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Abstract. Currently, job schedulers require “rigid” job submissions from
users, who must specify a particular number of processors for each paral-
lel job. Most parallel jobs can be run on different processor partition sizes,
but there is often a trade-off between wait-time and run-time — asking
for many processors reduces run-time but may require a protracted wait.
With moldable scheduling, the choice of job partition size is determined
by the scheduler, using information about job scalability characteristics.
We explore the role of job efficiency in moldable scheduling, through
the development of a scheduling scheme that utilizes job efficiency infor-
mation. The algorithm is able to improve the average turnaround time,
but requires tuning of parameters. Using this exploration as motivation,
we then develop an iterative scheme that avoids the need for any pa-
rameter tuning. The iterative scheme performs an intelligent, heuristic
based search for a schedule that minimizes average turnaround time. It
is shown to perform better than other recently proposed moldable job
scheduling schemes, with good response times for both the small and
large jobs, when evaluated with different workloads.

1 Introduction

Parallel job scheduling in a space-shared environment[1-5] is a research topic
that has received a large amount of attention. Traditional approaches to job
scheduling operate under the principle that jobs are rigid — that they are sub-
mitted to run on a certain number of processors, and that number is inflexible.
Previously considered rigid scheduling schemes range from an early and simple
first-come-first-serve (FCFS) strategy, which suffers from severe fragmentation
and leads to poor utilization, to current backfilling policies which attempt to
reduce the number of wasted cycles. Backfilling creates reservations for N jobs
from a sorted queue (often based on arrival time, job size, or current wait time),
and then allow jobs to start “out of order” provided that no reservations are
violated. Variations of N, such as N = 1 (aggressive or EASY backfilling) or
N = oo (conservative backfilling) exhibit different behaviors and have been stud-
ied in detail. The vast majority of this work assumes that the user provides the
number of nodes the job must run on as well as the job’s estimated runtime.
However, many jobs do not actually require a specific number of processors;
they can run on a range of processors. This range may be limited by constraints



due to the nature of the job. For example, a job may require a minimum number
of processors (possibly for memory or other hardware constraints), or it may
not be able to effectively use a large number of processors. Thus, the user must
balance these factors when determining the number of processors to request
from the scheduler. In addition, in order to achieve a satisfactory wait time, the
user must also consider the state of the job queue, the running jobs, and the
scheduling policy in place.

In recent work, there has been interest in moldable scheduling, an alternative
model to the traditional rigid scheme. In a moldable scheme, a job is submitted
by the user accompanied by a range of processor choices and run times or the
speedup characteristics and constraints of the job. In this way, the scheduler is
given the ability to make the final decision regarding the size of the partition the
job is given. In such a scheme, the increased flexibility the scheduler is afforded
allows it to not only provide the user with a better response time than the rigid
case but also be better suited to adapt to changes of job mix and load.

A fundamental issue in moldable job scheduling is the determination of
the partition size for each job. Cirne [6,7] proposed and evaluated a moldable
scheduling strategy using a greedy submit-time determination of each job’s parti-
tion size. Later studies [8] showed that under a number of circumstances, a greedy
strategy was problematic. Improved schemes were proposed and evaluated [9],
but a shortcoming of previously proposed approaches is that the scalability of
jobs is not taken into consideration. Given two similarly sized jobs with different
scalabilities that are submitted at the same time, clearly it would be desirable
to preferentially allocate more processors to the more scalable job. However, job
mixes typically contain jobs with very different sizes. This paper addresses the
issue of incorporating consideration of job scalability into a moldable schedul-
ing strategy and demonstrates that the the importance of efficiency varies with
respect to the characteristics of the workload a scheduler encounters. With this
knowledge in hand, an iterative scheduling scheme is introduced which elimi-
nates the need for scheduler parameterization based on workload characteristics
and implicitly considers efficiency.

The remainder of the paper is organized as follows: Section 2 discusses related
moldable job scheduling work. Section 3 describes the event-based simulator as
well as the workloads used. Section 4 discusses the effects of “overbooking”
introduced in previous work in a moldable scheduling model. Section 5 explores
a scheme which uses efficiency and overbooking to outperform schemes which
ignore job scalability. Section 6 introduces an iterative scheduling strategy which
eliminates the need for tunable parameters. Finally, section 7 concludes the

paper.

2 Related Work

There has been extensive research on parallel job scheduling in a non-preemptive
space shared environment [1,2,4,10-12]. Much of the recent work focuses on
scheduling “rigid” jobs, even though jobs may be able to run on a range of



partition sizes. Previous work that focuses on moldable job scheduling aims
primarily to minimize makespan or is set in the context of offline scheduling.
Further, the realistic workloads [13] available today were not available when
previous research into moldable scheduling was undertaken. This paper focuses
on minimizing average turnaround time in an online scenario using realistic
workloads.

Du and Leung [14] introduce a “Parallel Task System” (PST) for moldable
jobs. The system is comprised of m processors, and n moldable jobs, whose
speedups are assumed to be non-decreasing functions. They show that find-
ing the minimal completion time for a PST is NP-hard. Krishnamurti and Ma
[15] develop an offline approximation algorithm that attempts to minimize the
makespan of a set of moldable tasks. The number of tasks is defined to be
less than the number of partitions and the number of partitions is bounded.
They propose an algorithm that incrementally reduces the execution time of
the longest job. Other work studied the problem of reducing the makespan in
an offline, multi-resource context [16,17] while others assumed processor subset
constraints [18,19].

Eager, Zahorjanm, and Lazowska [20] suggest using the average parallelism
of each task as a basis for processor allocation. They do not propose detailed
scheduling algorithms. Ghosal, Serazzi, and Tripathi [21] extend the Eager et. al.
work by introducing the concept of the processor working set (PWS). The PWS
maximizes the number of processors that a job can efficiently use. The scheduling
algorithms developed increase the average “power” [20] of the schedule. They
develop online algorithms based on PWS for a setting similar to that of this
paper.

Kleinrock and Huang [22] determine the number of processors to allocate in
a parallel system where only one job can be executing at any given time. Again,
the goal is to maximize power. This system is clearly not ideal for minimizing
average turnaround time, as jobs are run sequentially in an FCFS manner.

Mccann, Vaswani, and Zahorjan [23] present a policy for a multi-processor
system where jobs which can be resized dynamically (malleable). The scheduling
policy transfers processors between running jobs based on the current parallelism
of a job.

Sevick [24] provides a generic scheduling algorithm designed to reduce the
average turnaround time in a wide range of environments (e.g., preemptive,
non-preemptive, online, offline). The algorithm, based on Least Work First, de-
termines a number of tasks to start simultaneously and then uses heuristics to
assign each of the chosen tasks a set of processors.

Rosti et. al. [25] perform an analysis of non-work conserving scheduling al-
gorithms. The analysis highlights the importance of realistic workload models
when evaluating moldable schedulers. The non-work conserving algorithms are
effective when there is large variance in the workload trace (as seen in real
workloads) and with varying job types (as seen in real workloads). Non-work
conserving algorithms outperform work conserving algorithms for the realistic
workloads considered.



Downey [26,27] presents a careful analysis of job characteristics and mix in
real traces; this analysis [26] is used to create predictors for the queue time of
jobs in synthetic workloads. Downey describes a moldable scheduling scheme
which aims to optimize the performance of each job by determining a partition
size n such that the run time on n processors plus the predicted queue time on n
processors is minimized. However, jobs are scheduled in a strict first-come-first-
serve order which, again, hinders the ability of the system in improve average
user metrics. Also, the greedy selection of partition size for individual jobs may
harm the performance of other jobs in the system.

Downey [27] examines the performance of existing algorithms [28,29] under
his workload model. He defines two variations of moldable schemes—those that
make greedy decisions for individual jobs, resulting in smaller partition sizes,
and those that schedule jobs on only the “ideal” number of processors that each
algorithm chooses. Both variations suffers from the issue described above and
from the strict first-come-first-serve order imposed on the scheduler.

Cirne et. al. [6,7] proposed a submit-time-based algorithm for moldable
scheduling, where the desired processor allocation is decided upon submission to
the scheduler in order to minimize response time. Once the desired allocation is
determined the scheduler functions essentially the same as in the rigid case. As
such, the scheduler is not able to take into account the inherently dynamic infor-
mation about jobs and new job arrivals. Also, each job makes a greedy decision,
which may not be a wise global decision [8]. However, using simulations and
moldable traces based on real rigid traces, Cirne et. al. were able to show that
their moldable scheduler can outperform a standard rigid parallel job scheduler.

Srinivasan et. al. [9, 8] use lazy processor allocation, delaying this allocation
decision until schedule time. This allows the scheduler to obtain more infor-
mation regarding job runtimes and job arrivals before finalizing the number of
processors a job will run on. In this context, an unbounded greedy choice will
not lead to a good schedule. Therefore, techniques to limit the number of pro-
cessors a job can take are developed. The authors are able to show that their
new methods can improve the schedule for many moldable workloads.

3 Simulation Setup

This work uses an event based simulator in which we are able to evaluate pro-
posed scheduling policies using varying workload characteristics. The simulator
uses workload traces in the Standard Workload Format [13], which can be ob-
tained from Dror Feitelson’s publicly available Parallel Workload Archive [13].
This allows us to perform multiple simulations on identical workloads in order
to achieve comparable results across proposed scheduling policies.

3.1 Workload Generation

The simulations were run with workloads based on a trace from a 512-node IBM
SP2 system at the Cornell Theory Center (CTC) obtained from Feitelson’s work-
load archive. The trace, supplied in the Standard Workload Format, contains the



submit time, number of processors, actual runtime, and user estimated runtime
of each job. To generate different offered workloads we multiply both the user
supplied runtime estimate and the actual runtime by a suitable factor to achieve
the desired offered load. As an example, assume that the original trace had a
utilization of 65%. To achieve an offered utilization of 90%, the actual runtime
and the estimated runtime are multiplied by a factor of 0.9/0.65. We use this
method in lieu of shrinking the inter-arrival time between jobs to keep the du-
ration of the trace consistent. In all simulations, the scheduler uses the runtime
estimates provided by the user for scheduling purposes.

The data presented in the paper shows effective load, which is the load after
adjusting for the scalability of the jobs. For instance, assume a job originally ran
for 1000 seconds on 5 processors and had an efficiency of 50% (using our scala-
bility model). Then the job contributes 2500 processor seconds to the effective
load. In other words, the effective load represents the load for all jobs assuming
the scheduler is able to run the jobs with ideal efficiency.

The trace used, as well as every other trace that we are aware of, does not
contain any information regarding the scalability of the jobs. Therefore, we use
the Downey model [30] of speedup for parallel programs and assign speedup
characteristics to a job either by using fixed values or a random distribution.

3.2 The Downey Model

Downey’s work [30] describes a model of speedup for parallel jobs. Speedup is
defined as the ratio of the job’s runtime on a single processor to the job’s runtime
on n processors. If L is the sequential runtime of the job and T'(n) is the runtime
of the job on n processors, then S(n) = L/T(n) where S(n) is the speedup of
the job. Downey’s model is a non-linear function of two parameters:

— A denotes the average parallelism of a job and is a measure of the maximum
speedup that the job can achieve.

— o (sigma) is an approximation of the coefficient of variance in parallelism
within a job. It determines how close to linear the speedup is. A value of 0
indicates linear speedup and higher values indicate greater deviation from
the linear case. Previous work has shown that a sigma between 0 and 2 can
be expected for many workloads [27].

Downey’s speedup function is defined as follows:
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and for high variance (o > 1)
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4 Fair-share Allocation and Overbooking

In this section, we review the fair-share strategy proposed in [8] along with an
examination of the effect of varying the “weight factor” used in the fair-share
schemes and how it affects jobs with different speedup characteristics.

4.1 Fair-share Based Allocation

The fundamental problem with using an unrestricted greedy approach to choose
partition sizes for jobs is that most jobs tend to choose very large partition
sizes. In the extreme case, this degenerates to a scenario where each job chooses
a partition size equal to the number of processors in the system, with jobs being
run in FIFO order. In order to rectify this problem, fair-share-based limits were
introduced [8]. Fair-share-based schemes impose an upper bound on a job’s allo-
cation based on its fractional weight (resource requirement in processor-seconds)
in the mix of jobs. The partition size for each job is then chosen to optimize its
turnaround time, subject to its fair-share upper bound. A proportional-share
limit was first evaluated [8], where the upper-bound for a job’s partition size
was set in direct proportion to the job’s weight. A later study [9] showed that
better turnaround times were achieved by using a “square-root” based fair-share
limit, where the bound was set in proportion to the square root of job’s weight:

. . Co /Weight of job i
Weight fraction of job i = Zjejm Weight of 3007

We restrict our discussion of the fair-share moldable scheduling schemes to
the schedule-time aggressive scheme, where the backfilling policy allows for N =
1 reservations from the queue and the decision of partition size is delayed until
reservation time.

Srinivasan et. al. [8, 9] use an additional system-wide “weight factor” which is
multiplied with the weight fraction to raise the limit on the number of processors
allocated for all jobs. Rajan [31] further examined the use of a system-wide weight
factor. We will call this the overbooking factor and it will be the focus of our
examination. Specifically, we describe how changes in the overbooking factor can
benefit or harm jobs with different speedup characteristics and weight fractions.

4.2 Perfect Scalability

The “overbooking factor” (ObF) is a multiplicative factor used to scale up the
weight-fraction of a job in determining the upper bound on partition size. With
an overbooking factor of one (i.e., no overbooking), the sum of fair-share based
partition limits of all jobs add up to the total number of available processors.
With an overbooking factor of two, the sum of upper bounds add up to twice the



number of processors, etc. As ObF increases, average turnaround time improves
at low load, but worsens at high load. An increase in ObF has several effects:

— It tends to increase the average number of waiting jobs in the queue; since
each job’s maximum partition size is increased, the number of jobs that can
concurrently run decreases. This causes the average turnaround time of light
jobs to increase, since turn-around of these jobs is dominated by queue time.

— The average run-time of heavy jobs tends to decrease, causing the average
response time to also decrease, since it is dominated by the run-time and
not queue time.

— When several similarly sized jobs are present, where as with ObF of one, they
could all run concurrently, with higher ObF their execution gets serialized,
but lowers average response time. For example, with two identically sized
jobs, with ObF of one, they both could run concurrently using half the
processors each. With ObF of two, each job would run using all the processors
for one half the time, giving an average response time that is (T/2 + T)/2,
i.e., 75% of that with ObF=1.

As the system approached saturation, the queue size increases rapidly with high
ODbF, causing the deterioration of performance of light jobs to overshadow the
benefits of high ObF for the heavy jobs.

4.3 Non-ideal Job Scalability

The effect of the overbooking factor on performance changes under non-ideal
scalability conditions [31]. Unlike the case where all jobs share a value of ¢ =0
(perfect scalability), when o is higher (poorer job scalability), it can be seen that
increasing ObF causes an increase in average response time, even at low loads.
This is because a higher ObF causes jobs to receive wider partition choices, and
therefore uses more processor cycles for job execution than narrower partition
choices. The detrimental effect of increasing ObF is more pronounced at high
loads, where the waste of processor cycles by inefficient wide jobs causes an
increase in queuing delays. This points to a need to take job scalability into
consideration when performing moldable job scheduling.

5 Efficiency Considerations

In the previous section, we considered how overbooking, by itself, can either be
helpful or harmful to the average response time of jobs within the fair-share
scheme and that a job’s efficiency needs to be taken into consideration when
computing its processor allocation. In this section, we describe a scheduling
policy that corrects for this oversight by optimizing for efficiency.

We must be careful when discussing “optimal efficiency,” though. A schedule
that is optimally efficient for the whole would be a schedule where every job is
simply allocated a single processor. This schedule, while maximizing efficiency



and throughput, obviously falls short of providing users with adequate response
times.

Therefore we choose to maximize the “instantaneous” effective utilization.
This is the sum of the number of processors a job runs on N; multiplied by
the efficiency of that job on that number of processors e(N;) for all jobs. We
can see that maximizing the effective utilization is then the same as maximizing
the speedup s(N;) of all jobs (D [V; * e(N;)] = D[N, * %] = > [s(V;)]). In
situations where there are less jobs than processors, each job’s partition size will
be computed such that processors are being used in a locally optimal manner.

5.1 Incorporating Efficiency into Fairshare

An optimally efficient schedule is one that makes the most efficient use of avail-
able cycles. However, response time is an important metric, so we still need to
incorporate job size. Thus the thrust of this scheme is to close the gap between
the weight-based allocation of the fair-share scheme, where jobs receive a pro-
portion of the system ignoring how well they scale to fit their allocation, and an
efficiency-based allocation, where the relative sizes of the jobs are ignored and
the effective utilization is optimized.

In order to maintain this balance, we define a system-wide efficiency factor
(EF). The efficiency factor limits how much a job’s maximum allocation can
change from its fair-share limit:
max(1, FairshareLimit « (1 + EF)) <
Ef ficiencyLimit < min(SystemSize, FairshareLimit x (1 — EF))

In order to maximize the “instantaneous” effective utilization, or the sum of
the speedups of all jobs, we take processors away from the fair share limit of the
job with the smallest slope of its speedup curve for its current allocated limit
and give processors to the job with the highest slope of its speedup curve, this
leads towards equivalent derivatives of the speedup.

The algorithm for determining a job’s maximum processor allocation is shown
in Figure 1.

By including a job’s speedup characteristics in its allocation we are able to
take advantage of the benefits of overbooking for jobs that scale well enough
to efficiently use additional processors without wasting processors on jobs that
cannot efficiently use them.

5.2 Experimental Results

We evaluated our algorithm over a set of input traces, varying the efficiency
and overbooking parameters of the scheduler. Traces were modified to contain
speedup characteristics of jobs subject to the Downey model. For the sake of
brevity we limit our discussion to overbooking factors of 1 and 4 and efficiency
factors of 0, 0.5, and 1. We show two sets of results — one which assumes that
each job can scale to the size of the system (A = system size) and another
that assigns each job a random value of A from a random uniform distribution



void selectMaxProcessorLimit(){

OrderedList jobs;
/** All jobs start with the
original fair share limit *x/
foreach j in jobs{
j.nodelLimit = getFairshare(j);
j.maxNodesLimit =
min(SYS_SIZE, (1+EF)*j.nodelLimit);
j.minNodeLimit =
max (1, (1-EF)*j.nodelLimit) ;

/**Transfer processors from jobs with a small
speedup slope to jobs with a high speedup
slope, to optimize instantaneous effective
utilization **/
while(!complete)q{
complete=true;
sortBySlope (jobs) ;
while(!canMove (sJob=jobs.getFirst()))
jobs.removeFirst();

while(!canMove (1Job=jobs.getLast()))
jobs.removeLast () ;

if (sJob.getSlope()<1lJob.getSlope()){
sJob.nodeLimit--;
1Job.nodeLimit++;
sortBySlope (jobs) ;
complete=false;

/** Each job’s original limit is between the max and

the min. During each call to selectMaxProcessorLimit

each job will either gain or lose processor (mot both).

boolean canMove(Job j){

}

if (j.nodeLimit >= j.maxNodeLimit ||

j.nodeLimit <=j.minNodeLimit){
return false;

return true;

*% /

Fig. 1. The efficiency based moldable scheduling algorithm



between 1 and 2 times the number processors the job requests in the unmodified
trace. In both sets of results, we chose the value of ¢ for each job from a uniform
distribution between 0 and 2.
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Fig. 2. With an increased overbooking factor, increasing the efficiency factor improves
average turnaround time

Figure 2 shows that in the first scalability scenario (A = system size), a high
overbooking factor and an efficiency sensitive strategy (EF=1.0) outperforms
other scheduling strategies; the overall average turnaround time (TAT) is better
than when using the fair-share alone (EF=0). We also note that increasing the
efficiency factor in low overbooking hurts the average turnaround time due to
poor utilization and a negative effect on large jobs (shown below).

In Figure 3 we examine the effects of overbooking on various job sizes. In
general, we see that small jobs (200-3,200 processor seconds and 3,200 to 100,000
processor seconds) benefit from a low overbooking factor. When overbooking is
low, large jobs (greater than 2,000,000 processor seconds) have limited partition
sizes and processors remain free for small jobs. As the turnaround time of small
jobs is dominated largely by time spent waiting in the queue, any increase in
their runtime due to a smaller maximum partition size is negligible. We also see
that a high efficiency factor boosts the performance of small jobs; they are able
to gain processors at the expense of larger and more inefficient jobs.

As a job’s size grows, its turnaround time becomes less dominated by the time
it spends waiting in the queue and more dominated by its run time. The medium
sized jobs illustrate the point where this transition begins to occur; the effect
of a low overbooking factor and high efficiency factor becomes less pronounced.
Allowing large jobs to claim more processors is the dominating factor in their
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Fig. 3. Small jobs benefit from low overbooking and higher efficiency consideration,
as their turnaround time is dominated by wait time. As job size grows, the benefit
of efficiency consideration is diminished and eventually becomes detrimental to large
jobs. However, in order for the larger jobs to perform well, a large overbooking factor
is required.



turnaround time, as they can afford to wait in the queue to reduce runtime.
A high overbooking factor plays the biggest role with these large jobs and the
efficiency factor has little effect on their performance. However, when a low
overbooking factor is used, a high efficiency factor becomes detrimental to large
jobs — precisely for the same reason this scenario was beneficial for small jobs.

The extreme end of the spectrum illustrates this clearly; efficiency plays
almost no role when combined with a high overbooking factor for the largest
jobs in the system.
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Fig.4. With more variably scaling jobs, neither efficiency nor overbooking achieve
better performance

To provide further contrast from the scenario presented in Figure 2, Figure 4
presents the situation where jobs do not all share a uniform maximum partition
size. In this perhaps more realistic situation, each job’s value of A is chosen
randomly between 1 and 2 times the partition size requested in the original trace.
Now that jobs do not all scale to the size of the system, we notice that the scheme
which performs the best uses the plain fair-share scheme with no overbooking
(ObF=1) and doesn’t take efficiency into consideration at all (EF=0)! With
overbooking, jobs can no longer effectively use the once-helpful large partitions
given to them in the fair-share scheme and essentially waste machine cycles.
The effects of this wastage become even more pronounced in higher load. Taking
efficiency into account can reduce the detrimental effect of high overbooking,
but at the cost of severely reducing the allocation of all but the most scalable
jobs.
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Fig. 5. With more variability in the speedup characteristics of jobs, overbooking is no
longer helpful. Using the efficiency-based scheme is helpful for most jobs



Figure 5 shows category based results for this scalability scenario. Here it
can be seen that taking efficiency into account is helpful for all job sizes. Due to
the poor scalability, overbooking is detrimental to all job categories.

The results here make it clear that the choice of an effective overbooking
factor and efficiency factor not only depend on the relative size of jobs in the
system, but also their relative scalabilities and overall system load. With good
overall scalability, using a high overbooking factor in combination with the effi-
ciency based scheme provides the best results. However, with poorer scalability,
a higher overbooking factor is very detrimental.

6 An Iterative Approach for Moldable Scheduling

The efficiency-sensitive moldable scheduling approach presented in the previous
section was seen to provide benefits over the base fair-share strategy (EF=0).
However, a difficulty with the approach is the need to choose appropriate pa-
rameters — the choice of the best overbooking factor and efficiency factor are
dependent on the overall scalability characteristics of the job mix. If a job mix
were to contain jobs of relatively uniform weight and similar maximum partition
size, a high overbooking factor produces the best response times. However, if jobs
differ considerably in their maximum partition size, a high overbooking factor
leads to poor performance. It is equally problematic to choose the efficiency fac-
tor. Small jobs benefit from efficiency-based schemes but large jobs suffer under
the same schemes.

A desirable moldable scheduling strategy would inherently take into account
the efficiency, job size, system load and job mix without the need to “tune”
parameters. In this section, we develop an iterative backfilling approach that
does so.

Before describing the algorithm, we first provide a high level contrast of this
approach with the previous section’s strategy. The previous section’s moldable
scheduler associates a maximum allowable partition size with each job and uses
a greedy scheduling strategy to choose an actual partition size (subject to a job’s
upper limit) in order to minimize response time. A job’s size limit was determined
using a fair-share proportion adjusted via the overbooking and efficiency factors.
Although the idea of incorporating efficiency was effective, the problem with the
approach was that the best choice for the overbooking factor and efficiency factor
was dependent on the job mix. In order to avoid this problem, we consider
a completely different approach to moldable scheduling — instead of simply
setting an upper bound on job partition sizes, generate schedules incrementally
and iteratively using global information.

6.1 The Iterative Algorithm

Our iterative algorithm begins by giving each job an initial minimal partition of
one processor. A conservative backfilling schedule is generated; this schedule is
then iteratively modified by giving a processor to the “most worthy” job — the



job that, if given an additional processor, has the greatest decrease in runtime.
If the addition of a processor to the most worthy job decreased the average
response time of the schedule, the addition is accepted, otherwise not. Note that
a job given an additional processor may have a start time later than previously
reserved if its “waiting” allows it to improve the average turnaround time of the
schedule.

1. void iterativeNodeAssignment(OrderedList reservedJobs){
2. unmark all jobs in the reservedJobs list and
set partition sizes to 1

3 while (unmarked jobs exist)

4 find unmarked candidate job j (see line 15)

5 add one to partition size of job j

6. create a conservative schedule for all jobs

7 if (average turnaround time did not improve)

8 mark job j

9 decrement partition size of candidate job j
10. create a conservative schedule for all jobs
11. end if

12. end while

3.}

14.

15. Job findUnmarkedCandidate(OrderedList reservedJobs){
16. set bestImprovement to zero

17. for each unmarked job j in the reserved job list
18. let n be the current node assignment of job j
19. let i be the expected runtime on n processors
20. let i’ be the expected runtime on n+l processors
21. if(i - i’ > bestImprovement)

22. set bestImprovement to i - i’

23. set bestJob to j

24. end for

25. return bestJob

26. }

Fig. 6. The iterative moldable scheduling algorithm

Fig. 6 shows pseudocode for the iterative algorithm. Initially, each job is
assigned one node. This allocation results in optimal per job efficiency, but may
result in poor average turnaround and/or system utilization.

The next step (lines 3 to 12) searches for a schedule with an improved av-
erage turnaround time. Step 4 chooses the job which will benefit the most from
receiving an extra processor. This job is a “good” candidate to try increasing its
processor allocation. Steps 5 to 11 determine if the increased allocation results
in a better schedule. If the increase produces a worse schedule, the job is marked
as a “bad” choice and the remaining jobs are considered.



This approach takes all the aspects discussed previously into account: load,
scalability, job size, and utilization. If a job is small, the improvement from
adding a processor will be minimal, and thus it will be less likely to receive
an increased allocation. Likewise, if a job scales poorly, it will benefit less from
receiving more processors, and will be less likely to be chosen as the candidate.
If the load is low, “wider” jobs will result in a better average turnaround time,
and wider allocations will be given. If the load is high, increasing the allocation
of poorly scalable jobs will increase average turnaround time, and such jobs will
be left “narrow”. Finally, the system achieves good utilization, as processors will
not be wasted unless there is no work to be done or using the processor reduces
the average turnaround time.

Using turnaround time as the scheduling metric, selecting the job with the
best absolute improvement in expected runtime, and iteratively searching and
marking jobs provides a flexible, adaptable algorithm that is able to handle
a diverse set of job scalability characteristics. This flexibility and adaptivity
present here is not achievable with other algorithms without the addition of a
complicated and dynamic tuning system, which while plausible, would not have
the elegance of the simple iterative scheme.

6.2 Results

In this section we compare the iterative algorithm described in Figure 6 to
schemes which have been shown to be effective in certain contexts. The results
show that the iterative algorithm is indeed able to perform very well in a variety
of contexts and is competitive with the best previous algorithm (which varies
when the scalability varies).

Figure 7 is the case where jobs scale to the size of the system (A = system size).
As discussed previously, overbooking alone is not helpful as its generous alloca-
tion of processors leads to “wastage” of resources. Explicitly taking efficiency
into account when choosing job widths allows more scalable jobs to receive more
processors than non-scalable jobs, proving a better average turnaround time. In
contrast, the iterative scheme is able to choose the “correct” job sizes, implicitly
considering job size and scalability, and is better than even with the best of
the previous scheduling scheme (ObF = 4, EF = 1). This search does come at a
small cost: the scheduling time increases to a few hundred milliseconds. However,
this cost is much lower than the time between useful scheduling events.

Figure 8 shows the iterative scheme’s performance within job size categories.
We can see that small jobs actually receive better performance in the iterative
scheme than in other schemes, which was a major issues with earlier moldable
scheduling strategies. Further, this improvement does not coincide with a de-
terioration in performance for the largest jobs. This is because the larger jobs
are more likely to receive more processors — but this allocation is limited by a
large job’s effect on the other jobs in the queue. The iterative scheme is able to
balance the needs of both small and large jobs.

Finally, Figure 9 shows the situation where each job’s A value varies, as previ-
ously described. Recall that in this situation, the poor scalability becomes a prob-
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Fig. 7. In the situation where jobs scale to the size of the system, the iterative scheme
outperforms even the best previous scheme

lem for the schemes discussed. Increasing the overbooking factor was not helpful,
nor was explicitly considering efficiency. Therefore, it was beneficial to use an
efficiency factor of 0 or 1 and no overbooking. However, the iterative scheme
outperforms all schemes previously considered — without having to “tune” any
parameters. Figure 10 illustrates that the improvement in performance carries
across all job size categories as well.

6.3 Discussion

The iterative approach describe is a flexible moldable scheduler which is able to
adapt to a variety of job scalabilities without the need to “fine tune” parameters.
The scheme performs well across various loads and small jobs do not receive poor
performance in order to improve the performance of large jobs, as was a problem
in previous work. The overall performance of the iterative algorithm competes
with, and in many cases outperforms, both new and prior schemes that require
tuning.

7 Conclusions

Current schedulers require users to examine the set of queued and running jobs
when deciding upon a partition size for a job. It is left up to them to decide
whether to request few resources and reduce the wait time of their job or request
more resources and reduce the job’s run time. A moldable scheduler shifts this
responsibility from the user to the scheduler.
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Fig. 8. The iterative scheme is able to mirror the performance of the best overbooking
efficiency choices for different job categories
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Fig. 9. When jobs vary more widely in scalability, the iterative scheme performs better
than all previous schemes, especially as load increases

The work presented in this paper examines the effects of the overbooking
factor introduced in previous work and demonstrates that overbooking in work-
loads consisting of jobs which scale well is beneficial, while overbooking can have
a negative affect in workloads consisting of jobs of varying scalability. Addition-
ally, we explore the role efficiency can play in the selection of partition size and
how the explicit consideration of job scalability can either reduce or increase the
response time of a system, depending on job mix and scalability. Additionally,
the “best” scheme for a particular job depends on the job’s size. The results
show that in order to achieve good performance, parameters must be heavily
tuned according to expected job characteristics.

We introduce an iterative scheme to eliminate the need for fine grained per-
formance tuning. The approach provides a flexible, robust moldable scheduling
policy that provides good performance in all situation studied. Without tuning,
the scheme mirrors and, in some cases, improves upon the response time of the
best of the efficiency/overbooking schemes across drastically differing scalability
scenarios.
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