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Abstract. Using a large HPC platform, we investigate the effectiveness of “sym-
biotic space-sharing”, a technique that improves system throughput by executing
parallel applications in combinations and configurations that alleviate pressure
on shared resources. We demonstrate that relevant benchmarks commonly suffer
a 10-60% penalty in runtime efficiency due to memory resource bottlenecks and
up to several orders of magnitude for I/O. We show that this penalty can be often
mitigated, and sometimes virtually eliminated, by symbiotic space-sharing tech-
niques and deploy a prototype scheduler that leverages these findings to improve
system throughput by 20%.

1 Introduction

On SDSC’s DataStar [3], as on all parallel systems, processes must share resources.
Because the system does not time-share, each process receives its own processor with
a dedicated level 1 cache. However, two processors must share a level two cache. The
eight processors on each node must share a level 3 cache, main memory, an on-node
file system, and bandwidth to off-node I/O.

Sharing, by its very nature, entails compromise. In the realm of parallel processing,
that compromise may lead to performance degradation. The more heavily coexisting
processes make use of a shared resource, the more likely it is that the performance of
that resource will suffer. Heavy use of a shared cache might lead to lower hit rates, and
consequently, lower per-processor throughput. As more processes make simultaneous
use of a shared I/O system, blocking times increase and performance degrades.

Because the consequences of resource sharing are often ill-understood, scheduling
policies on production space-shared systems avoid inter-job sharing wherever possible.
On DataStar, for instance, nodes are never time-shared and parallel jobs have exclusive
use of the nodes on which they run. Even then, the system’s General Parallel File System
(GPFS) remains a shared resource among all running jobs.

This is not an ideal policy in several circumstances. Resource utilization and through-
put suffers when small jobs are forced to occupy an entire node while making use of
only a few processors. The policy also encourages users to squeeze large parallel jobs
onto the fewest number of nodes possible since doing otherwise is both costly and detri-
mental to system utilization. Such configurations are not always optimal; the processes
of parallel jobs often perform similar computations, consequently stressing the same
shared resources and exacerbating the slowdown due to resource contention.



In such situations, a more flexible and intelligent scheduler could increase the sys-
tem’s throughput by more tightly space-sharing symbiotic1 combinations of jobs that
interfere with each other minimally. Such a scheduler would need to recognize rele-
vant job characteristics, understand job interactions, and identify opportunities for non-
destructive space-sharing.

The purpose of this study is to investigate the feasibility of such an approach and
quantify the extent to which it could improve throughput if implemented. To address
these questions, we must determine:

* To what extent and why do jobs interfere with themselves and each other?
* If this interference exists, how effectively can it be reduced by alternative job mixes?
* Are these alternative job mixes feasible for parallel codes and what is the net gain?
* How can a job scheduler create symbiotic schedules?

We explore each of these questions in sections 3 through 5 respectively. This dis-
cussion is preceded by details of our hardware environment in section 2 and succeeded
by comments on related and future work in sections 7 and 8.

2 Hardware Environment

The results described in this paper were derived from application runs on the San Diego
Supercomputer Center’s DataStar. The machine contains 272 IBM P655+ nodes, each
consisting of 8 Power4 processors. Of those nodes, 171 are composed of 1.5 GHz pro-
cessors while the others 1.7. Only the former were utilized for this study.

Each POWER4 processor contains a 32 KB L1 data cache. Two processors together
comprise a chip and share a 1.5 MB L2 cache. The L3 cache on each chip is combined
with that on the others to create a single node-wide, address-interleaved L3 cache of
128 MB.

Each node is also equipped with 16 GB of memory and a local scratch file system
of approximately 64GB. Nodes are directly connected to the GPFS (IBM’s parallel file
system) through a Fibre Channel link and to each other by the Federation interconnect.

DataStar schedules jobs using a batch queueing model implemented by LoadLeveler
[12]. Because the scheduler interface does not allow users to directly request that jobs
be coscheduled, we achieved this effect when necessary by deploying MPI jobs that
execute the desired sub-jobs on specified processors depending on rank.

3 The Effects of Sharing Resources

As an initial starting point, we can broadly divide the resources shared by processors on
DataStar’s nodes into two categories: memory and I/O. The memory resources consist
of the three levels of cache along with the node’s 16GB of main memory. The I/O re-
sources consist of the on-node file system along with bandwidth to the system’s GPFS.

1 Symbiosis is a term borrowed from Biology meaning the graceful coexistence of organisms in
close proximity. We generalize the term to co-scheduled processes and emphasize the form in
which neither does harm to the other.



To gauge the performance effects of resources sharing, we run a set of single-
processor benchmarks meant to stress each resource. We then measure the slowdown
incurred by each benchmark as we increase the number of its instances running con-
currently on a single node. The maximum slowdown is displayed. When we refer to N
concurrent instances of a benchmark, we refer to N independent, single-processor runs
of some benchmark running concurrently on a single node. We calculate slowdown as
(TN − T1)/T1 where Ti is the runtime of the benchmark while i instances of it run
concurrently on the node.

3.1 Memory Sharing

To test performance degradation of the memory subsystem, we choose the following
three benchmarks, each meant to stress different sections of the system:

GUPS - Giga-Updates-Per-Second measures the time to perform a fixed number of
updates to random locations in main memory [8, 1]. We use it to investigate the
effects of high demand on main memory bandwidth.

STREAM - A simple synthetic benchmark that measures sustainable memory band-
width for vector compute kernels, commonly encountered in high-performance
computing, by performing a long series of short, regularly-strided accesses through
memory [8, 2]. STREAM is highly cacheable and prefetchable and we therefore
use it stress the machine’s cache structure.

EP - Embarrassingly Parallel is one of the NAS Parallel Benchmarks [6]. It evaluates
an integral by means of pseudorandom trials and is a compute-bound code. We use
this as a control group to discern between performance degradation in the other
benchmarks due to resource sharing and that attributable to other overheads.

Figure 1 shows the slowdown of each type of application. EP appears only slightly
sensitive to the number of concurrent instances running on the node while GUPS and
STREAM show a slowdown of up to 18% and 30% respectively.

Of note is the non-linear increase in slowdown. Since the majority of the slowdown
is caused by the latter instances, we can speculate that running symbiotic jobs on those
processors has the potential to eliminate a disproportionate share of the performance
degradation.

The large jump in slowdown caused by adding a fifth instance of GUPS is partic-
ularly indicative of resource sharing. When fewer than five processes run on the node,
DataStar is able to spread them onto separate chips and minimize resource sharing.
Once a fifth instance of GUPS is added however, at least two processes must share
one of the four chips and consequently an L2 cache. When sharing the L2 cache, each
processes receives degraded service from it. Table 1 shows the L2 miss rates of each
processor as more instances of GUPS are added. When two processes cohabitate a sin-
gle chip, the miss rate increases from around .62 to .78, causing the sharp drop in
performance.

To verify that our observations from these benchmarks are representative of other
applications and can be generalized, we repeat part of this experiment using single-
processor runs of the NAS Parallel Benchmarks [6]. We use version 3.2 and problem
sizes of class B. None of these benchmarks performs any significant I/O.
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Fig. 1. Slowdown of memory intensive benchmarks as more instances of each run concurrently
on a single node.

Chip 0 Chip 1 Chip 2 Chip 3
P0 P4 P1 P5 P2 P6 P3 P7

61 - - - - - - -
.61 - .61 - - - - -
.61 - .61 - .61 - - -
.62 - .62 - .62 - .62 -
.76 .76 .60 - .60 - .60 -
.76 .76 .76 .76 .60 - .60 -
.78 .78 .78 .78 .78 .78 .67 -
.78 .78 .78 .78 .78 .78 .78 .78

Table 1. L2 miss rates as more processors of a node run GUPS concurrently.



The results in Table 2 confirm that slowdown from memory subsystem sharing tends
to fall in the range of 10-60% and that the majority of performance degradation is
often resultant of using the second half of a node. Further, we notice that the slowdown
incurred by each benchmark due to the first four instances varies minimally, generally
within 5%.

APP BT MG FT DT SP LU CG IS
4P 8 15 1 20 20 16 14 14
8P 12 48 30 38 33 41 54 58

Table 2. Percent Slowdown of NPB while 4 and 8 instances of each run concurrently on a node.

3.2 I/O Sharing

To extend our investigation to shared I/O resources, we repeat the experiments from
Section 3.1 using I/O Bench [4], a synthetic benchmark that measures the rate at which
a machine can perform reads and writes to disk. The benchmark performs a series of
sequential, backward, and random read and write tests.

We configure I/O Bench to use a file size of 600MB and block size of 4K. Each
benchmark instance writes and reads its own set of three distinct files via sequential,
backward, and random access. Concurrent processes never operate on the same files.
We repeat the tests once for the on-node scratch file system and again for the off-node,
shared, GPFS.

Figure 2 graphs the slowdown induced when concurrent, independent instances of
I/O Bench run on a single node. The slowdown factors are far greater than those exhib-
ited by the memory-intensive benchmarks, with the on-node numbers demonstrating
super-linear slowdown. The off-node performance numbers, while not as egregious as
their on-node counterparts, are nonetheless considerable. The erratic performance of
the off-node measurements are likely an artifact of the varying demand placed on it by
other applications concurrently executing on the system.

4 Mixing Jobs

Now that we have determined the ways in which resource sharing can degrade perfor-
mance, we turn to investigate the extent to which this degradation can be mitigated by
alternate job mixes. To gauge the performance effects of the benchmarks on each other,
we repeat the experiments in Section 3, but utilize the unused processors in each experi-
ment to concurrently execute other benchmarks instead of leaving those processors idle.
We refer to the benchmark being tested as the primary benchmark and the one being
executed by the spare processors as the background benchmark. To adjust for runtime
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Fig. 2. Slowdown of I/O Bench as more instances run concurrently on a single node.

discrepancies between primary and background benchmarks, the processors executing
the background benchmark repeat execution until the primary benchmark completes.

Figures 3 through 6 graph these results. In each graph, the line labeled “[BENCH]
w/ idle” is the performance curve as depicted in Figures 1 and 2, meaning that there
is no background benchmark and consequently, the unused processors were idle dur-
ing the experiment. The other lines, labeled “[BENCH1] w/ [BENCH2]”, indicate that
instead of sitting idle, all unused processors were running the background benchmark
BENCH2.

These graphs indicate that with only a single exception, utilizing unused proces-
sors to execute the other benchmarks has little to no effect on runtimes. These results
clearly demonstrate that it is possible to mitigate resource-sharing slowdown by mixing
memory, compute, and I/O intensive jobs.

The lone exception arises from combining the two memory-bound applications,
STREAM and GUPS. Although GUPS has little effect on the performance of STREAM
(Figure 3), the converse is untrue (Figure 4). This one-way interference is likely due to
STREAM’s heavy cache use and the relatively low rate of memory operations achieved
by GUPS. STREAM increases the L2 and L3 miss rates of GUPS by around .2 each
while the presence of GUPS does not affect STREAM’s cache miss rates.

To confirm that these results are generalizable, we repeat part of these experiments
using the NAS Parallel Benchmarks. Again, we use EP as the compute-intensive code
and I/O Bench as the I/O-intensive code. Table 3 lists the percentage slowdown in-
curred by each primary benchmark, listed on the vertical axis, when all the remaining
processors on the node concurrently execute the background benchmarks listed on the
horizontal axis.

The first item to note is that EP and I/O Bench are symbiotic with all of the NAS
benchmarks. The degradation imposed by these benchmarks both to and by the others
is negligible and appears to be within the margin of measurement error.
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Background Benchmark
BT MG FT SP LU CG IS EP I/O

BT 12 21 20 16 17 12 12 1 5
MG 11 48 25 25 25 11 11 1 4
FT 6 31 30 15 18 15 12 1 1
SP 21 48 36 33 31 23 19 2 5
LU 18 69 41 38 41 24 28 1 2
CG 26 82 64 42 55 54 36 3 7
IS 14 88 50 39 50 32 58 1 3
EP 2 4 4 4 4 3 2 1 2
I/O -6 -2 2 -2 -6 -6 -2 -2 1108

Table 3. Percent slowdown of row application when all other processors on node execute column
application.

Secondly, the slowdown imposed by each benchmark on itself tends to be among
the highest observed. This implies that opportunities for symbiotic combinations may
be forthcoming in large enough application sets.

As we observed in Figure 4, the interactions between the NAS benchmarks can
sometimes be one-sided when one benchmark makes heavier use of shared resources
than another. The most flagrant example is MG, which causes the most performance
degradation both to itself and to others.

Degenerate cases aside, ample opportunities exist for symbiotic sharing, even among
those applications we consider memory-intensive. Pairing CG and IS, for example,
would be substantially beneficial to both. BT appears to be another possible candidate.

5 Symbiotic Space-Sharing and Parallel Codes

In the previous two sections we have shown that resource-sharing among concurrent
jobs can cause performance degradation and that this degradation can be effectively
mitigated by symbiotic job mixes. This is sufficient motivation to begin sharing single
nodes among two or more small jobs in a more intelligent way. However, the ques-
tion still remains as to whether or not symbiotic job scheduling can help speed larger,
parallel, multi-node applications. This section aims to address this question.

Generally, parallel codes employ every processor on each node. The scheduler’s
motivation to use fewer nodes is to minimize the occurrence of slower, inter-node com-
munications and therefore, ostensibly reap performance benefits. The results presented
in the previous two sections should give us pause as to whether this is a good scheduling
strategy. Can the processor performance benefits of symbiotic space-sharing outweigh
the penalty of additional inter-node communications?

To answer this question we again use the NAS Parallel Benchmarks, only this time,
instead of using multiple single-processor runs, we employ a single 16-processor run
for each benchmark. We execute each parallel benchmark first on 16 processors spread



evenly across two 8-way nodes and then again on 16 processors spread evenly across
four 8-way nodes, effectively utilizing only four processors per node.

To model the increased complexity of parallel I/O, we replace I/O Bench, which is
a serial application, with BTIO [30], NPB’s parallel I/O benchmark. BTIO is the same
as the BT benchmark, but with frequent checkpointing to disk. There are several flavors
of I/O that BTIO can utilize. We conduct our experiments using the following three:

MPI IO FULL - The full MPI-2 I/O implementation uses collective buffering, mean-
ing that data scattered in memory among the processors is collected on a subset of
the participating processors and rearranged before being written to file.

MPI IO SIMPLE - The simple MPI-2 I/O implementation does not leverage collec-
tive buffering, meaning that many seek operations may be required to write the data
file.

EP IO - Using Embarrassingly Parallel I/O, every processor writes its own file and
files are not combined to create a single file.

The results in Table 4 were derived using the MPI implementation of the NPB
version 3.2 with problem class C. Because we run these benchmarks across multiple
nodes, the I/O tests cannot utilize the on-node I/O, but rather only the system’s GPFS.
Speedup is calculated using the traditional definition T2/T4 where TN is the runtime of
the benchmark on N nodes.

Benchmark Speedup
BT 1.13

MG 1.34
FT 1.27
LU 1.47
CG 1.55

IS 1.12
EP 1.00

BTIO EP 1.16
BTIO SIMPLE 4.97

BTIO FULL 1.16

Table 4. Speedup of 16-processor runs when executing across four nodes instead of two

The results reveal that speedup from reduced resource contention in this benchmark
set not only outweighs communication overheads, but does so significantly and consis-
tently.

DataStar’s current interface does indeed allow a user to request that his or her job
be spread across more nodes than necessary and therefore attain these performance
benefits. However, because the system does not node-share, such a request would be
both a detriment to overall system utilization and costly to the user who is charged



per node instead of per processor. Can a system-level, symbiotic space-sharing scheme
help?

To find out, we re-run some of the 4-node tests, but allow two benchmarks to run
on the nodes concurrently. For each result presented in Table 5, we execute two parallel
benchmarks concurrently on four nodes with each benchmark using exactly half of each
node.

Bench A Bench B Speedup A Speedup B

CG

IS 1.18 1.17
BT 1.05 1.04
EP 1.36 1.03

BTIO(E) 1.38 1.07
BTIO(S) .55 1.03
BTIO(F) 1.36 1.12

IS

BT 1.04 1.03
EP 1.07 1.03

BTIO(E) 1.11 1.07
BTIO(S) 1.00 2.41
BTIO(F) 1.13 1.13

Table 5. Speedup attained when parallel benchmarks share four nodes instead of running sepa-
rately on two each.

These results show that speedup can be maintained even while no processors are
idle. Speedup can be induced both by mixing categories of benchmarks and even by
mixing some memory-bound codes. For the first time however, we observe some cross-
category slowdown. CG and the BTIO benchmark with simple IO both slow consider-
ably when paired. Nevertheless, these results demonstrate that executing parallel codes
in symbiotic combination can indeed yield significant performance benefits. The aver-
age speedup increase is 15%, showing that for this set of benchmarks, the benefits of
reduced resource sharing outweigh the increased cost of inter-node communications.

6 Towards a Symbiotic Scheduler

In the previous three sections, we have shown that symbiotic space-sharing can improve
system throughput by reducing runtime inefficiencies while maintaining high system
utilization. The most important question remaining is how to build schedulers that can
leverage these concepts.

6.1 Identifying Symbiosis

The effectiveness of any symbiotic space-sharing scheduler is naturally contingent upon
the level of symbiosis the scheduler can identify in a given job stream. In this section,



we discuss some preliminary approaches for uncovering symbiotic space-sharing op-
portunities under various assumptions.

In the most restrictive input scenario, the scheduler has no history of the execution
characteristics of jobs in the stream. In such circumstances, users could be asked to
submit the application’s bottleneck, if any, to the scheduler. It is not unreasonable to
assume that a user might know that a certain application is I/O or compute intensive.
These are the two categories in which we are most interested since they afford us the
most likely opportunity for symbiotic job mixing. The scheduler would then pair I/O
and compute intensive jobs to execute with memory-intensive ones. As we will see in
Section 6.2, even this naive approach can reap significant benefits.

If a scheduler, however, were able to recognize and maintain statistics regarding jobs
that commonly recur in the stream, then other techniques would be possible. Workload
traces have revealed that users tend to frequently resubmit similar or even identical jobs
[9, 10], a phenomenon that automated runtime predictors have leveraged in the past
[11, 21]. A symbiotic scheduler may utilize these same techniques to identify applica-
tions and associated resource bottlenecks. A user-supplied job category may be a good
starting point, but the scheduler could improve on a strategy of random, cross-category
pairing.

The most straight-forward approach is experimentation. The scheduler can be con-
figured to space-share randomly selected cross-category pairs and learn the best combi-
nations. Better combinations would be identified by metrics such as memory operations
per second or floating point operations per second as reported by commonly available
lightweight hardware counters. While sampling, the scheduler would exhibit a config-
urable bias towards choosing combinations known to be more efficient. This approach
has been shown effective in multithreading scenarios [22, 23].

A yet more intricate approach may be to deploy those hardware counters to collect
statistics on applications as they run alone. The scheduler may subsequently use the re-
sults to predict optimal combinations, thereby decreasing its learning overhead. Figure
7 exemplifies one possible predictive strategy.

Figure 7 graphs the memory operations per second achieved by the single-processor
NAS benchmarks while running alone versus the percentage slowdown incurred by each
when four or eight concurrent instances of it run on a single node. For the full node
runs, we can see a strong correlation between these two parameters. Among the NAS
benchmarks, those able to perform memory operations at a faster rate are less likely to
cause themselves slowdown. Since the slowdowns incurred by the half-node runs of all
benchmarks are comparable, it is likely that applications with lower memory operations
per second will benefit more from symbiotic scheduling. In this approach, the scheduler
might increase utility by preferring to space-share applications that achieve a lower rate
of memory operations per second.

Aided by the proper hardware counters, a scheduler could ideally discover sym-
biotic combinations relatively quickly. Given that, there is still a need for effective
scheduling heuristics that can exploit these findings. We should keep in mind however
that an optimal symbiotic scheduler is not a necessary first step. The results presented
hitherto suggest that much benefit would be achievable even by a naive implementation.
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6.2 Prototype Symbiotic Scheduler

To test whether or not symbiotic space-sharing can indeed improve system through-
put, we implemented a rudimentary symbiotic scheduler to compete against DataStar’s
production counterpart.

The scheduler was deployed on DataStar and given an ordered stream of one hun-
dred randomly selected 4 and 16-processor jobs to execute using four nodes. We refer
to these job sizes simply as small and large. The jobs in the stream consisted of I/O
Bench and variations of the NAS Parallel benchmarks from the following set: {EP.B.4,
BT.B.4, MG.B.4, FT.B.4, DT.B.4, SP.B.4, LU.B.4, CG.B.4, IS.B.4, CG.C.16, IS.C.16,
EP.C.16, BTIO FULL.C.16}2. The job stream was generated by iteratively enqueueing
jobs selected by weighted probability; small jobs were favored over large jobs in a 4:3
ratio and memory-intensive jobs were favored over compute and I/O intensive jobs in a
2:1:1 ratio. Each job is submitted with a synthetically generated expected runtime that
is used by the scheduler for backfilling and is generally within 20% of the job’s actual
runtime.

The symbiotic scheduler mimics DataStar scheduling objectives by favoring large
jobs and backfilling small ones whenever possible. To constrain backfilling opportuni-
ties, at most twelve jobs occupy the queue at any given time.

The algorithm employed by the symbiotic scheduler is the most simplistic of those
discussed above. The scheduler partitions each node evenly into top and bottom halves.
It then executes jobs designated as memory-intensive on the top half and all others on
the bottom half. The symbiotic scheduler spreads large jobs across all four nodes while
the DataStar scheduler executes each on only two.

DataStar’s makespan for the first eighty seven jobs was 5355s while the symbiotic
scheduler completed the same jobs in 4451s, a speedup of 1.20. We ignore the final

2 For small jobs, each of the 4 processors actually performs a full serial run of the benchmark at
class B with collective communication at the beginning and end.



thirteen jobs because the eighty seventh job completed was the final memory-intensive
job in the stream. The symbiotic scheduler’s memory half was thereafter starved while
the non-memory intensive half executed the final thirteen jobs, an artifact of the testing
procedure.

7 Related Work

Many previous investigations of multi-resource aware job scheduling have been con-
ducted, though none under assumptions applicable to today’s scientific supercomput-
ing installations. Our approach revisits the issue by starting with a modern production
policy on a large MPP machine and relaxing some procedures to achieve higher per-
formance and utilization. We assume rigid job sizes, FCFS-type queued space-sharing,
and run-to-completion scheduling with no preemption.

We characterize previous related work into the following non-exclusive categories:

7.1 Multithreading

Symbiotic job scheduling was originally proposed for machines utilizing Simultaneous
Multithreading[22, 23], later known as Hyperthreading, and was subsequently refined
by McGregor et. al. [18]. Such examples are concerned with intimate, cycle-by-cycle re-
source sharing of multithreaded processors where sharing and contention involve func-
tional units on the processor. Contrastingly, this work focuses on space-sharing con-
tention for off-chip resources by multiple processors.

7.2 Paging

Some studies have sought to schedule job combinations that may limit the amount of
paging induced by the workload. In 1994, Peris modelled the cost of paging behavior in
parallel applications when working sets would not fit into local memory [20]. Batat and
Feitelson suggest limiting the multiprogramming level of gang schedules in order to en-
sure that job combinations do not exceed a total memory limit [7]. Suh and Rudolf have
proposed that if such a limit must be breached, then previously obtained application
profile information can inform the scheduler of the best way to do so [25].

Though ensuring a job’s ability to fit into memory is encompassed by this work, it
is not the sole focus. We address contention for all resources on each node including
caches, memory bus bandwidth, and local I/O in addition to global resources shared
among multiple nodes. We also study the effects of allocating a job’s processes across
multiple nodes in order to compare slowdowns from resource contention and inter-node
communications.

7.3 Time-sharing

Application-aware job scheduling for time-sharing scenarios has also been studied.
Many have proposed affinity techniques that mitigate cache perturbations by avoiding
process migrations [24, 28, 27]. Such considerations are unique to time-sharing.



Wiseman and Feitelson have suggested that I/O and compute-intensive jobs can be
symbiotically coallocated on the same processor set in a gang scheduled environment
[29]. The focus of that work is on a relaxation of gang scheduling that allows two com-
plementary jobs to cooperate via timely per-processor context switching. In contrast
to this effort, our work targets resource sharing and contention in pure space-shared
systems.

7.4 SMP Memory Bus Contention

It is well known that contention on the memory bus of an SMP is a scaling bottle-
neck. Several studies have therefore investigated the possibility of relieving pressure
on this bottleneck through appropriate job mixes. Liedtke introduced the topic in 2000
[15]. Both Antonopoulos [5] and Koukis [13] have built upon his work by proposing
techniques for scheduling jobs on SMP nodes in a manner cognizant of memory bus
contention.

These studies are similar to ours in spirit, but target different environments. Koukis,
for instance, targets serial applications which are time-shared on a cluster of dual-way
SMP servers running Linux. The possibility of parallel applications is addressed but not
evaluated. Contrastingly, we are concerned with space-sharing parallel scientific appli-
cations in production supercomputing environments under the assumptions detailed at
the start of this section. We also study the effects of the cache hierarchy and I/O.

7.5 Other Related Work

Some previous studies of multiple-resource allocation have also been conducted. Par-
sons and Sevcik investigated the coordinated allocation or processors and memory [19];
subsequently, Leinberger et. al generalized the problem to k-resource scheduling where
the idea is to choose optimal job working sets when multiple resource requirements
exist [14]. Unlike our study, this work assumes independently allocatable resources and
well defined requirements for each job. On our target architecture, a predetermined bun-
dle of resources is provided to a job along with each processor.

It has been observed that spacing I/O-intensive jobs in time on a parallel file system
improves performance [17]. Our emphasis is primarily to spread these in space, and
also to identify specific symbiotic partners for such jobs.

Mache and Garg have focused on finding a spatial layout for concurrent jobs in a
parallel space-shared machine to minimize communication and maximize access to I/O
nodes for I/O-intensive jobs [16]. We address a related but different problem in consid-
ering not only the physical layout but also the sets of jobs contending for resources.

Also described has been an approach for deriving beneficial symbiosis (i.e. com-
mensalism), wherein one version of a program, executing concurrently with the main
program, helps the main program resolve control-flow for instruction fetching [26]. Al-
ternatively, we search the existing job-stream for sets to co-schedule that interfere as
little as possible with each other. We expect the existence of commensal job combina-
tions in realistic production environments to be unlikely.



8 Conclusions and Future Work

In this work, we have introduced symbiotic space-sharing as a promising technique
for improving the performance efficiency of large-scale parallel machines. We have
shown that a wide range of benchmarks commonly suffer between 10-60% slowdown
due to memory resource contention and up to several orders of magnitude for I/O. We
have shown that this effect can be mitigated by deploying alternate job mixes and have
extended these results to parallel codes, demonstrating that node-sharing among paral-
lel applications can increase throughput by increasing performance while maintaining
high system utilization levels. We synthesized these findings by exhibiting a prototype
scheduler that improves throughput by 20%.

Our results are derived from DataStar, a production machine at the San Diego Su-
percomputer Center, and the NAS Parallel Benchmarks, a widely used benchmark suite
designed with the express purpose of evaluating the performance of parallel Supercom-
puters.

Through this work, we have explored the opportunity space for and confirmed the
viability of symbiotic space-sharing. Future work may proceed in the following direc-
tions:

The confirmed promise of symbiotic space-sharing warrants the effort to conduct a
study on its applicability to real-world production workloads. The effectiveness of our
techniques remains to be seen for highly parallel, resource-intensive, scientific applica-
tions. Further, a study characterizing the job mixes in today’s production queues would
help us understand more extensively the opportunity for symbiotic job mixes and the
heuristics that could exploit them.

The relationship between hardware counter statistics and symbiotic space-sharing
should be further explored. Such efforts could help create automated algorithms to iden-
tify the limiting resource of applications. A more advanced result might be to use such
counters to automatically identify symbiosis, even among applications bound by the
same resource.

Research on production workloads and prediction of job interactions can facilitate
the development of symbiotic scheduling heuristics. Particularly interesting would be
a framework for evaluating tradeoffs between system throughput and fairness in queue
times or between other policy objectives.

We are currently also extending this feasibility study onto grid schedulers in an
attempt to understand the degree to which a grid-wide scheduler can improve the ef-
ficiency of its resource pool by scheduling symbiotic job combinations at each site.
Through this approach, we also hope to study the degree to which a scheduler can in-
crease throughput by lessening site load on resources such as a parallel I/O file system.
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