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Abstract. In this paper we present an initial analysis of job arrivals in a produc-
tion data-intensive Grid and investigate several traffic models to characterize the
interarrival time processes. Our analysis focuses on the heavy-tail behavior and
autocorrelation structures, and the modeling is carried out at three different levels:
Grid, Virtual Organization (VO), and region. A set of m-state Markov modulated
Poisson processes (MMPP) is investigated, while Poisson processes and hyperex-
ponential renewal processes are evaluated for comparison studies. We apply the
transportation distance metric from dynamical systems theory to further charac-
terize the differences between the data trace and the simulated time series, and
estimate errors by bootstrapping. The experimental results show that MMPPs
with a certain number of states are successful to a certain extent in simulating the
job traffic at different levels, fitting both the interarrival time distribution and the
autocorrelation function. However, MMPPs are not able to match the autocorre-
lations for certain VOs, in which strong deterministic semi-periodic patterns are
observed. These patterns are further characterized using different representations.
Future work is needed to model both deterministic and stochastic components in
order to better capture the correlation structure in the series.

1 Introduction

Performance evaluation of computer systems, such as comparing different scheduling
strategies on parallel supercomputers, requires the use of representative workloads to
produce dependable results [9, 13]. On single parallel machines, a significant amount of
workload data has been collected [33], characterized [23, 27], and modeled [7, 25, 41].
Benchmarks and standards are also proposed for workloads in evaluations of parallel
job schedulers [6].

In a production Grid environment, however, few work has been done because the
Grid infrastructure is still emerging and it is difficult to collect traces at the Grid level.
Let us take the LHC Computing Grid (LCG) [21] as an example. The LCG testbed
currently has approximately 180 active sites with a total number of 24,515 CPUs and
3 Petabytes storage, which is primarily used for high-energy physics data processing.
Resource brokering or superscheduling in such an environment is challenging given
the fact that Grid schedulers do not have control over the participating resources. In
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Fig. 1. Job distribution (cern - EU Center for
Nuclear Research, fnal - Fermi Lab, the rest are
country domain names).
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Fig. 2. Daily arrival rate in three consecutive
days in November, 2005. The time is in Green-
wich Mean Time (GMT).

such contexts different scheduling and resource management systems have been pro-
posed [31]. The current scheduling system deployed in LCG is a distributed version
of the centralized resource broker, which originated in the EU DataGrid. It has multi-
ple resource broker instances distributed in different regions/countries [11]. The Virtual
Organization (VO) based scheduler with usage SLAs is proposed in a similar comput-
ing environment with similar workloads [10]. The evaluations of these different su-
perscheduling architectures and strategies require proper workload models at different
levels.

In this paper we present an initial analysis and modeling of Grid job arrival patterns.
Our data is obtained via the Real Time Monitor [36] in the LCG production Grid. Our
analysis focuses on the heavy-tail behavior and autocorrelations of job arrival processes.
The modeling is carried out at the Grid, VO, and region level for facilitating evaluations
of different scheduling strategies. A set of m-state Markov modulated Poisson processes
(MMPP) is investigated for modeling, while Poisson processes and hyperexponential
renewal processes are also evaluated for comparison. We apply the transportation dis-
tance metric from dynamical systems theory [28] to further characterize the differences
between the data trace and the simulated time series.

The rest of the paper is organized as follows. Section 2 describes the workload,
analyzes the daily arrival rate and summary statistics from different VOs and users,
and presents the self-similarity measurements in terms of the Hurst parameter and the
autocorrelation function (ACF). Section 3 introduces the selected traffic models and
describes how to estimate parameters for each model. The transportation distance metric
as an analysis tool is also presented. Section 4 presents the detailed modeling of job
arrivals at the Grid, VO, and region level. The goodness of models are evaluated by the
interarrival time distribution, the autocorrelation function and transportation distance
of simulated traces. Section 5 discusses related work in the analysis and modeling of
arrival processes in a broader perspective. Conclusions and future work are presented
in Section 6.



2 Statistical Analysis

2.1 Workload Description

As mentioned above, LCG is a worldwide production Grid developed and operated for
physics data processing. Almost all the jobs are trivially parallel tasks, requiring one
CPU to process certain amount of data. Most of the jobs come from multiple large-
scale physics experiments, such as lhcb, cms, atlas and alice. These experiments are
also named as Virtual Organizations (VOs), in which users worldwide participate. The
computing and storage resources define local sharing policies based on VOs and users.
At the meta level workloads are managed and routed to resources via resource brokers
(RBs), which do the matchmaking for jobs and try to balance the load at a global level.

There are resource brokers distributed over the Grid by regions, such as one in
Germany, one in the UK, and so on. A majority of jobs come from CERN in Switzerland
and there are around eight RB instances at CERN to share the workloads. The Real
Time Monitor developed by Imperial College London [36] monitors jobs from all the
major RBs in the LCG testbed, therefore the trace data it collects is representative at the
Grid level. The job characteristics includes VO name, user DN (Distinguished Name),
RB name, UI (User Interface), CE (Computing Element), submission time, run time
and status. These attributes enable us to categorize, analyze and model job arrivals at
different levels.

The LCG Real Time Monitor was in operation since October, 2005 and we use a
period of eleven consecutive days (from Nov 20th to 30th, 2005) without missing data3

in this study. Figure 1 shows the number of jobs in each day, number of jobs coming
from different regions, and number of jobs in CEs where jobs get executed. We can see
that a total number of 188,041 jobs distributed quite evenly over the period. More than
75% of jobs come from User Interfaces at CERN while the rest originated in around
twenty different countries. The workloads are routed by resource brokers to computing
resources in more than twenty countries, in which jobs are distributed in quite different
orders than job origins. Job turnaround times are frequently used as the metric for the
resource brokers to rank resources after matchmaking.

2.2 Job Arrival Analysis

Figure 2 shows the daily arrival rate in three consecutive days (GMT) on LCG in
November, 2005. As we can see at the Grid level there are no clearly observable daily
patterns, which are evident on single parallel machines [7, 23, 25]. Jobs are scattered
in daily hours more evenly with peaks in the middle day or in the afternoon. The even
distribution of jobs is explainable by the fact that users are simultaneously active across
different time zones in the Grid. The peaks in the middle day or in the afternoon are
mainly attributed to users at CERN, who submit a majority of jobs during the period
under study.

Figure 3 and 4 show the number of jobs submitted by VOs and users. There is
an interesting pattern that the job distribution for VOs can be fitted by an exponential

3 Only jobs submitted to RBs are recorded and those who directly go to the Computing Elements
are not available.
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function quite well. The top five VOs, namely lhcb, cms, dteam, alice, and atlas, submit
almost 90% of the total number of jobs. The job distribution for users decreases even
more sharply and a two-phase hyperexponential function has a better fit. The top 10%
of users contribute to 90% of the whole workload and the top three account for 50%.
This type of pattern is also observed in many social and physical phenomena, such
as database transactions and Unix file sizes [13]. It is argued in [2] that it essentially
originates in a priority selection mechanism between tasks and non-tasks waiting for
execution. From a modeling perspective this pattern makes the VO an appropriate level
for categorization since the limited number of main components represent most of the
workloads.

2.3 Self-similarity

Self-similarity means that a process looks statistically the same over a wide range of dif-
ferent scales and is closely related to so-called “bursty” behavior and long range depen-
dence [4]. The degree of the self-similarity of a stochastic process can be summarized
by the Hurst parameter (0 < H < 1). A value of H > 0.5 indicates self-similarity with



Fig. 7. MMPP models of state 2, 3, and 4, respectively.

positive near neighbor correlation and the more H is close to 1, the more self-similar
the process. As there is no consensus on how to best estimate the Hurst parameter,
we use three estimation techniques, namely R/S statistic, variance plot, Periodogram,
and try to find agreement among them4. Figure 5 shows the means and standard devia-
tions of Hurst parameter estimates of the interarrival time processes for the Grid trace
and different VOs. We can see that the overall Grid job arrivals are self-similar with
H ≈ 0.84. The VO lhcb is also strongly self-similar with the Hurst parameter reaching
0.85. The other VOs show moderate to weak self-similarity. These observations are also
confirmed if we look at the autocorrelation function (ACF) of interarrival times, illus-
trated in Figure 6. Strongly self-similar processes (overall, lhcb) have a longer memory
than the weakly self-similar counterparts (dteam, atlas), whose ACFs quickly approach
zero as the lag increases. Autocorrelation is used as one of the statistical properties to
measure the goodness of fit in the following sections.

3 Methodology

Job traffic can be mathematically described as a point process, which consists of a se-
quence of arrival instances. Two equivalent descriptions of point processes are counting
processes and interarrival time processes [5, 17]. In this paper we describe the traffic
using the interarrival time process, sometimes also called the embedded process. Based
on the analysis of job arrivals, several basic principles can be derived for model se-
lection. Firstly, models should be parameterizable and flexible enough to represent the
Grid job traffic at different levels. Secondly, models must be able to approximate both
the interarrival time distribution (heavy-tail behavior) and the autocorrelation function.
Thirdly, models should be analytically simple and there should exist proven methods
to estimate their parameters from the data trace. Bearing these points in mind, we in-
vestigate a set of m-state Markov modulated Poisson processes to model job arrivals.
Phase-type renewal processes and Poisson processes are also evaluated for comparison.
We discuss the selected models and their corresponding parameter estimation methods

4 Estimations of the Hurst parameters are calculated using a self-similarity analysis tool called
SELFIS [19].



in this section. The recently proposed transportation distance metric for the comparison
of two time series is presented as a tool to further characterize the goodness of fit.

3.1 Markov Modulated Poisson Processes

A Markov modulated Poisson process (MMPP) is a doubly stochastic Poisson process
whose intensity is controlled by a finite state continuous-time Markov chain (CTMC).
Equivalently, an MMPP process can be regarded as a Poisson process varying its arrival
rate according to an m-state irreducible continuous time Markov chain. Following the
notations in [14], an MMPP parameterized by an m-state CTMC with infinitesimal
generator Q and m Poisson arrival rates Λ can be described as

Q =


−σ1 σ12 ... σ1m

σ21 −σ2 ... σ2m

. . ... .
σm1 σm2 ... −σm

 , (1)

σi =
m∑

j=1,j 6=i

σij , (2)

Λ = diag(λ1, λ2, ..., λm). (3)

MMPPs with state 2, 3, and 4 are illustrated in figure 7. The MMPP model is commonly
used in telecommunication traffic modeling [16, 17] and has several attractive proper-
ties, such as being able to capture correlations between interarrival times while still
remaining analytically tractable. We refer to [14] for a thorough treatment of MMPP
properties as well as its related queuing network models.

A natural problem which arises with the applications of MMPPs is how to esti-
mate its parameters from the data trace. In [37] methods based on moment matching
and maximum likelihood (MLE) are surveyed and it is proven that MLE methods are
strongly consistent. In [38] Ryden proposed an EM algorithm to compute the MLE
estimates of the parameters of a m-state MMPP. Recently, Roberts et al. improved Ry-
den’s EM algorithm and extended its applicability in two important aspects [35]: firstly
a scaling procedure is developed to circumvent the need for customized floating-point
software, arising from the exponential increase of the likelihood function over time;
secondly, evaluation of integrals of matrix exponentials is facilitated by a result of Van
Loan, which achieves significant speedup. We implemented the improved version of
Ryden’s EM algorithm in Matlab and this is by far the best MLE estimator that we
can find for m-state MMPPs. Given the difficult numerical issues involved, estimation
errors could still be substantial, though. It should also be mentioned that the estimation
for higher order MMPPs is increasingly difficult, since there are more parameters to
take into account.

3.2 Hyperexponetial Renewal Processes

In a renewal process the interarrival times are independently and identically distributed
but the distribution can be general. A Poisson process is characterized as a renewal pro-
cess with exponentially distributed interarrival times. In phase-type renewal processes



the interarrival times are distributed in so-called phase-type, e.g. as a n-phase hyper-
exponential distribution. In theory any interarrival distribution can be approximated by
phase-type ones, including those which exhibit heavy-tail behavior [34].

However, a major modeling drawback of renewal processes is that the autocorre-
lation function (ACF) of the interarrival times vanishes for all non-zero lags so they
cannot capture the temporal dependencies in time series. Unlike the renewal models,
MMPPs introduce dependencies into the interarrival times so they can potentially sim-
ulate the traffic more realistically with non-zero autocorrelations.

There are special cases where an MMPP is a renewal process and the simplest one
is the Interrupted Poisson Process (IPP). The IPP is defined as a 2-state MMPP with
one arrival rate being zero. Stochastically, an IPP is equivalent to a 2-phase hyperex-
ponential renewal process. Following the formulations in [14] the IPP can be described
as

Q =
[
−σ1 σ1

σ2 −σ2

]
, Λ =

[
λ 0
0 0

]
, (4)

and the 2-phase hyperexponential distribution (H2) has the density function

fH2(t) = pµ1e
−µ1t + (1− p)µ2e

−µ2t. (5)

The parameters of H2 can be transformed to parameters of IPP by

λ = pµ1 + (1− p)µ2, (6)

σ1 =
p(1− p)(µ1 − µ2)2

λ
, (7)

σ2 =
µ1µ2

λ
, (8)

while the H2 parameters (p, µ1, µ2) can be obtained from the data by applying an EM
algorithm as described in [1], whose implementation is freely available [12].

3.3 Transportation distance of time series

Coming from a dynamical systems theory background, Moeckel and Murray have given
a measure of distance between two time series [28] that, from a time series perspective,
excellently analyzes (short-time) correlations. It is based on recent research on nonlin-
ear dynamics [18, 3]. Given a time series, the data is first discretized, i.e. binned, with
a certain resolution (a parameter of the method), and then transformed into points in
a k–dimensional discrete space, referred to as the reconstruction space, using a unit-
delay embedding. In dimension 2, for example, all n − 1 consecutive pairs (xi, xi+1),
1 ≤ i < n, of n given data points thus constitute a point yi = (xi, xi+1) in the
reconstruction space. The idea is, that the essential dynamics of generic systems can
usually be reconstructed sufficiently in a low dimensional space. The normalized k–
dimensional probability distributions of these data points from the two series will then
be considered as a transportation problem (also called a minimum cost flow problem):
What is the optimal way, given the first probability distribution, to arrive at the second,
just by transporting weight, i.e. probability, from some boxes to some others? With each



movement a transportation cost is given, which is the normalized (by mass) taxi–cab
distance from the first box to the second, measured in units of the discretization size5,
which is given by the resolution parameter of the method. The minimal such trans-
portation cost can be computed by linear programming. We have written some code to
generate a linear program from two time series which then will be fed into a special-
ized minimum-cost flow solver6. For details on linear programming, the transportation
problem and algorithmic improvements, we refer to [39].

The transportation distance measures to which extent two given time series show
the same k–correlation structure, and is thereby quite sensitive to (1) correlations, and
(2) the underlying probability distributions. It is robust against small perturbations and
outliers, too. A value of the transportation distance can be roughly interpreted as the
average distance each data point of the first time series lies from a corresponding point
in the second series.

Unfortunately, the transportation distance is difficult to compute for higher lags,
since the computational effort rises polynomially in the lag. We are working on approx-
imation methods though, which might overcome this problem in the future [29].

3.4 Bootstrapping

Error estimates for arbitrary functions of stochastic variables can be produced by boot-
straping/resampling [8] techniques. The finite data trace is thereby assumed to be a real-
ization of an underlying probabilistic process, i.e. data points are assumed to be drawn
randomly from a (usually unknown) probability density. Each data value is sampled
with an empirical probability that converges to this density, in the limit of an infinite
data trace. The size of the variations in finite traces can be estimated by looking at addi-
tional data traces of the same length, sampled from the same distribution. Bootstrapping
methods achieve this by resampling from the observed data trace itself, i.e. instead of
choosing data points randomly from the unknown true density, points are chosen by its
approximation, the known empirical density.

Since the transportation distance compares two probability densities, error estimates
for this measure can be produced by the bootstrap method easily. We have implemented
this method with 50 bootstraps of the same length in embedding dimension 1, and 25
in dimension 2, for each of the two time series fed into the distance algorithm. Results
can be seen in Tables 1 and 3, where the bootstrap means and standard mean errors
are shown. All of the results for the original series’ distances lie scattered around the
bootstrap means within one sampled standard deviation. This shows the appropriateness
of the bootstrapping methodology, and we only give the bootstrap means in the tables
for this reason.

For time series, where not only the distribution of values, but also the correlation
structure is important, the simple bootstrap has to be replaced by more sophisticated
methods. The block bootstrapping technique, developed by Künsch [20] and further an-
alyzed in [32], instead of randomly choosing data points, randomly chooses sequences

5 This is equivalent to considering all the points in each discrete box to be located at the center
of their box.

6 We use the MCF network simplex solver developed by Andreas Löbel [26], as well as the
general purpose lp solve linear programming solver [24] for comparing performance.



of consecutive points. The length of these blocks is again randomly chosen from a ge-
ometric distribution to smoothe boundary effects. We have applied this method with
25 bootstraps to the estimation of the MMPP model parameters by the EM algorithm.
The mean block length has been chosen to be 100 interarrivals. Results can be seen in
Table 4 for MMPP2, and Tables 5 and 6 for MMPP3, where we show bootstrap means
and standard mean errors. Since there are strong correlations between parameters, these
estimates have to be considered with some caution. This also explains the few discrep-
ancies with the parameter estimation for the original data trace in Table 2.

4 Modeling

In a large-scale Grid environment different superscheduling architectures require mod-
eling of job arrivals at different levels. By applying the methodology discussed above,
we model the job traffic at the Grid, the Virtual Organization, and the region level,
respectively in this section.

4.1 Grid Level

Figure 13 shows the fittings of the interarrival time in terms of complementary cu-
mulative distribution function (CCDF) by five models, namely Poisson, IPP, MMPP2,
MMPP3, and MMPP4. We can see that globally there is no heavy-tail behavior and
all the models fit the job arrivals quite well. The transportation distances of dimension
1 given in Table 1 quantitatively measure the goodness of fit for interarrival time dis-
tributions. Since the values are all quite low, all models seem to reproduce correctly
the probability distribution (1d), with MMPP2 being the best. The fittings of the auto-
correlation function (ACF) of the interarrival time process are shown in Figure 14. As
expected ACFs of Poisson and IPP vanish for all none-zero lags and they cannot capture
the interdependencies of job arrivals. The MMPPs can introduce dependencies into the
interarrival times, but they are not able to match the long memory of the original trace.
By taking both CCDF and ACF into account we can conclude that MMPP2 is a better
model for the Grid level job arrivals than the Poisson or IPP model. The transportation
distances of dimension 2 given in Table 3 show the differences in pair correlations (2d),
which are also quite small in value.

Figure 8 visually plots the sequences of interarrival times for the original trace and
several models. We can see that both Poisson and IPP lack the kind of variability com-
pared to the trace although their CCDFs fit quite well. MMPP2 looks more similar to
the original data in terms of variability, therefore it can simulate the job traffic more
realistically7.

4.2 Virtual Organization Level

We model the five largest VOs, namely, lhcb, cms, dteam, alice, and atlas, in descendant
order with respect to the number of jobs submitted. Figure 15 and 16 show the CCDFs

7 This visual comparison should be replaced by objective, quantitative measures, of course, and
this is exactly what the transportation distance achieves, when sufficiently high orders can be
compared.
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Fig. 8. Sequences of interarrival times of the Grid trace and the fitted models.

and ACFs of the fitted models for the interarrival time process by lhcb. Being the largest
VO in terms of the submitted jobs, lhcb has no heavy tail distribution of interarrivals
and exhibits a long memory. It contributes significantly to the properties of overall Grid
job arrivals shown in the last section. As to the models we can see that IPP produces
identical fitting with Poisson. Both of them have slightly better results than MMPPs in
terms of transportation distances of dimension 1 and 2. However, MMPP2 and MMPP3
have similar autocorrelations that come the closest to the original trace. Considering the
tradeoffs, MMPP2 is selected as the best fit among the evaluated models. Clearly better
models are needed to closely match the long memory in the series; we will elaborate
why stochastic models fail to capture the autocorrelations in the coming sections, as
well as indicate some future directions for research.

We observe that increasing the number of states in MMPPs would not necessarily
improve the fitting. For instance, in the Grid and lhcb case MMPP4 is an overfitted
model both in terms of CCDF and ACF. This phenomenon is seen with the transporta-
tion distance, too. It seems paradox at first, since MMPP4 is a more flexible model
than MMPP3/MMPP2, but can be attributed to the following issues: (1) the parameter
estimation by the EM algorithm does not easily give error estimates, so errors in the
parameters could be substantial8, (2) the data trace is finite, and actually rather small
for fitting large interarrival times (which occur seldomly), (3) the compromise between
fitting a lot of small interarrival times and some rarely occurring large events seems to
favor the smaller times: there are too many large events generated by the higher order

8 In this respect, a Bayesian analysis by Monte-Carlo Markov Chain methods [40] would be
desirable, since this would produce the probability distribution of the estimated parameters
directly.
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MMPPs, (4) there is a strong deterministic component in the lhcb data, as can be seen in
Figure 9 and Figure 10 where we show the pair distribution for real data and simulated
MMPP2 data. The large peak at about (24s, 24s) interarrival times is very difficult to
model with a Poisson-based model, since waiting times in such models will always be
from an exponential family, thereby monotonously decreasing with distance from the
origin.

From Figure 17 to Figure 24 CCDF and ACF fittings are shown for the remaining
four VOs. We can see that the less job submissions in the VO, the longer the tail the
CCDF has. In those situations with heavy tails, the Poisson process fails to match the in-
terarrival time distribution. For cms data with moderate interarrival time dependencies,
we can see that MMPP3 has very good fittings for both CCDF and ACF (Figure 17
and 18). For dteam, MMPPs exhibit longer memory which is not present in the data
and IPP is shown to be the most suitable model (Figure 19 and 20). For alice both
MMPP3 and MMPP4 can model the interarrival process better than others (Figure 21



and 22), although they tend to generate too many large times9. In the last VO we stud-
ied, namely atlas, MMPP4 is shown to be the best fitted model. MMPP2 and MMPP3
have too long memories and cannot fit the interarrival time distribution closely, while
IPP has no memory and fails to match the heavy tail of the data (Figure 23 and 24).

Although no general conclusions can be reached, some observations are found to be
very interesting. As the VO size decreases from lhcb to cms, then to alice and atlas, the
models with the best fit are MMPPs with an increasing number of states, from 2 to 3 then
to 4, although deterministic components can complicate this. This observation suggests
that MMPPs have very attractive properties for modeling job traffic in the VO level,
being general and analytically simple. With the VO size decreasing in an exponential
manner (see Figure 3), we can model the job arrivals of the corresponding VOs using
MMPPs by increasing the number of states and/or further modeling of deterministic
components. As a special case dteam will be discussed in detail in Section 4.4.

4.3 Region Level

Resource brokers in the current LCG testbed are distributed in regions, so it is important
to model the job arrivals at the region level as well. Figure 25 to Figure 30 show the
model fitting for cern (European Center for Nuclear Research), de (Germany), and uk
(United Kingdom), respectively. Since a majority of jobs are originated in cern and
routed by one of its eight resource broker instances, we use job arrivals by one randomly
chosen resource broker in this study. From Figure 25 and 26 we can see that MMPP3
is the model with the best fit for cern data. MMPPs do not perform well for de and
uk, introducing autocorrelations which are not observable in the real data. In these two
cases IPP is shown to be the most suitable model, matching both the CCDFs and ACFs
of the interarrival time processes.

4.4 Stochastic vs Deterministic

In the modeling process, we find that for certain data such as dteam and uk the EM
algorithm does not converge for estimating MMPP4 parameters (indicated by ’N/A’ in
the tables). This motivates us to plot the interarrival time sequences for all the data to
see what kind of structures exist. The results are surprising: we find strong deterministic
semi-periodic behavior for lhcb, dteam and uk. This is illustrated in Figure 11 and Fig-
ure 9. To further understand these patterns, we form a time series by counting number of
jobs in intervals of 1 minute duration and plot the autocorrelation function (ACF) of this
’binned’ counting process. Figure 12 shows these ACFs for the above mentioned data.
The periodic behavior is clearly observed, with the period for lhcb, dteam and uk being
240 minutes, 180 minutes, and 120 minutes, respectively. For dteam, which stands for
“deployment team”, this pattern is explainable because jobs from this VO are mostly
testing and monitoring jobs initiated by human or automatically by software. Jobs from
uk during the period of study are mostly dteam jobs. It is interesting to see that the
biggest VO lhcb also shows periodic behavior. If we take into account that close to 90%

9 This can be seen from their transportation distances, for example, which are more sensitive to
large data values than to small ones.



of lhcb jobs (around 60,000 jobs) are from one single user during the eleven days under
study, we can assume that scripts are written to submit such production jobs, which are
deterministic in nature.

We cannot say that the periodic behavior for large production VOs is a general
feature and can be used in modeling. However, it is safe to assume that certain VOs are
partly dedicated to testing and monitoring the Grid. In this case, for a realistic model to
capture the behavior of such mixed deterministic (periodic) and stochastic components,
we could follow the traditional route of time series analysis by either fitting and then
subtracting the periodic components, or by introducing time-varying model parameters
and change points [43].

5 Related Work

Traditionally, job arrivals have been analyzed and modeled on single parallel supercom-
puters. In [7] polynomials of degree from 8 to 13 are used to fit the daily arrival rates.
In [25] a combined model is proposed where the interarrival times fit a hyper-Gamma
distribution and the job arrival rates match the daily cycle. Time series models such
as ARIMA are studied in [42], which try to capture the traffic trends and interdepen-
dencies. The impact of such models on the performance of parallel scheduling is also
investigated.

The recent work by Medernach [27] is closely related to ours as he analyzes and
models job arrivals on one cluster in LCG. The model developed is a ON-OFF Markov
chain model, which essentially is a 2-phase hyperexponential renewal process (IPP). It
is shown that for single users 2-phase hyperexponential distributions can fit the interar-
rival times well, although no analysis on dependencies of the series is available. As we
model the job traffic at the VO and the Grid level, it can be regarded as a superposition
of single user activities. It is well known that the superposition of individual renewal
processes can be a correlated, nonrenewal stream [16, 30], which justifies our choice
of MMPPs as the candidate models. A further advantage of MMPPs is their stability
in superposition: two or more superposed MMPPs are equivalent to some higher-order
MMPP [14].

MMPPs have been very popular in modeling telecommunication traffic for more
than twenty years. We refer to [17] for a comprehensive survey on stochastic model-
ing of traffic processes. Self-similarity based models have also been proposed in per-
formance modeling of high-speed networks and we refer to [44] for a bibliographical
guide.

6 Conclusions and Future Work

In this paper we present an initial analysis of job arrivals in a production data-intensive
Grid, focusing on heavy-tail behavior and self-similarity of the interarrival time pro-
cesses. Based on the analysis we investigate a set of m-state MMPPs to model the job
traffic at different levels. Our conclusions can be summarized as follows:

1. There are no clearly observable daily patterns at the Grid level. Empirically, the
number of jobs submitted by different VOs follows an exponential distribution.



2. The interarrival time process at the Grid level is distributed without a heavy tail and
is strongly self-similar with H ≈ 0.84. The best fitted model we find is MMPP2,
but it still could not match the autocorrelation in the original trace.

3. The interarrival time processes of different VOs show strong, moderate, and weak
self-similarity. The tail becomes longer as the number of jobs in the VO decreases.
Experimental results suggest that with the VO size decreasing in an exponential
manner, we can model the job arrivals of the corresponding VOs using MMPPs by
increasing the number of its states.

4. At the region level, MMPPs are more suitable for processes with longer memories,
while IPP can fit the interarrival time distributions very well, which is superior for
those processes with very short memories.

5. The interarrival time processes for certain VOs show strong deterministic semi-
periodic behavior. This explains the strong autocorrelations (long memory) of the
data series. One source for such behavior is from large production VOs (e.g. lhcb),
where scripts may be used for submitted production jobs. Others could be jobs for
testing and monitoring purposes, which is essential for the operation and develop-
ment of the Grid. Realistic modeling of job arrivals with mixed deterministic and
stochastic components requires more future research.

We plan to release our Matlab programs developed for estimating and simulat-
ing MMPPs via [15]. Tools for calculating transportation distance are also available
[29]. One interesting direction for further research is to correlate job arrivals with job
run times to create a complete workload model for performance evaluation in a data-
intensive Grid.
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Fig. 13. Fitting the interarrival time distribution
(CCDF) for the overall Grid job arrivals.
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Fig. 14. Fitting the autocorrelation function
(ACF) for the overall Grid job arrivals.
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Fig. 15. Fitting the interarrival time distribution
(CCDF) for job arrivals by VO lhcb.
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Fig. 16. Fitting the autocorrelation function
(ACF) for job arrivals by VO lhcb.
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Fig. 17. Fitting the interarrival time distribution
(CCDF) for job arrivals by VO cms.
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Fig. 18. Fitting the autocorrelation function
(ACF) for job arrivals by VO cms.
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Fig. 19. Fitting the interarrival time distribution
(CCDF) for job arrivals by VO dteam.
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Fig. 20. Fitting the autocorrelation function
(ACF) for job arrivals by VO dteam.
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Fig. 21. Fitting the interarrival time distribution
(CCDF) for job arrivals by VO alice.
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Fig. 22. Fitting the autocorrelation function
(ACF) for job arrivals by VO alice.
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Fig. 23. Fitting the interarrival time distribution
(CCDF) for job arrivals by VO atlas.
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Fig. 24. Fitting the autocorrelation function
(ACF) for job arrivals by VO atlas.
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Fig. 25. Fitting the interarrival time distribution
(CCDF) for job arrivals from cern.
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Fig. 26. Fitting the autocorrelation function
(ACF) for job arrivals from cern.
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Fig. 27. Fitting the interarrival time distribution
(CCDF) for job arrivals from de.
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Fig. 28. Fitting the autocorrelation function
(ACF) for job arrivals from de.
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Fig. 29. Fitting the interarrival time distribution
(CCDF) for job arrivals from uk.
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Fig. 30. Fitting the autocorrelation function
(ACF) for job arrivals from uk.



Level Name Poisson IPP MMPP2
Grid lcg 0.039 ± 0.001 0.029 ± 0.001 0.024 ± 0.001

lhcb 0.35 ± 0.01 0.35 ± 0.01 0.47 ± 0.01
cms 1.35 ± 0.01 0.40 ± 0.01 0.81 ± 0.01

VO dteam 4.57 ± 0.02 1.03 ± 0.02 17.07 ± 0.05
alice 1.57 ± 0.02 0.98 ± 0.02 1.21 ± 0.02
atlas 16.38 ± 0.19 6.54 ± 0.15 56.94 ± 0.29
cern 3.38 ± 0.02 0.78 ± 0.02 2.95 ± 0.02

Region de 9.60 ± 0.09 3.77 ± 0.06 35.97 ± 0.14
uk 28.91 ± 0.16 7.58 ± 0.10 95.83 ± 0.51

Level Name MMPP3 MMPP4
Grid lcg 0.035 ± 0.001 0.058 ± 0.001

lhcb 0.50 ± 0.01 0.54 ± 0.01
cms 0.70 ± 0.01 5.34 ± 0.01

VO dteam 21.65 ± 0.06 N/A
alice 3.28 ± 0.02 3.36 ± 0.03
atlas 47.70 ± 0.50 5.49 ± 0.19
cern 2.53 ± 0.03 25.17 ± 0.08

Region de 43.73 ± 0.24 437.18 ± 0.95
uk 98.68 ± 0.46 N/A

Table 1. Transportation distances in dimension 1, i.e. for single interarrival times, between real
data and simulated series of fitted Poisson, m-MMPP and IPP models. The time resolution is
10s intervals. All entries are normalized to mean taxi-cab distance (with a unit of 10s). Values
depicted are bootstrap means and standard mean error, estimated by bootstrapping 50 times.

Level Name Poisson MMPP2 IPP
λ σ1 σ2 λ1 λ2 p µ1 µ2

Grid lcg 11.90 0.17 0.08 22.10 7.16 0.22 139.20 10.46

lhcb 4.35 0.04 0.01 8.43 3.18 0.11 4.35 4.35
cms 3.11 0.10 0.07 6.92 0.44 0.95 6.21 0.31

VO dteam 1.64 0.83 0.08 17.86 0.10 0.91 18.31 0.17
alice 2.38 0.16 0.06 6.67 0.73 0.78 6.79 0.71
atlas 0.54 0.10 0.01 4.98 0.02 0.95 5.05 0.03

cern 1.41 0.10 0.06 3.43 0.13 0.94 3.36 0.15
Region de 0.83 0.17 0.03 4.98 0.03 0.94 5.08 0.06

uk 0.19 0.36 0.01 4.93 0.03 0.75 5.82 0.05

Table 2. Parameters of fitted Poisson, MMPP2 and IPP models as found by the EM algorithm.



Level Name Poisson IPP MMPP2
Grid lcg 0.0038 ± 0.0001 0.0010 ± 0.0001 0.0139 ± 0.0001

lhcb 0.179 ± 0.001 0.182 ± 0.001 0.244 ± 0.001
cms 0.747 ± 0.004 0.394 ± 0.003 0.500 ± 0.004

VO dteam 2.708 ± 0.012 1.141 ± 0.008 11.249 ± 0.029
alice 0.813 ± 0.011 0.661 ± 0.011 0.686 ± 0.011
atlas 11.041 ± 0.123 5.601 ± 0.084 37.764 ± 0.175
cern 2.174 ± 0.012 0.818 ± 0.010 1.917 ± 0.016

Region de 6.080 ± 0.063 2.962 ± 0.039 24.007 ± 0.110
uk 20.490 ± 0.108 8.504 ± 0.064 64.765 ± 0.370

Level Name MMPP3 MMPP4
Grid lcg 0.0233 ± 0.0002 0.0035 ± 0.0001

lhcb 0.274 ± 0.001 0.295 ± 0.001
cms 0.458 ± 0.004 3.279 ± 0.008

VO dteam 14.285 ± 0.038 N/A
alice 1.936 ± 0.022 1.963 ± 0.018
atlas 31.906 ± 0.376 3.480 ± 0.099
cern 1.641 ± 0.023 16.674 ± 0.062

Region de 28.786 ± 0.196 290.859 ± 0.618
uk 65.414 ± 0.429 N/A

Table 3. Transportation distances in dimension 2, i.e. comparing pairs of interarrival times, be-
tween real data and simulated series of fitted Poisson, m-MMPP and IPP models. The time res-
olution is 30 seconds. All entries are normalized to mean taxi-cab distance (with a unit of 30
seconds), and should therefore be about a factor of 3 smaller than the corresponding values in Ta-
ble 1. Values depicted are bootstrap means and standard mean errors, estimated by bootstrapping
25 times.

Level Name MMPP2
σ1 σ2 λ1 λ2

Grid lcg 0.262 ± 0.034 0.387 ± 0.064 17.300 ± 0.590 5.118 ± 0.291
lhcb 0.632 ± 0.117 0.396 ± 0.153 9.051 ± 0.753 3.261 ± 0.093
cms 0.106 ± 0.002 0.075 ± 0.001 6.833 ± 0.041 0.435 ± 0.015

VO dteam 0.824 ± 0.016 0.079 ± 0.001 17.651 ± 0.211 0.100 ± 0.003
alice 0.172 ± 0.004 0.069 ± 0.004 6.692 ± 0.022 0.728 ± 0.023
atlas 0.102 ± 0.003 0.012 ± 0.001 5.020 ± 0.055 0.020 ± 0.001
cern 0.099 ± 0.003 0.063 ± 0.002 3.436 ± 0.021 0.129 ± 0.003

Region de 0.174 ± 0.006 0.035 ± 0.002 5.095 ± 0.064 0.032 ± 0.002
uk 2.279 ± 0.261 0.128 ± 0.033 4.925 ± 0.530 0.054 ± 0.006

Table 4. Error estimates for fitted MMPP2 model, standard mean errors have been estimated by
bootstrapping 25 times with a geometrical blocksize distribution of mean length 100. Correlations
between parameters have not been indicated.



Level Name MMPP3
λ1 λ2 λ3

Grid lcg 1.979 ± 0.205 2.290 ± 0.209 13.812 ± 0.210
lhcb 1.913 ± 0.135 2.092 ± 0.162 5.087 ± 0.150
cms 0.257 ± 0.032 0.672 ± 0.099 7.098 ± 0.098

VO dteam 0.046 ± 0.006 0.097 ± 0.040 15.901 ± 0.545
alice 0.295 ± 0.038 0.537 ± 0.083 5.954 ± 0.152
atlas 0.001 ± 0.054 0.163 ± 0.091 4.839 ± 0.174
cern 0.094 ± 0.014 0.284 ± 0.052 4.050 ± 0.077

Region de 0.015 ± 0.001 0.905 ± 0.124 6.321 ± 0.039
uk 0.013 ± 0.002 0.039 ± 0.012 4.217 ± 0.334

Table 5. Bootstrapped rate parameters of fitted MMPP3 model, standard mean errors have been
estimated by bootstrapping 25 times with a geometrical blocksize distribution of mean length
100. Correlations between rates have not been indicated.

Level Name MMPP3
σ12 σ13 σ21

Grid lcg 1.25 ± 0.16 2.35 ± 0.40 0.24 ± 0.05
lhcb 1.07 ± 0.17 2.14 ± 0.30 0.29 ± 0.05
cms 0.33 ± 0.06 0.19 ± 0.03 0.53 ± 0.06

VO dteam 0.35 ± 0.05 0.13 ± 0.03 0.57 ± 0.07
alice 0.50 ± 0.06 0.27 ± 0.04 0.48 ± 0.05
atlas 0.35 ± 0.06 0.04 ± 0.01 0.71 ± 0.08
cern 0.43 ± 0.06 0.22 ± 0.05 0.56 ± 0.08

Region de 0.011 ± 0.001 0.016 ± 0.001 0.089 ± 0.006
uk 0.42 ± 0.05 0.10 ± 0.02 0.74 ± 0.08

Level Name MMPP3
σ23 σ31 σ32

Grid lcg 0.72 ± 0.10 0.06 ± 0.01 0.10 ± 0.02
lhcb 1.07 ± 0.17 0.12 ± 0.02 0.17 ± 0.03
cms 0.31 ± 0.06 0.13 ± 0.02 0.15 ± 0.02

VO dteam 0.18 ± 0.04 0.50 ± 0.06 0.51 ± 0.06
alice 0.31 ± 0.06 0.25 ± 0.04 0.27 ± 0.03
atlas 0.19 ± 0.05 0.22 ± 0.05 0.24 ± 0.03
cern 0.34 ± 0.06 0.19 ± 0.03 0.29 ± 0.04

Region de 0.053 ± 0.006 0.117 ± 0.001 0.049 ± 0.006
uk 0.17 ± 0.04 0.96 ± 0.13 0.95 ± 0.10

Table 6. Bootstrapped transition parameters of fitted MMPP3 model, standard mean errors have
been estimated by bootstrapping 25 times with a geometrical blocksize distribution of mean
length 100. Correlations between parameters have not been indicated.


