future. 
However, SCOJO-P still obtains better mean response times which makes sense if 
shrinking jobs to run with higher efficiency.  

Looking at the results for the non-predictive SCOJO, we find them to be only a 
little worse. This means that the prediction—at least, in its current version—does not 
provide as much benefit as we had originally expected. 

Similar results were achieved with a workload where only 80% of the jobs were 
moldable.  However, SCOJO-P actually performed slightly better (4%) with 80% 
moldable jobs, while Cirne-Berman performed a bit worse (-5%).  This indicates that 
job shrinking in SCOJO-P might be a little too aggressive. 
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Fig. 8. Number of adaptations (W1, 100% moldable) that shrink (S*) or expand (E*) the job 
size vs. Nopt, calculated for short jobs (*S), medium jobs (*M), and long jobs (*L). 
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Fig. 9. Histograms for response times and short (top), medium (middle), and long (bottom) 
jobs. Note that the histogram categories are not equidistant to accommodate the skewed 
distributions. The labels mean: label value of the preceding category < result values ≤ label 
value of the current category. The histogram shows the number of job results falling into each 
category. 

Fig. 10.  to Fig. 13.  show results for the higher Workload W2.  As with the lower 
workload, SCOJO-P produces much better (67%) mean wait times for long jobs than 
the Cirne-Berman approach.  This translates into a 48% improvement in the mean 
response time of long jobs which now benefit most.  Looking at the adaptation 
statistics in Fig. 13. , we see that even when there is a heavy workload on the system, 
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the Cirne-Berman approach still tends to expand jobs.  On the other hand, SCOJO-P 
is shrinking a greater number of jobs, thus allowing a greater number of jobs to run 
simultaneously.  SCOJO-P is also benefiting from the increased processor 
effectiveness obtained from smaller job sizes. 
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Fig. 10.  Mean response times for Workload W2 (in hours), 100% moldable jobs. 
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Fig. 11.  Mean wait times for Workload W2 (in hours), 100% moldable jobs. 

We also checked the results from the original SCOJO. Since our test environment 
and the generated random workloads are not exactly the same, a direct comparison is 
not possible. However, SCOJO reduces average response times by 50% if 80% of the 
long jobs are malleable (while 80% of the short and medium jobs are moldable). 
Adaptation with all classes being 80% moldable improves response times by approx. 
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35% vs. scheduling without adaptation. This means that the approx. 50% 
improvement which we get with SCOJO-P can in SCOJO only be accomplished with 
dynamic adaptation for malleable jobs. 

 
 

0
200
400
600
800

1000
1200
1400
1600
1800

Avg Short Medium Long

Predictive

Non-Predictive

Cirne-Berman

Traditional

 
Fig. 12.  Mean bounded slowdowns for Workload W2, 100% moldable jobs. 
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Fig. 13.  Number of adaptations (W2, 100% moldable jobs) that shrink (S*) or expand (E*) the 
job size vs. Nopt, calculated for short jobs (*S), medium jobs (*M), and long jobs (*L). 

 
Finally, we ran the tests (using two test runs) for W1 and 100% moldable again 

with the Cirne-Berman-Downey speedup model. The results for response times and 
bounded slowdowns are shown in Fig. 14. SCOJO-P still performs better, though only 
slightly. We found that Nmax and therefore Nopt are created very high. Thus, with our 
speedup model, the average Nopt is 12 (8 for short, 9 for medium, and 20 for long 
jobs) and with the Cirne-Berman-Downey model it is 69. There is not much 
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difference for the different job classes with the latter (61 for short, 89 for medium, 
and 65 for long jobs). Note that the classification into short, medium, and long is 
based on the Nopt runtimes which changes the overall distribution of the jobs. The high 
values of Nopt greatly reduce the benefit of shrinking job sizes. However, as discussed 
above, we consider the created sizes as too large and as not properly correlated to the 
submitted sizes. Using this model, the non-predictive variant of SCOJO now performs 
better than the predictive variant. The reason is that the overly high Nopt values (which 
are far beyond the sizes with which the jobs are finally scheduled) negatively affect 
the predictions. 
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Fig. 14. Response times (top) and slowdowns (bottom) for W1 and 100% moldable jobs, using 
the Cirne-Berman-Downey speedup model. 

6  Summary and Conclusion 

We have presented the SCOJO-P scheduler for adaptive resource allocation at job 
start time. SCOJO-P considers the estimated load of the machine over the whole 
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runtime of the job to determine its ideal size. The load estimation includes an estimate 
about future job submissions. The Cirne-Berman approach for molding jobs, tries to 
maximize the benefits per jobs, which still converges to a situation where each job (on 
average) benefits. SCOJO-P directly considers the whole picture to balance the 
interests of the scheduled jobs with the interests of the other jobs. In the experimental 
study, SCOJO-P improves response times by 70% vs. traditional scheduling and by 
about 59% vs. the Cirne-Berman approach (which improves traditional scheduling by 
about 30%) if using a simple speedup model which takes the submission size as the 
optimal one. Investigating the effect of prediction, we found it contribute less to the 
good results than originally expected (though improvements are possible) and the 
main benefit stemming from considering the whole set of jobs on the system together. 
With the Cirne-Berman-Downey speedup model, optimal sizes for the generated 
curves are much higher, leading to less efficiency gain if shrinking jobs and therefore 
to SCOJO-P only being slightly better than the Cirne-Berman scheduler. 
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