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Abstract. In this paper, we present a methodology for automatically
generating online scheduling strategies for a complex scheduling objective
with the help of real life workload data. The scheduling problem includes
independent parallel jobs and multiple identical machines. The objective
is defined by the machine provider and considers different priorities of
user groups. In order to allow a wide range of objective functions, we
use a rule based scheduling strategy. There, a rule system classifies all
possible scheduling states and assigns an appropriate scheduling strategy
based on the actual state. The rule bases are developed with the help
of a Genetic Fuzzy System that uses workload data obtained from real
system installations. We evaluate our new scheduling strategies again
on real workload data in comparison to a probability based scheduling
strategy and the EASY standard scheduling algorithm. To this end, we
select an exemplary objective function that prioritizes some user groups
over others.

1 Introduction

In this paper, we address the development of a methodology to automatically
generate scheduling strategies for Massively Parallel Processing (MPP) systems
that consider the providers’ preferences. The scheduling problem consists of n
independent non-clairvoyant jobs that are submitted by different users over time.
The scheduling strategy is responsible to assign the available processors of the
MPP system to those jobs. However, the machine providers in real scenarios
have different relationships to the various users or user groups. Those different
relationships lead to different prioritizations of the users and their corresponding
jobs. Consequently, the scheduling strategy needs to incorporate those priorities
during the scheduling process.

Many installations use partitions [14] or quotas [31] to implement this kind of
prioritizations of different user groups. However, those attempts result in a low
system utilization in most of the cases [14]. Hence, we present the development
of a rule based scheduling system that is able to generate schedules with a
higher quality in terms of the provider preferences while not decreasing system
utilization. To our knowledge, there is no similar work that is able to incorporate
the user group prioritizations in a similar way.

⋆ Born Carsten Ernemann.



The development of scheduling strategies for MPP systems is based on work-
load traces originating from real installations, see for example Heine et al. [16].
Such workload data include all hidden job dependencies, patterns and feedback
mechanisms. For MPP systems several workloads are available, see the standard
workload archive maintained by Feitelson [13], that are for instance described by
Chapin [5]. Although those data are rather old they suffice for our purpose. So
far, workload models are rarely used to develop scheduling algorithms as they
are not able to describe workload traces with an acceptable accuracy, see Song
et al. [28] and the given references there.

The online job scheduling on MPPs is usually non-clairvoyant as the process-
ing time pj of job j is not available at its release date rj . However, users are often
required to provide estimates p̄j of the processing time that are mainly used to
determine faulty jobs whose processing time exceeds the estimate. Further, par-
allel jobs on MPPs are typically not moldable or malleable, that is, they need
concurrent and exclusive access to mj ≤ m machines during the whole execution
phase. The value mj is provided at the release date rj by the user. Finally, the
completion time of job j in a schedule S is denoted by Cj(S). As preemption is
not allowed in many MPPs, each job starts its execution at time (Cj(S) − pj).
Unfortunately, the available workload data do not provide any user group infor-
mation nor define any complex scheduling objective. To address the user group
problem, we are using the work of Song et al. [29], who have shown that users
can be reasonably well partitioned into 5 groups for all available MPP workload
traces. Those groups are differentiated with respect to job characteristics and
frequency of job submissions. Within this work, we will also use 5 different user
groups. However, we will use the user’s resource consumption as the differentia-
tion criterion. The binary function ̺i(j) is used to state whether job j belongs
to user group i (̺i(j) = 1) or not (̺i(j) = 0).

We present a methodology to automatically generate a rule based scheduling
system that is able to produce good quality schedules with respect to a given
complex provider objective. Note that our methodology is not restricted to a
specific user group selection.

The individual preferences of the machine providers are expressed using a
complex objective function that is generated by combining well known simple
basic objectives. Even if different providers use the same objective functions
for the various groups, the transformation of a generic multi-objective scenario
into a specific scheduling problem with a single objective depends on the ac-
tual priorities assigned to the user groups and is likely to be individual. Hence,
we focus on the development of a suitable methodology and do not generate a
single scheduling strategy. Without loss of generality, we exemplarily select a
complex objective function to demonstrate the feasibility of our approach. Here,
we present a rule based scheduling that is able to adapt to various scenarios.
So far, the use of rule based systems in scheduling environments is rare. Nev-
ertheless, first attempts [10, 4] have shown the feasibility of such an approach.
However, those scheduling systems are all based on single simple objective eval-
uation functions that are not optimized.
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The proposed scheduling process is divided into two steps. In the first step,
the queue of waiting jobs is reordered according to a sorting criterion. Then
an algorithm uses this order to schedule the jobs onto the available machines
in the second step. Based on the present scheduling state, the rules determine
the sorting criterion and the scheduling algorithm. In order to guarantee general
applicability, the system classifies all possible scheduling states. This classifica-
tion considers the scheduling decisions in the past, the actual schedule, and the
current waiting queue. Note that we have chosen some classification features ex-
emplarily. Other possible features can be used as well for this task. Our feature
selection only serves the purpose to illustrate our methodology.

As already stated in many other publications, see for example Ernemann
et al. [6, 7], a local scheduling decision influences the allocation of future jobs.
Hence, the effect of a single decision cannot be determined individually. There-
fore, the whole rule base is only evaluated after the complete scheduling of all
jobs belonging to a workload trace. This has a significant influence on the learn-
ing method to generate this rule base as this type of evaluation prevents the
application of a supervised learning algorithm, see Hoffmann [17]. Instead, the
reward of a decision is delayed and determined by a critic. Furthermore, the
generation of an appropriate situation classification is not known in advance
and must be generated implicitly while constructing the rule based scheduling
system.

The various design concepts for Fuzzy logic controllers often use Evolutionary
Algorithms to adjust the membership function as well as to define the output
behavior of individual rules, see, for example, Hoffmann [17]. Especially Genetic
Fuzzy Systems have been proven to deal with such classification and automatic
rule base generation problems in a suitable way. All those Genetic Fuzzy Systems
either encode single rules (Michigan approach, Bonarini [3]) or complete rule
bases (Pittsburgh approach, Smith [27]).

Within this work, the determination of a Genetic Fuzzy System is realized
using the Pittsburgh approach. In this case, each individual represents a whole
rule base. During the evolution, the individual rules are adjusted in order to
better fit to the given situations. Furthermore, we will present a Coevolutionary
approach that uses two rule bases, one for the determination of the sorting
criterion and one for the scheduling algorithm that is applied. Both rule bases
evolve independently with the only exception that during the quality assignment
one individual from each rule base must be selected.

We use an Evolution Strategies for the optimization of the rule based schedul-
ing system. This is in contrast to the majority of Genetic Fuzzy Systems, see
Hoffmann [17]. As our membership functions include real valued parameters,
Evolution Strategies are superior to Genetic Algorithms in this case, see Bäck
and Schwefel [1].

To finally show the results of our approach, we use a linear priority function
which favors user group 1 over user group 2 over all other user groups. The choice
of another priority function may lead to different results but does not affect the
feasibility of our methodology. Due to the lack of a scheduling strategy support-
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ing priority functions, no priority functions are available in practice. Therefore,
we had to define one.

For the evaluation of the derived scheduling strategy we present the distance
of this schedule from the Pareto front of all feasible schedules for this workload,
as generated by Ernemann et al. [8]. Although the generation of an approximate
Pareto front is not subject of this paper, two restrictions must be noted:

1. For real workloads, we are only able to generate approximate Pareto fronts.
Therefore, schedules of this front are not guaranteed to be lower bounds.

2. The schedules are generated off-line. On-line methods may not be able to
achieve as good results due to the on-line constraints.

On purpose, we selected a criterion where user groups with a high comput-
ing demand are preferred over user groups with a low demand. Then classical
scheduling algorithms will typically generate acceptable results. This is not true
for a prioritization of a user group with a low resource demand. Moreover, we
also show the results of the best conventional strategy that does not support
priorities.

The remainder of this paper is organized as follows. In Section 2, we introduce
the underlying scheduling system, Evolutionary Algorithms, and Genetic Fuzzy
Systems in more detail. The scheduling objectives and features are presented in
Section 3. Then the model of our approach is described in Section 4. This is
followed by a detailed analysis of the system behavior and an evaluation of the
results. The paper ends with a brief conclusion.

2 Background

This section introduces the main scheduling algorithms and their application
within our rule based scheduling system. Furthermore, the concept of Evolution
Strategies is presented. Those strategies are used to optimize the rule based
scheduling system.

2.1 Scheduling Concepts

As already mentioned, scheduling strategies of high performance parallel com-
puters need to pay more attention to certain users or user groups in order to
achieve a higher degree of satisfaction for them. Priority or membership informa-
tion are not available in the workloads. Hence, we use the resource consumption
as a grouping criterion such that user group 1 represents all users with a higher
resource consumption whereas all users in group 5 have a very low resource de-
mand. Details of the user group definitions are provided by Ernemann et al. [8].

As already introduced, a state of a scheduling system mainly consists of
the current schedule, that describes the actual allocation of processor nodes to
certain jobs, the scheduling results achieved so far, and the queue of waiting
jobs. This waiting queue is typically ordered.
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In most cases, a static ordering like sorting by submission time or sorting by
estimated runtime is applied. In some other cases, the waiting queue is dynami-
cally reordered depending on the system state by using a more complex sorting
criterion that may for instance consider limits of the waiting time.

The various scheduling algorithms mainly differ in the way they select the
next job from the sorted waiting queue to insert it into the existing schedule, that
is, they obey different restrictions when choosing the next job. This results in
different algorithmic complexities and correspondingly different execution times
for the scheduling algorithms.

In the following, we present four selected scheduling algorithms in increasing
order of algorithmic complexity. Note that the first three algorithms use a stat-
ically sorted waiting queue while the last algorithm dynamically reorders this
queue.

– First Come First Serve (FCFS) starts the first job of the waiting queue
whenever enough idle resources are available. Thus, this algorithm has a
constant complexity as the scheduler always only tests whether the first
job can be started immediately if a job in the schedule has completed its
execution or a new job has risen to the top of the waiting queue.

– List Scheduling as introduced by Graham [15] is not applied in this work.
However, it serves as the basic template for the two backfilling variants. By
applying List Scheduling, the scheduler tries to find the first job within the
queue of waiting jobs, that can be started on the currently idle resources.
Again, the algorithm uses the sorted queue. The complexity is higher than
in the case of FCFS as in the worst case, the whole queue is tested each time
the scheduling procedure is initiated.
• EASY Backfilling (EASY) is similar to the original List Scheduling. How-

ever, if the first job within the waiting queue cannot be started imme-
diately the algorithm estimates the completion time of this job. To this
end, a runtime estimation provided by the user is needed. Then EASY
tries to find an allocation for the following jobs of the waiting queue on
the currently idle resources while ensuring that the first job is not further
delayed. This algorithm requires more time than List Scheduling, as the
scheduler needs to estimate the processing of the first job in case that it
cannot be started directly.

• Conservative Backfilling (CONS) extends the concept of EASY. Here,
the scheduler tries to find the next job within the waiting queue, that
can be started immediately while ensuring that no previous job within
the queue is further delayed. This results in a much higher complexity of
the scheduling algorithm as in the worst case, the completion time of all
jobs within the waiting queue except of the last job must be estimated
each time the scheduling process is initiated.

– Greedy Scheduling (Greedy) uses a dynamically sorted waiting queue contrary
to the already introduced scheduling algorithms. To this end, the algorithm
defines a complex sorting criterion. Each time, the Greedy scheduling process
in started, the queue is sorted according to this criterion. Then, a simple
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FCFS is applied. The complexity of this algorithm is potentially high as the
execution of the sorting function for each job within the waiting queue may
be computationally expensive. Furthermore, the necessary sorting of all jobs
must be taken into account. Greedy has the advantage to specify user or
user group dependent preferences within the complex sorting criterion. In
our case, the complex sorting function within the Greedy algorithm tries to
schedule jobs of the user groups 1 and 2 earlier unless jobs from other user
groups are already waiting for a very long time. This sorting criterion is
modeled according to our scheduling objective. For more details on the used
sorting criterion, see Ernemann et al. [8].

2.2 Evolution Strategies

To integrate those scheduling algorithms into an appropriate rule base system,
we use Evolution Strategies, see Beyer and Schwefel [2], which are a subclass of
Evolutionary Algorithms. Those algorithms are stochastic search methods that
mimic the behavior of natural biological evolution. They operate on a popula-
tion of µ individuals and apply genetic operators like selection, mutation and
recombination to breed λ offspring individuals from those µ parent individuals.
Within this paper, we do not provide a deeper insight into Evolution Strategies.
Furthermore, for all details about specific genetic operators, we simply refer to
references in the remainder of this paper.

2.3 Fuzzy Systems

Within this work, we aim to generate rule based scheduling systems. To this end,
several approaches can be used. On the one hand, a static approach of defining
strict boundaries for certain features and assigning a corresponding combination
of sorting criteria and scheduling algorithm is possible. On the other hand, one
may apply the more flexible approach of generating a Genetic Fuzzy System.

In our case, neither precise knowledge about the assignment of certain schedul-
ing strategies to certain situations nor training data are available. Furthermore,
individual scheduling decisions cannot be evaluated directly, but only after all
jobs have been assigned to resources, see Section 1. Hence, the award for the as-
signment of scheduling strategies to situations is given by a critic only at the end
of scheduling a whole workload trace. Furthermore, the generation of an appro-
priate situation classification is not known in advance and has to be generated
implicitly during the generation of the rule based scheduling system.

3 Scheduling Objectives and Features

Within this section, we will introduce several simple scheduling objectives, which
have been used to construct more complex evaluation functions for the whole
scheduling procedure. However, our methodology is not limited to the presented
objective and can be extended to any other criteria.
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Furthermore, we apply several features to classify possible scheduling situ-
ations within our rule based scheduling system. The concept of this work can
be extended to other features as well. Note that objectives evaluate the whole
scheduling process at the end of a simulation while features only describe the
current state of the system.

As mentioned in Section 1, the complex objective function of a machine
provider in our case is based on individual properties of users or user groups.
Therefore, both the objective and the feature set refer to those properties and
to the overall performance of the whole system.

First, we introduce some definitions and notations.

– (pj · mj) as the Resource Consumption of a single job j,

– τ the set of all n jobs within our scheduling system,

– ξ(t) the set of already finished jobs at time t,

– π(t) the set of running jobs at time t, and

– ν(t) the set of waiting jobs at time t.

3.1 Scheduling Objectives

During the development of scheduling systems, an evaluation function is needed
in order to describe the achieved quality. We generate our evaluation function
by combining simple, commonly used scheduling objectives. Within this work,
we exemplarily use 7 of those simple objectives.

Overall Utilization (U):

U =

∑

j∈τ

pj · mj

m ·
(

max
j∈τ

{Cj(S)} − min
j∈τ

{Cj(S) − pj}
) (1)

Average Weighted Response Time (AWRT) over all jobs of all users:

AWRT =

∑

j∈τ

pj · mj · (Cj(S) − rj)

∑

j∈τ

pj · mj

(2)

AWRT objective for user groups 1 to 5:

AWRTi =

∑

j∈τ

pj · mj · (Cj(S) − rj) · ̺i(j)

∑

j∈τ

pj · mj · ̺i(j)
, i ∈ {1, 2, . . .5} (3)

As we have the AWRTi for the 5 user groups, the AWRT for all users, and the
utilization U the complex objective function in our system can be defined by
using those 7 simple objectives.
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3.2 Feature Definitions

Next, we present 7 features that are used for classification of system states within
our rule base scheduling system.

In order to define our first feature, the Average Weighted Slowdown, we need
to introduce the Slowdown (SDj) for a single job j within schedule S:

SDj =
Cj(S) − rj

pj

(4)

SDj will reach its minimum value of 1 if job j does not wait before it starts
execution. Then the release date is identical with the job’s start time. Normally,
the range of this feature can be limited to the interval of [1,100] as values greater
than 10 occur very rarely in practice.

The feature Average Weighted Slowdown (SD) for all already processed jobs
j ∈ ξ(t) uses the same weighting as defined for the AWRT.

SD =

∑

j∈ξ(t)

pj · mj · (Cj(S) − rj)

∑

j∈ξ(t)

p2
j · mj

(5)

This measure indicates the average delay of jobs between their release and start
time for the past. Further, this feature represents the scheduling decisions in
the past as only already finished jobs are used to calculate this feature. Here,
we have not limited the window for SD. In practical cases, a limitation to, for
instance, the last month may be appropriate.

The Momentary Utilization (Um) of the whole parallel computer at time t:

Um =

∑

j∈π(t)

mj

m
(6)

The Proportional Resource Consumption of the Waiting Queue for User
Group i (PRCWQi):

PRCWQi =

∑

j∈ν(t)

p̄j · mj · ̺i(j)

∑

j∈ν(t)

p̄j · mj

(7)

Note that the real processing time pj is unknown for the jobs in the waiting
queue. Therefore, we use the estimated processing time p̄j instead. PRCWQi rep-
resents the relative part of the estimated resources consumption of user group i
to all jobs within the waiting queue. Remember, we are using 5 user groups
within our system. Hence, those five feature values represent the expected fu-
ture of the system. Using these features, the scheduling system is enabled to
react on a changed demand of the various user groups.
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4 Rule Based Scheduling Systems

As stated in Section 1, local scheduling decisions influence the allocation of fu-
ture jobs. Hence, the effect of a single decision cannot be determined individually.
Therefore, the whole rule base is only evaluated after the complete scheduling
of all jobs belonging to a workload trace. This has a significant influence on
the learning method to generate this rule base as the evaluation prevents the
application of a supervised learning algorithm. Instead, the reward of a decision
is delayed and determined by a critic. Furthermore, the generation of an appro-
priate scheduling situation classification is not known in advance and has to be
generated implicitly during the generation of the rule base scheduling system.

For a rule based scheduling approach, every possible scheduling state must be
assigned to a corresponding situation class that is described using the already
introduced features. A complete rule base RB consists of a set of rules Ri.
Each rule Ri contains a conditional and a consequence part. The conditional
part describes the conditions for the activation of the rule using the defined
features. The consequence part represents the corresponding scheduling strategy
recommendation.

In order to specify all scheduling states in an appropriate fashion each rule
defines certain partitions of the feature space within the conditional part. The
rule base system must contain at least one activated rule for each possible system
state.

As already mentioned, the scheduling strategy specifies

1. a sorting criterion for the waiting queue ν(t) and
2. a scheduling algorithm that uses the order of ν(t) to schedule one or more

jobs.

We use the term strategy to describe the whole scheduling process that consists
of both steps. An algorithm only describes the procedure of the second step that
uses the already sorted waiting queue.

First, the chosen sorting criterion is used to determine the sequence of jobs
within the waiting queue. Second, the selected scheduling algorithm is used to
find a processor allocation for at least one job of the sorted waiting queue.
We have chosen four different sorting criteria. Those sorting criteria are only
examples that are used to demonstrate our rule based scheduling approach. Other
sorting criteria are possible and could easily be incorporate into the system. Our
four sorting criteria are:

– Increasing Number of Requested Processors: Preference of jobs with little
parallelism and therefore higher utilization. This sorting provides the poten-
tial gain of being able to insert many jobs into the current schedule as jobs
with a smaller amount of requested processors are often easier to schedule.

– Increasing Estimated Run Time: Preference of short jobs and therefore higher
job throughput.

– Decreasing Waiting Time: Preference of long waiting jobs. This sorting cri-
terion provides a higher fairness as the jobs are processed according to their
submission. Jobs with a higher waiting time are selected first.
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– Decreasing User Group Priority: Preference of jobs from users with a higher
resource demand. The sorting by user groups provides a higher ranking for
all jobs of users with a higher overall resource demand according to their
user group assignment. This criterion reflects our objective function.

The selected scheduling algorithm is one of the four methods presented in
Section 2.1. Note that Greedy is already a complete scheduling strategy while
the other scheduling algorithms of Section 2 must be supplement with a sorting
criterion of ν(t). Again, the set of scheduling algorithm can be extended for other
rule base systems. The general concept of the rule based scheduling approach is
depicted in Figure 1.

As 4 different sorting criteria with 3 possible scheduling algorithms and the
combined Greedy strategy are available, we have to chose one of 13 strategies
for each possible system state. However, it is not practicable to test all possible
assignments in all possible states. For example, lets assume a very coarse division
of each feature into only 2 partitions. Then 13 possible strategies and 7 features
result in 1327 ≈ 3.84·10142 simulations if all combinations in all possible situation
states are tested. Additional problems occur during the generation of a rule based
scheduling system as the number and reasonable partitions of features, that are
required to describe the situation classes in an appropriate way, are generally
unknown in advance.

Hence, we introduce three possible approaches to derive a rule based schedul-
ing system using only a limited number of simulations.

4.1 Probability Driven Rule Base Development

A rigid rule base system uses NF features with a fixed number of intervals for
each feature ω. That is, each feature ω has (Npart,ω − 1) static bounds, that
divide the possible value range of ω into Npart,ω partitions. The static bounds
are specified before the assignment of sorting criteria and scheduling algorithms
to the various situation classes are extracted. The concept of such fixed partitions
is shown in Figure 2.

Generally, a larger number of partitions Npart,ω of a feature ω potentially
leads to a more accurate rule set while more situation classes must be optimized.
Overall, this results in Nr situation classes that must be provided to cover all
possible system states with

Nr =

NF∏

ω=1

Npart,ω .

The described rigid rule based system activates only a single rule in any
system state. Hence, the output recommendation of this single activated rule is
the output of the whole scheduling system.

In this work, we assume one division of the intervals of SD and PRCWQ1

to PRCWQ5 respectively. This leads to two partitions in each case. Further, we
use two divisions for the Um feature, resulting in three partitions. Overall, this
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Fig. 1. General Concept of the Rule Based Scheduling Approach.
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Fig. 2. Example partitioning of the feature space and the resulting set of rules R1 . . . R4.

produces (Nr = 26 · 3 = 192) different situation classes that are needed to build
a complete rule base.
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Furthermore, we have evaluated several different division values for the situ-
ation class features. The partitions which achieved the best results are used for
the rigid rule base system development,see Table 1.

Feature Intervals

SD [1-2], ]2-100]

Um[%] [0-75], ]75-85], ]85-100]

PRCWQ1[%] [0-20], ]20-100]

PRCWQ2[%] [0-20], ]20-100]

PRCWQ3[%] [0-25], ]25-100]

PRCWQ4[%] [0-25], ]25-100]

PRCWQ5[%] [0-25], ]25-100]

Table 1. Feature Partitions for the Rigid Rule Based Scheduling Systems.

Such a rigid rule based scheduling system has the advantage of a simple
implementation and easy interpretation. Future scheduling development may
benefit from knowledge gained through this kind of interpretation. The selected
scheduling algorithms and sorting criteria for a certain scheduling situation can
directly be extracted from the corresponding rules without further computation.

Rule bases are generated by assigning potential scheduling strategies to rules
in a random fashion such that each scheduling strategy is assigned to each rule
the same number of times. Hence, not all rule bases are generated in a completely
random way. Remember that the conditional part is rigid and does not vary.
Thus, a single rule describes a single scheduling situation class completely.

Then we use those rule bases to produce schedules for the given workload
data and evaluate those schedules with the help of the complex scheduling ob-
jective. Thus, each schedule results in a scalar objective value. The assignment
of a special scheduling strategy to a rule is evaluated by adding the scalar objec-
tive values of all schedules that were generated using this assignment. Finally,
we build the resulting rule base by assigning the scheduling strategies with the
smallest sum of the objective values to the individual rule as we assume a mini-
mization of the objective function. This approach is able to reduce the number
of required simulations significantly as we only approximate the optimal assign-
ments. In general, the performance can be increased by generating more rule
bases. However, the trade-off between a better performance and more required
simulations should be kept in mind.

A parameter p describes how often a scheduling strategy is assigned to a
single rule. This parameter p influences the number of required simulations that
is given by the product of the number of possible scheduling strategies (NΩ) and
the parameter p. In our simulations p = 50 turned out to be a good compromise
between the required number of simulations and the scheduling quality. This
results in our case in (13 · 50 = 650) simulations which is significantly less than
the required number of simulation for all possible assignments.
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Unfortunately, the fixed division of the whole feature space has a critical influ-
ence on the performance of the scheduling system. At the moment, no mechanism
is available that automatically adjusts the defined partitions.

Using this approach, we avoid the excessive amount of simulations that must
be performed in order to generate the rule base. Further, our approach pays
attention to the cooperation aspect of the rules within the final rule base as the
evaluation of the assignment of a special scheduling strategy to the consequence
part of a rule is based on several simulations with varying strategy assignments
for all other rules.

4.2 Scheduling Strategies Based on Genetic Fuzzy Systems

The previously presented scheduling system has several drawbacks regarding the
generation of an appropriate rule based scheduling system. Mainly, the static
number of feature partitions and the static pre-defined bounds for these parti-
tions are not flexible enough and may lead to bad scheduling results. Further-
more, the whole feature space needs to be divided and appropriate scheduling
strategies assigned to each individual partition. Hence, the number of rules can-
not be varied.

Consequently, we need a method that automatically adjusts the partition of
the feature space and assigns appropriate scheduling strategies to the resulting
regions in parallel. Genetic Fuzzy Systems, see Hoffmann [17], provide the capa-
bilities to solve those problems. As already mentioned within the introduction,
our Genetic Fuzzy System uses the Pittsburgh approach to encode a whole rule
base in a single individual. Further, we parameterize the resulting system with
Evolution Strategies.

Before the different rule base encoding schemes are explained in detail, we
introduce the encoding of individual rules and detail the computation of the final
Fuzzy controller output.

Coding of Fuzzy Rules Our Genetic Fuzzy Systems are based on the tra-
ditional Takagi-Sugeno-Kang (TSK) model [30] for Fuzzy systems. The used
coding schemes and learning techniques are adapted and slightly modified from
the work of Juang et al. [21] and Jin et al. [20].

For a single rule Ri, every feature ω of all NF features is modeled from a

Gaussian Membership Function, (µ
(ω)
i , σ

(ω)
i )-GMF

g
(ω)
i (x) =

1

σ
(ω)
i

√
2π

exp







−(x − µ
(ω)
i )2

2σ
(ω)
i

2






.

In Figure 3 a sample (5,0.75)-GMF is depicted.

A feature is then represented by a pair of real values µ
(ω)
i and σ

(ω)
i . The µ

(ω)
i

value is the center of the feature GMF that is covered by the rule Ri. Therefore,
this value defines a domain in the feature space where the influence of the rule
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Fig. 3. Gaussian Membership Function with µ
(ω)
i = 5 and σ

(ω)
i = 0.75.

is very high. Note that, when using a so defined GMF as feature description, the
condition

∞∫

−∞

g
(ω)
i (z)dz = 1 ∀ i ∈ {1, . . .Nr} ∧ ω ∈ {1, . . .NF }

always holds. In other words, for increasing σ
(ω)
i values, the peak value of the

GMF decreases because the integral remains constant. Using this property of a
GMF, we are able to reduce the influence of a rule for a certain feature completely

by setting σ
(ω)
i to a very high value. Theoretically for σ

(ω)
i → ∞, a rule has no

influence for this feature anymore. With this approach, it is also possible to
establish a kind of default value that is used if no other peaks are defined in a
feature domain. Based on this feature description, a single rule can be described
by

Ri =
{

g
(1)
i (x), g

(2)
i (x), . . . g

(NF )
i (x), Ωi(Ri)

}

.

The consequence part Ωi of every rule Ri, i ∈ {1, . . .Nr}, includes a weighted
recommendation for all NΩ possible outputs. Therefore, the consequence part of
rule Ri is described by a vector

Ω(Ri) =
(
wi1 wi2 . . . wiNΩ

)
.

We restrict the possible weight values to elements of the set {−5, −1, 0, 1, 5}.
The value −5 represents a particularly unfavorable connection while 5 is partic-
ularly favorable one. The other possible weights can be interpreted accordingly.
We use a non-linear weight scaling in order to force distinct recommendations.
When considering the superposition of those weights similar weights may lead
to almost indistinguishable recommendations. Furthermore, we also include 0 as
possible weight to express that a rule behaves completely neutral with respect
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to the recommendation of a scheduling strategy for a given situation. This may
also reduce the number of overall rules.

The main advantage of using several GMFs for describing a single rule is
the automatic coverage of the possible feature space. In contrast to the rigid
approach, even one rule gives a scheduling strategy for all possible system states.
Hence, it is the focus of this approach to find a meaningful set of Nr rules that
generates a good rule base system RB. Thus,

RB = {R1, R2, . . . RNr
}

is a complete rule base consisting of Nr rules.

Computation of the Controller Decision For a given system state, we
compute the superposition of the weighted output consequence parts of all rules.
The system state is represented by the actual feature vector

x =
(
x1 x2 . . . xω . . . xNF

)T

of NF feature values. Then we compute the degree of membership φi(xω) =

g
(ω)
i (xω) of the ω-th feature of rule Ri for all Nr rules and all NF features. The

multiplicative superposition of all these values as ”AND”-operation leads to an
overall degree of membership

φi(x) =

NF∧

ω=1

g
(ω)
i (xω) =

NF∏

ω=1

1

σ
(ω)
i

√
2π

exp

{

−(xω − µ
(ω)
i )2

2σ
(ω)2

i

}

for rule Ri. For all Nr rules together, the corresponding values φi(x) are collected
in a membership vector

φ(x) =
(
φ1(x) φ2(x) . . . φNr

(x)
)
.

Next, we construct a matrix C
e

NF ×Nr of the weighted consequences Ω(Ri),

i ∈ {1, . . .Nr} of all rules by using the weighted consequence vectors for all
individual rules Ri. This yields

C
e

NF ×Nr =
[
Ω(R1) Ω(R2) . . . Ω(RNr

)
]

.

Now, we can compute the weight vector Ψ by multiplying the membership
vector φ(x) by the transposed matrix C

e

T :

Ψ = φ(x) · C
e

T =
(
Ψ1 Ψ2 . . . ΨNΩ

)
.
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The vector Ψ contains the superpositioned weight values for all NΩ possible
scheduling strategy recommendations, that is, Ψ contains 13 elements.

Finally, we choose the scheduling strategy with the highest overall value as
the output of the rule base system, that is

arg max
1≤h≤NΩ

{Ψh} .

As already mentioned, within the Pittsburgh approach, each individual rep-
resents a complete rule base. We construct such a complete rule base RB with a
fixed number of rules Nr. A single rule consists of (2·NF ) elements per rule within
the conditional part. Furthermore, we include the vector Ω(Ri) for the conse-
quence part, which consists of NΩ = 13 elements. Thus, a rule based scheduling
system with constant number of rules can also be modeled using the following
encoding. As such,

ok = {

R1

︷ ︸︸ ︷

µ
(1)
1 σ

(1)
1

︸ ︷︷ ︸

GMF

, . . . , µ
(NF )
1 σ

(NF )
1 , Ω(R1)

︸ ︷︷ ︸

Ω1 ... ΩNΩ

,

R2 ... RNr
︷ ︸︸ ︷

µ
(1)
2 σ

(1)
2 , . . . , µ

(NF )
Nr

σ
(NF )
Nr

, Ω(RNr
)}

is the coding scheme of the object parameter vector ok of individual ak which
is a complete rule base. Hence, the number of elements u within the object
parameter vector ok of the individual ak can be computed by

u = Nr · (2 · NF + NΩ).

We have chosen a non-isotropic mutation, see Bäck and Schwefel [2], as this
allows the individual adaptation of the mutation for the different dimensions.
Therefore, each object parameter of the individuals consists of a correspond-
ing strategy parameter that specifies its mutation strength. Further, we apply a
standard Evolution Strategy with µ = 3 parent and λ = 21 offspring individu-
als. The ratio of 1/7 is suggested by Schwefel [26]. Further, we do not use any
recombination.

Within our Evolution Strategy, we used 40 generations with a randomly
initialized first generation. Our (3+21)-Evolution Strategy leads to 3+(40·21) =
843 evaluations for the development of a single rule base.

We use a constant number of rules Nr = 10 for each rule base. This results
in a constant number of object and strategy parameters within each individual.
Hence, u = Nr · (2 · NF + NΩ) = 10 · (2 · 7 + 13) = 270 parameters must
be determined. Thus, the two exogenous learning rates for the non-isotropic
mutation are defined as:

τ0 =
1√
2 · u

= 0.043, and τ1 =
1

√

2
√

u
= 0.174,

see Bäck and Schwefel [2].
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Coevolutionary Genetic Fuzzy System Development As presented in Sec-
tion 4, the rule based scheduling system needs to determine for each scheduling
state a corresponding sorting criterion and a scheduling algorithm. In the pre-
viously introduced rule based scheduling systems, a whole scheduling strategy,
consisting of both, a sorting criterion and a scheduling algorithm, was assigned
to the different scheduling states. However, this combined assignment is not nec-
essary. Moreover, the assignment of the same sorting criterion to two scheduling
states within the features space does not always lead to the assignment of the
same scheduling algorithm. This motivates the usage of a Coevolutionary Algo-
rithm as the assignment problem can easily be decomposed into two subproblems.

Concept of Cooperative Coevolutionary Algorithms Coevolutionary Algorithms
potentially lead to better solutions compared with standard Evolutionary Algo-
rithms, if the problem can be decomposed into two subproblems, see for example
Jansen et. al [19]. Furthermore, Potter and De Jong [25] have proven that Co-
eveolutionary Algorithms achieve better results with fewer generations compared
with standard Evolutionary optimization techniques.

In this work, we apply the commonly called Cooperative Coevolutionary
Algorithm (CCA), see Paredis [24]. This model uses two distinct species. Both
species are genetically isolated. Hence, the genetic operations are only applied
to individuals of the same species. The two different species are evolved in two
different populations in parallel by using standard Evolution Strategies. However,
during the fitness evaluation, two individuals of each species must cooperate. In
general, this concept allows a larger number of species.

First, two species with µ individuals each are randomly generated. Then, the
individuals of both species are evaluated by randomly combining two individuals,
one from each species. Note that other selection schemes are also possible and
discussed in the literature, see for example Panait et al. [22]. However, those
methods need more evaluations and additional simulations in our case. In order
to avoid this effort, we use our simple heuristic. After evaluation, the genetic
operators produce λ offsprings for each species separately. Then, the resulting
offspring individuals are again evaluated by a randomly chosen cooperation.
Finally, normal evolutionary selection determines the next parent generation.

Rule Based Scheduling Development by applying Coevolutionary Algorithms As
already mentioned, our scheduling problem can be decomposed into two separate
subproblems. This concept is shown in Figure 4. Contrary to the general rule
based scheduling, see Figure 1, we use two separate rule bases within the same
feature space. One determines the sorting criterion depending on the system state
and the other calculates the scheduling algorithm. However, the partitioning of
this feature space differs between the two species. To this end, the different

GMF-µ
(ω)
i and GMF-σ

(ω)
i values are determined separately for the two species.

The resulting scheduling system is expected to react on certain system states
very accurately.
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Fig. 4. General Concept of the Rule Based Scheduling Approach with Dedicated Rule
Bases for Scheduling and Sorting.

Such a coevolutionary approach yields several potential advantages for the
resulting scheduling system and for the extraction process of appropriate rule
bases.

First, each of the two separate rule bases has fewer output recommendations.
In detail, for the sorting criterion as well as for the scheduling algorithm, we have
only NΩ = 4 possible output recommendations instead of 13 as in the combined
scenario. This reduces the length of the individuals within the populations and
enables a better and faster adaptation. However, note that the sorting criterion
is redundant if the Greedy scheduling algorithm is selected since Greedy includes
its own sorting. Second, as the feature space partition can be optimized for both
species separately, fewer rules might be required for each species.

The Evolution Strategies for both populations are identical. We apply the
Pittsburgh approach with the same genetic operators and no recombination for
both populations. In detail, we use a constant number of rules Nr = 10 and a
(3+21)-Evolution Strategy for both populations. The optimization is limited to
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40 generations. Consequently, each individual within the populations consists of

u = Nr · (2 · NF + NΩ) = 10 · (2 · 7 + 4) = 180

object parameters. Hence, we adapt the learning rates for the non-isotropic mu-
tation to

τ0 =
1√
2 · u

= 0.053, and τ1 =
1

√

2
√

u
= 0.193,

see Bäck and Schwefel [2].

5 Evaluation

For the evaluation, we execute various discrete event simulations with real paral-
lel computer workload traces. To this end, six well known workloads are selected.
They were recorded at the Cornell Theory Center (CTC) [18], the Royal Insti-
tute of Technology (KTH) [23] in Sweden, the Los Alamos National Lab (LANL)
[11] and the San Diego Supercomputer Center (SDSC 00/ SDSC 95/ SDSC 96)
[12, 32]. Each of these workloads provides information about the job requests for
the computational resources. In order to make those workloads comparable they
are scaled to a standard machine configuration with 1024 processors as described
by Ernemann et al. [9]. The characteristics of the used workloads are presented
in Table 2.

Identifier CTC KTH LANL SDSC 00 SDSC 95 SDSC 96

Machine SP2 SP2 CM-5 SP2 SP2 SP2
Period 06/26/96 -

05/31/97
09/23/96 -
08/29/97

04/10/94 -
09/24/96

04/28/98 -
04/30/00

12/29/94 -
12/30/95

12/27/95 -
12/31/96

Processors (m) 1024 1024 1024 1024 1024 1024
Jobs (n) 136471 167375 201378 310745 131762 66185

Table 2. Scaled Workload Traces from Standard Workload Archive [13] using the
Scaling Procedure by Ernemann et al. [9].

As no real life objective functions are available from the workload traces, we
exemplarily use the objective function (fobj = 10 ·AWRT1 +4 ·AWRT2). Clearly,
this objective prioritizes user groups 1 and 2, with user group 1 having a higher
priority than user group 2.

As already mentioned, we present our achieved results relative to the Pareto
front (PF) of all feasible schedules for the simulated workloads. Noteworthy, the
Pareto front was generated off-line and it cannot be taken for granted that this
front can be reached by our proposed online scheduling systems at all. Therefore,
we refer to this front as a reference for the best achievable solution. Note that our
Pareto front is only an approximation as it is derived by heuristics. Although
we do not know the real Pareto front, the high density of our approximation
indicates that the quality of the approximation is very good, see Figure 7.
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In Table 3, the absolute results are presented. We show the AWRT values for
the user groups, the objective and the overall Utilization. It is obvious that all

Approach AWRT1 AWRT2 AWRT3 AWRT4 AWRT5 U fobj

PF 49652.04 56330.98 60691.71 59698.30 32726.87 66.99 721844.268
EASY 59681.28 64976.07 50317.47 46120.02 31855.68 66.99 856717.0
PITTS 49639.195 56722.796 49541.757 59212.093 81268.331 66.99 723283.134
CCA 49676.087 56522.699 48723.312 57488.074 74983.133 66.99 722851.666
PROB 53780.183 59448.484 53185.9 53417.769 45390.11 66.99 775595.766

Table 3. AWRT, fobj (in Seconds), and U (in %) of the Pareto Front (PF), EASY
Scheduling, the Pittsburgh Approach (PITTS), the Cooperative Coevolutionary Algo-
rithm (CCA), and the Probability Procedure (PROB) for the CTC Workload.

proposed concepts achieve better results than the EASY standard algorithm. We
restricted the comparison to EASY as this is in most cases the best scheduling
algorithm for the examined workloads with respect to the AWRT objective. Note
that U remains constant and is not affected by the rule based scheduling concept
although it is not explicitly included in the objective. As such we are able to
prioritize different user groups without any reduction of the system utilization.
Further, the results show that we are very close to the off-line generated Pareto
front, see Figure 7.

In Figure 5 we presents the results for all six examined workloads. The very
simple and rigid probability driven procedure is already able to improve the
objective significantly. Apart from the KTH workload the rule system improves
the objective value by 10 % on average compared to EASY scheduling.

However, the two Genetic Fuzzy Systems outperform this procedure. It is
noteworthy that the on-line rule based scheduling systems produce schedules
almost as good as those achieved in the off-line case. Despite the approximative
character of the Pareto front, one can reasonably say that the results are quite
close to the fronts of all workloads.

Workload AWRT1 AWRT2 AWRT3 AWRT4 AWRT5 U fobj

CTC 16.83 12.7 1.54 -28.39 -155.11 0 15.58
KTH 25.35 8.44 -57.64 -199.49 -744.53 0 19.82
LANL 19.75 14.84 -24.09 -47.2 -269.06 0 18.24
SDSC 00 60.83 42.37 -12.72 -3234.66 -14360.76 -5.57 55.79
SDSC 95 9.05 0.08 -20.7 -43.56 -38.55 0 6.37
SDSC 96 1.35 1.2 -20.03 -26.15 -4.09 0 1.31

Table 4. AWRT and Utilization Improvements Achieved with the Genetic Fuzzy Sys-
tem in Comparison to the EASY Scheduling Algorithm (in Percent).

The results listed in Table 4 demonstrate that the objective improvements
really result in a shorter AWRT for the desired user groups. As we have al-
ready shown that the results are close to the Pareto front we now compare the
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Fig. 5. Objective Improvements of all 3 Approaches in Comparison to EASY Schedul-
ing.

Genetic Fuzzy System, created regarding to the Pittsburgh approach, with the
EASY standard algorithm. The improvements of the AWRT in the gray shaded
columns show that it is possible to shorten AWRT1 and AWRT2 significantely
compared to EASY for most workloads. Apart from the SDSC 00 workload this
prioritization is realized without deterioration of the utilization.

In Figure 6, we exemplarily show the achieved AWRT improvements for all 3
approaches for the CTC workload. We can realize the desired group prioritization
with all proposed approaches. Note that we limited this chart at the y-axis as the
AWRT values for user group 5 are extremely large. As the utilization remains
constant these user groups have to pay the price for the short AWRT of the
favored user groups. This is acceptable as we did not take these user groups into
account for our objective formulation.

Finally, we show in Figure 7 the AWRT values of the two user groups to
prioritize. This chart also depicts the Pareto front of all feasible schedules. Re-
member that we have 7 simple objectives. Each point within this chart represents
a feasible schedule that is not dominated by any other generated feasible solution
within the 7-dimensional objective space. As we show only a projection of the
actual 7-dimensional Pareto front approximation, the elements cover an area in
this 2-dimensional chart.

As the EASY standard algorithm does not favor any user groups, the achieved
AWRT values are located in the mid of the projected front area. With the proba-
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Fig. 6. AWRT Improvements of all 3 Approaches in Comparison to EASY Scheduling
and the CTC Workload.

bility driven procedure, it is already possible to move the AWRT values towards
the actual front. Obviously, this approach is capable to improve AWRT2 sig-
nificantly but it does only slightly improve AWRT1. However, the two proposed
Genetic Fuzzy Systems almost reach the front in our example. Thereby, the CCA
leads to a little bit better results than the classic Pittsburgh approach.

5.1 Estimation of Computational Effort to Establish the Rule

Based Scheduling System

Our chosen objective is just an example and the proposed methods can be used
with any other objective as well. However, we restricted our analysis to these
example as this already required a high computational effort. For the probabil-
ity driven procedure, we simulated (50 · 13 = 650) rule systems per workload.
Of course this value is scalable by choosing a smaller number of guaranteed
participations, but values smaller 50 did not yield good results. Nevertheless,
this procedure established the rule bases with a comparatively small number of
simulations.

The Genetic Fuzzy Systems are realized by an (3+21)-Evolution Strategy. In
order to obtain good results, we simulated 40 evolutionary generations. There-
fore, (3 + 21 · 40 = 843) objective evaluations per workload were necessary.
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Further, a single simulation of a complete workload takes about 4 hours com-
puting time on average. For the Genetic Fuzzy System this resulted in 4 months
computing time per workload and objective assuming only one available machine
for the scheduling strategy generation.

Obviously, we are only able to present our results here because we used a
compute cluster with 120 processors. With this installation, we can simulate all
objective evaluations in parallel as they are completely independent from each
other. Therefore, the simulation of one objective and one workload takes approx-
imately one week. Furthermore, the parallel computation of the six workloads
can also be realized. Despite the highly parallel execution of our simulations it
still took more than 4 months to obtain the results presented in this paper.

Nevertheless, the presented effort estimates are only related to the generation
of the rule bases. But remember that the execution of our scheduling algorithm
in the runtime environment is not slower than the execution of a conventional
scheduling algorithm.

6 Conclusion

In this paper, we have presented a novel approach to automatically generating
online scheduling systems for a complex provider defined objective. The schedul-
ing systems are based on rules that include standard scheduling algorithms. We
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used simulations with workload traces from existing installations during the de-
velopment of the systems and during the evaluation process.

Even for a rather simple scheduling objective that prioritizes some user
groups over others, we have demonstrated that a probability driven assignment
procedure already leads to rule bases that typically produce better scheduling
results than existing standard algorithms. The more sophisticated approaches
using Genetic Fuzzy Systems significantly improve the achieved quality of the
schedules. First, we compared our achieved results with the EASY standard
scheduling algorithm. We achieved an improvement of about 10 % for our objec-
tive function with the adopted rule based scheduling system. Second, we com-
pared our approaches with the off-line generated Pareto front of all feasible
schedules. Here, we are even able to almost reach this front with the proposed
Genetic Fuzzy Systems.
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